
410 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

Distinguishing Attack on Common Scrambling

Algorithm

Kai Zhang and Jie Guan

Zhengzhou Information Science and Technology Institute, China

Abstract: Common Scrambling Algorithm (CSA) has been used to encrypt european cable digital television signals since

1994. Although, the key size of CSA is small, up to now, there haven’t any effective crypto results which can break the

algorithm totally. Based on the idea of slide resynchronization attack, a distinguishing attack which can distinguish the

keystream of the Stream Cipher (SC) from a purely random sequence with computational complexity of O(2
15
) is proposed.

According to the distinguishing attack, the 64 bit initial key can be recovered with computational complexity of O(2
55
).

Keywords: Digital video broadcasting common scrambling algorithm, distinguishing attack, slide resynchronization attack,

hybrid cipher.

Received August 31, 2012; accepted February, 23, 2014; published online August 17, 2014

1. Introduction

The Digital Video Broadcasting Common Scrambling
Algorithm (DVB-CSA) has been used to encrypt
european cable digital television signals since 1994. As
part of the MPEG-TS standard, it is virtually used for
all conditional access systems in digital television. The
algorithm has never been officially revealed and was
only available under a non-disclosure agreement from
an ETSI custodian before 2002. The agreement didn’t
permit the algorithm to be implemented in software for
“security reasons”. In 2002, a software program called
FreeDec appeared on the internet, which implemented
CSA in software, then the algorithm was reverse
engineered quickly by hackers and the details of the
CSA was accessed to the public.

Weinmann and Wirt [10] proposed a guess and
determine attack [8] with complexity less than 2

45
. Wirt

[11] presented a fault attack on the block cipher which
can be launched without regarding the Stream Cipher
part (SC). Although, the complexity of this attack is
within seconds, the condition of the attack model is too
strong to be compared. In [8] Simpson figured out some
mistakes in the description of the SC part of CSA and
presented time-memory tradeoff attacks on the stream
cipher, the results are as follows [10]:

Table 1. Results of DMT attacks on CSA-SC.

 Data Memory Time

State Recovery 225 239 250

Key Recovery 248.5 253 253

Twes et al. [9] presented a time memory trade off

attack against 48 bit key CSA, the result showed that

CSA can be broken in real time if the precomputed

tables are available and calculating these

precomputations need over years and the author

claimed that “when the algorithm using 64 instead of

48 independent bits for a key would render time

tradeoffs inefficient”, this is another tradeoff method

for CSA cryptanalysis.
Distinguishing attack was firstly proposed in [1]. In

a distinguishing attack, the adversary tries to judge
whether a given sequence stems from a known cipher
or a purely random sequence. A distinguishing attack
may not be as strong as a key-recovery attack, but it
can provide some undesired information leakage to the
adversary. Related key cryptanalysis was first
introduced by Biham [3], it is a type of chosen key
attacks, in which the relationship between the keys
used is known. The slide resynchronization attack was
firstly proposed on the cryptanalysis of Grain [6]
which is a related key attack using the slide property
of the key. This cryptanalytic tool shows great
potential in cryptanalysis for some stream ciphers [2,
4, 5, 7, 12] whose initialization phase and key stream
generating phase are similar.

In this paper, we propose a distinguishing attack at

the basis of “slide resynchronization attack” which can

distinguish the key stream of the SC part from a

purely random sequence with computational

complexity of O(2
15
). According to the distinguishing

attack, we can recover the full 64 bit key with

computational complexity of O(2
55
).

2. Description of CSA

CSA is a typical hybrid cipher which can be seen as a

cascade of a block cipher and a SC. Both ciphers use

the same 64 bit key K, which is called the common

key. The following description of CSA refers the

descriptions in reference [8, 10]. For scrambling, the

plaintext is divided into blocks of 64 bit length (8

byte) and the sequence of blocks is encrypted with a

custom block cipher in CBC mode using reverse

Distinguishing Attack on Common Scrambling Algorithm 411

order, then the ciphertext of the block cipher are

encrypted with the key stream generated by the stream

part of the cipher, the residue is directly XORed to the

key stream of the SC and the last output of the block

cipher is used as IV for the SC. Figure 1 depicts in the

scrambling process how the block and the SC are

combined.

Figure 1. Structure of CSA.

The CSA-SC consists of two FSRs and a FSM which

are denoted as FSR-A, FSR-B and FSM-C in Figure 2.

FSR-A and FSR-B each have ten stages, with each

stage containing one 4 bit word. FS-C consists of two

stages, each containing a four bit word and a single

carry bit. Here is the structure of CSA-SC during the

key stream generating process. Registers A and B are 40

bit registers, p, q and c are 1 bit registers and others are

all 4 bit registers.

Figure 2. Keystream generating mode of CSA-SC.

There are two modes of SC: The initialization mode

and the key stream generating mode. During the

initialization process, all of the registers are set to zero,

then the common key K=k0, k1, k2, …, k63 are loaded into

the registers A and B according to the equations below

(Denote A=A0, j,…, A9, j; B=B0, j,…, B9, j, 0≤ j≤ 3, Ai

and Bi represent 4 bit states Ai, 0,…, Ai, 3 and Bi, 0,…Bi, 3

respectively):

()

()

4×i+ j
i, j

32+4×i+ j
i, j

if i 7 k
A =

else 0

if i 7 k
B =

else 0

≤

≤









Denote IV= (IV [7], IV [6], IV [5], IV [4], IV [3], IV [2], IV

[1], IV [0]), for 32 rounds initialization process, each 4
rounds uses a byte of IV, the turn is from the least
significant byte to the most significant byte. In every
odd cycle number the internal vector I

A is the high
nibble of IV[i] and IB is the low nibble. In even cycles
the nibbles are used the other way round.

1. The register A is updated as follows:

A

9
0

9

Initialization

Keystream generating

A X D I
A ' =

A X

⊕ ⊕ ⊕

⊕





The new state of register A is A'=(A'0, A0, …, A8).

2. The register B is updated as follows:

B

6 9
0

6 9

Initialization

Keystream generating

B B Y I
B' =

B B Y

⊕ ⊕ ⊕

⊕ ⊕





 The new state of register B is as follows:

())

0 0 8

0 0 8

(B' , B , ..., B) p = 0
B'=

(rol B' , B , ..., B else





3. The registers X, Y, Z, p and q are updated through

Boolean functions of Fi, 0≤ i≤ 13, which can be seen

as S-Boxes, the input variables and corresponding

Fi are shown in Table 2 below:

Table 2. Corresponding input and output variables of S-Boxes.

S-Box Input Variables Output

SX s3, s2, s1,s0 F6(s3) || F4(s2) || F3(s1) || F1(s0)

SY s5, s4, s3, s2 F10(s5)|| F8(s4) || F7(s3) ||)

SZ s1, s0, s5, s4 F2(s1) || F0(s0) || F11(s5) || F9(s4)

Sp s6 F13(s6) F5(s2

Sq s6 F12(s6)

The input variables of the S-Boxes are

corresponding states of register A as follows:

Table 3. Relationship between the internal states and the input of
Boolean functions.

Input Variable x0 x1 x2 x3 x4

s0 A4, 0 A1, 2 A6, 1 A7, 3 A9, 0

s1 A2, 1 A3, 2 A6, 3 A7, 0 A9, 1

s2 A1, 3 A2, 0 A5, 1 A5, 3 A6, 2

s3 A3, 3 A1, 1 A2, 3 A4, 2 A8, 0

s4 A5, 2 A4, 3 A6, 0 A8, 1 A9, 2

s5 A3, 1 A4, 1 A5, 0 A7, 2 A9, 3

s6 A2, 2 A3, 0 A7, 1 A8, 2 A8, 3

The algebraic normal forms 5-input boolean

functions of Fi, 0≤ i≤ 13 are presented in the appendix

of reference [8].

4. The update of FSM: The FSM include registers E, F

and carry bit Register c, they are updated as

follows:

 () ()
()

 (())
4

if q=0 F, E
E, F '=

else F, E+Z+c mod 2





(1)

(2)

(3)

(4)

(5)

412 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

If q=0, c is unchanged. Otherwise, it is 1 if E+F+c≥ 24

and 0 else.

5. The output: The SC generates 2 bit-key stream each

clock cycle, i.e., D2 ⊕ D3 || D0 ⊕ D1, D= (D3, D2, D1,

D0)= E ⊕ Z ⊕ B
out

, 3 2 1 0
(, , ,)

out out out out out
B B B B B= and

out

iB (0≤i ≤ 3) are defined as follows:

3 2, 0 5, 1 6, 2 8, 3

2 5, 0 7, 1 2, 3 3, 2

1 4, 3 7, 2 3, 0 4, 1

0 8, 2 5, 3 2, 1 7, 0

out

out

out

out

B = b b b b

B = b b b b

B = b b b b

B = b b b b

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

As the block cipher part of CSA hardly relates to our

work, we won’t introduce the details of the block cipher

part of CSA here, for more details on the structure of

the block cipher we refer the readers to the reference

[11].

3. Distinguishing Attack on CSA-SC

In this section we find related keys and initial value of

the CSA-SC. For any (K, IV) pair there exists related

(K’, IV’) pair that generate 1 bit shifted key stream, thus

we can lead to a distinguishing attack on SC part of

CSA.

As the 64 bit key are filled into the registers directly

and the structure of the encryption and the initialization

process are similar to each other, which make the

distinguishing attack to be possible. The following

notations are used throughout the paper.

• S
(t): The internal state of CSA-SC at time t.

• A
(t): The internal state of register A at time t,

()

,

t

i j
A (0≤

i≤ 9, 0≤ j≤ 3) represents the jth bit of the ith stage for

register A at time t.

• B
(t): The internal state of register B at time t,

()

,

t

i j
B (0≤

i≤ 9, 0≤ j≤ 3) represents the j
th bit of the i

th stage of

register B at time t.

• X
(t)
, Y

(t)
, Z

(t)
, E

(t)
, F

(t)
, D

(t): The internal state of registers

X, Y, Z, E, F, D at time t, X(t)
, Y

(t)
, Z

(t)
, E

(t)
, F

(t)
, D

(t
 (0 ≤ i

≤3) represent the i
th

bit of corresponding registers at

time t.

• p
(t)
, q

(t)
, c

(t): The internal state of registers p, q, c at

time t.

Before the key initialization process, A
(0) and B

(0) are

initialized with the 64 bit key as follows:

()

()

()

0

()

0

0 4×i+ j
i, j

0 32+4×i+ j
i, j

if i 7 k
A =

else

if i 7 k
B =

else

≤

≤









Among which ki denotes the ith bit of K, other registers

are set to zero.

To lead a slide resynchronization attack we should

calculate all the state vectors of registers at different

times. Firstly calculate state vectors A
(1) and B

(1) by

using key initialization algorithm.

⇒

B
(0)

0 1 2 3 4 5 6 7 8 9

0 k32 k36 k40 k44 k48 k52 k56 k60 0 0

1 k33 k37 k41 k45 k49 k53 k57 k61 0 0

2 k34 k38 k42 k46 k50 k54 k58 k62 0 0

3 k35 k39 k43 k47 k51 k55 k59 k63 0 0

⇒

Figure 3. One step transformation of register A and B.

Among Figure 3:

(k'3, k'2, k'1, k'0)= D
(0) ⊕ X

(0)
 ⊕ I

A
 ⊕

()
,

0

9A I
B
 ⊕

()0

6B ⊕
()0

9B

We denote the related key K’ as follows:

K’=(k'0, k'1, k'2, k'3, k0, k1, k2 , k3, …, k24, k25, k26, k27, k'32,

k'33, k'34, k'35, k32, k33, k34, k35,…, k56, k57, k58, k59)

If the following conditions occur:

• Condition 1: (k28, k29,k30, k31, k60, k61, k62, k63)= (0, 0, 0,

0, 0, 0, 0, 0).

• Condition 2: q(0)
=0.

• Condition 3: IV= (a, a, a, a, a, a, a, a, a , a, a, a, a, a, a,

a), a∈GF (2
4
).

• Condition 4: For K’, D(31)
 = a, a∈GF(2

4
).

For condition 1, as we don’t know whether the (k28, k29,

k30, k31, k60, k61, k62, k63)= (0, 0, 0, 0, 0, 0, 0, 0), we can
realize this by trying all the related keys ∆K, ∆(k28, k29,

k30, k31, k60, k61, k62, k63)∈GF(2
8
), the difference of other

bits are all zero, there must be a certain ∆K which
make condition 1 occur.

For condition 2, if q(0)
=0, the register E and F don’t

update for the moment and are kept zero for t= 0, the
probability of q

(0)
= 0 is 1/2. As q

(0)
= F12(k10, k12, k29, 0,

0)=
1029 12.kk k⊕ , if we trying all the related keys ∆K,

∆k12∈GF(2), the difference of other bits are all zero, it
can be easily proven that the condition 2 must within.

For condition 3, the IV can be chosen as (a, a, a, a, a,

a, a, a, a, a, a, a, a, a, a, a), a∈GF(2
4
), thus the even

cycle and odd cycle share the same IA and IB.
As for condition 4, D

(31) can be regarded as a
random vector, to guarantee the probability, we can
choose any of the other bits except these positions:

k12, k28, k29, k30, k31, k60, k61, k62, k63

(6)

(7)

Distinguishing Attack on Common Scrambling Algorithm 413

It can be easily proven that the probability of D(31)
= a is

about 0.98 if we use 2
6
 related key

(())
624

1 1 2 0.98
−

≈− − To sum up, the total computational

complexity of all the conditions is 215 pairs of related

keys.

It’s easy to see that, for K, the internal states of the

cipher during the initialization process are denoted as

S
(0)

, S
(1)

, S
(2)

,⋅⋅⋅, S(31)
, for K’, the corresponding states are

denoted as S'
(0)

, S'
(1)

, S'
(2)

,⋅⋅⋅, S'
(31)

, if the four conditions

above appear, the following equations during the

initialization process are kept:

S'
(0)

=S
(1)

, S'
(1)

= S
(2)

, S'
(2)

 = S
(3)

, ⋅⋅⋅, S'
(30)

= S
(31)

During the key generating process, the following

relations are kept:

S'
(31)

= S
(32)

, S'
(32)

 = S
(33)

, S'
(33)

= S
(34)

, ⋅⋅⋅

Hence, for K, CSA-SC generates 1 bit shifted of the

keystream generated for K’. Thus, the key stream can

be distinguished from a purely random sequence with

computational complexity of O(2
15
).

Further, if the 1 bit shifted of the keystream

generated, according to the ∆K for condition 1, we can

determine eight key bits (k28, k29, k30, k31, k60, k61, k62, k63).

As for condition 1, k29= 0, we can determine k12

according to the equation
29 10 12 0k k k⋅ ⊕ = and ∆K for

condition 2. Hence, we have known 9 key bits which

will decrease the exhaustive search complexity from

O(2
64
) to O(2

55
). Last of all, we want to stress that as the

residue is directly XORed to the key stream of the SC,

we can get the key stream generated by the SC easily,

which makes our attack can be applied to the whole

algorithm.

4. Remarks on Success Rate

According to the result in section 3, if we trying 2
15

pairs of K and K’, the 1 bit shifted keystream can occur

with probability of 0.98 and this probability can be

increased to 0.9997 when trying 2
16
 pairs of K and K’.

There is also another instance which may misjudge the

distinguisher of our attack. When the key candidate

can’t satisfy the several conditions above, the internal

states after 32 rounds of initialization can be viewed as

random, so S'
(31)

 is equal to S
(32)

 with probability of 2
-89

,

the probability is so small that it hardly affect out

result.

On the other hand, we should get enough key stream

bits to distinguish the shifted key stream from the

random case, this can be accessed from the residue bits.

If we get n residue bits, the success rate can achieve 1-

2
-n
, when n =10, the success rate can achieve 0.999 and

the key stream can be easily got from one residue of the

cipher (Less than 64 bits). So, the success rate of our

attack can be very close to 1.

5. Conclusions

Although, the algorithm CSA only has 64 bit key size,
for many TV stations only 48 bit of entropy are used
[9]. However, there haven’t any effective crypto
results which can break the algorithm totally up to
now. The structure of CSA and the design rationale
are well worth studying which may improve the
design of the symmetric encryption algorithms
significantly. As the initialization process and the key
stream generating process are similar, based on the
thought of slide resynchronization attack we propose a
distinguishing attack which can distinguish the key
stream of the SC from a purely random sequence with
computational complexity of O(2

15
). At the same time,

we can recover 9 bits of the key accordingly, which
makes the exhaustive search complexity reduce to

O(2
55
). Our attack provides a clue to recover several

key bits of CSA, which may be combined with other
attacks to reduce the computational complexity
further. The ability of CSA to resist other
cryptanalysis is further to be studied.

Acknowledgements

The authors would like to thank the anonymous
reviewers for helpful comments. This work was
supported by the National Natural Science Foundation
of China under Grant No.61202491, 61272041,
61272488 and 61402523.

References

[1] Baigneres T., Junod P., and Vaudenay S, “How

Far Can We Go Beyond Linear Cryptanalysis?,”

in Proceedings of Advances in Cryptology-

Asiacrypt, Korea, pp. 432-450, 2004.

[2] Berbain C., Gilbert H., and Maximov A.,

“Cryptanalysis of Grain,” in Proceedings of Fast

Software Encryption, Graz, Austria, pp. 15-29,

2006.

[3] Biham E., “New Types of Cryptanalytic Attacks

using Related Keys,” the Journal of Cryptology,

vol. 7, no. 4, pp. 229-246, 1994.

[4] Hassan M. and Al-Shalabi H., “Modified

Cryptanalysis of RC5,” the International Arab

Journal of Information Technology, vol. 3, no. 4,

pp. 299-302, 2006.

[5] Khazaei S., Hassanzadeh M., and Kiaei M.,

“Distinguishing Attack on Grain,” available at:

http://citeseerx.ist.psu.edu/viewdoc/download?d

oi=10.1.1.100.2357&rep=rep1&type=pdf, last

visited 2005.

[6] Kücük O., “Slide Resynchronization Attack on

the Initialization of Grain 1.0,” available at:

http://www.ecrypt.eu.org/stream/papersdir/2006/

044.ps, last visited 2006.

[7] Lee Y., Jeong K., Sung J., and Hong S.,

“Related-Key Chosen IV Attacks on Grain-v1

and Grain-128,” in Proceedings of Australasian

414 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

Conference on Information Security and Privacy,

Wollongong, Australia, pp. 321-335, 2008.

[8] Simpson L., Henricksen M., and Yap W.,

“Improved Cryptanalysis of the Common

Scambling Algorithm Stream Cipher,” in

Proceedings of Australasian Conference on

Information Security and Privacy, Brisbane,

Australia, pp. 108-121, 2009.
[9] Tews E., Walde J., and Weiner M., “Breaking

DVB-CSA,” in Proceedings of West European

Workshop on Research in Cryptography, Weimar,

Germany, pp. 41-45, 2011.

[10] Weinmann R. and Wirt K., “Analysis of the DVB

Common Scrambling Algorithm,” in Proceedings

of International Federation for Information

Processing Conference, Windermere, UK, pp.

195-207, 2005.

[11] Wirt K., “Fault Attack on the DVB Common

Scrambling Algorithm,” in Proceedings of

International Conference on Computational

Science and its Applications, Singapore, pp. 511-

517, 2005.

[12] Wu H. and Preneel B., “Resynchronization

Attacks on WG and LEX,” in Proceedings of Fast

Software Encryption, Graz, Austria, pp. 422-432,

2006.

Kai Zhang received BS and MS

degrees from Zhengzhou Information

Science and Technology Institute in

2010 and 2013 respectively. He is

studying for PhD degree in

cryptography in the same university.

His current research interests include

design and analysis of symmetric cipher.

Jie Guan is an associate professor of

Zhengzhou Information Science and

Technology Institute. Her main

subject interest is cryptography and

her main teaching lies in the areas of

information systems, the theory of

cryptography and quantum

computation. She received PhD degree in cryptography

from Zhengzhou Information Science and Technology

Institute in 2004.

