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Abstract: Common Scrambling Algorithm (CSA) has been used to encrypt european cable digital television signals since 

1994. Although, the key size of CSA is small, up to now, there haven’t any effective crypto results which can break the 

algorithm totally. Based on the idea of slide resynchronization attack, a distinguishing attack which can distinguish the 

keystream of the Stream Cipher (SC) from a purely random sequence with computational complexity of O(2
15
) is proposed. 

According to the distinguishing attack, the 64 bit initial key can be recovered with computational complexity of O(2
55
). 
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1. Introduction 

The Digital Video Broadcasting Common Scrambling 
Algorithm (DVB-CSA) has been used to encrypt 
european cable digital television signals since 1994. As 
part of the MPEG-TS standard, it is virtually used for 
all conditional access systems in digital television. The 
algorithm has never been officially revealed and was 
only available under a non-disclosure agreement from 
an ETSI custodian before 2002. The agreement didn’t 
permit the algorithm to be implemented in software for 
“security reasons”. In 2002, a software program called 
FreeDec appeared on the internet, which implemented 
CSA in software, then the algorithm was reverse 
engineered quickly by hackers and the details of the 
CSA was accessed to the public. 

Weinmann and Wirt [10] proposed a guess and 
determine attack [8] with complexity less than 2

45
. Wirt 

[11] presented a fault attack on the block cipher which 
can be launched without regarding the Stream Cipher 
part (SC). Although, the complexity of this attack is 
within seconds, the condition of the attack model is too 
strong to be compared. In [8] Simpson figured out some 
mistakes in the description of the SC part of CSA and 
presented time-memory tradeoff attacks on the stream 
cipher, the results are as follows [10]: 

Table 1. Results of DMT attacks on CSA-SC. 

 Data Memory Time 

State Recovery 225 239 250 

Key Recovery 248.5 253 253 

 

Twes et al. [9] presented a time memory trade off 

attack against 48 bit key CSA, the result showed that 

CSA can be broken in real time if the precomputed 

tables are available and calculating these 

precomputations need over years and the author 

claimed  that “when the algorithm using 64 instead  of   

48 independent bits for a key would render time 

tradeoffs inefficient”, this is another tradeoff method 

for CSA cryptanalysis. 
Distinguishing attack was firstly proposed in [1]. In 

a distinguishing attack, the adversary tries to judge 
whether a given sequence stems from a known cipher 
or a purely random sequence. A distinguishing attack 
may not be as strong as a key-recovery attack, but it 
can provide some undesired information leakage to the 
adversary. Related key cryptanalysis was first 
introduced by Biham [3], it is a type of chosen key 
attacks, in which the relationship between the keys 
used is known. The slide resynchronization attack was 
firstly proposed on the cryptanalysis of Grain [6] 
which is a related key attack using the slide property 
of the key. This cryptanalytic tool shows great 
potential in cryptanalysis for some stream ciphers [2, 
4, 5, 7, 12] whose initialization phase and key stream 
generating phase are similar. 

In this paper, we propose a distinguishing attack at 

the basis of “slide resynchronization attack” which can 

distinguish the key stream of the SC part from a 

purely random sequence with computational 

complexity of O(2
15
). According to the distinguishing 

attack, we can recover the full 64 bit key with 

computational complexity of O(2
55
). 

2. Description of CSA 

CSA is a typical hybrid cipher which can be seen as a 

cascade of a block cipher and a SC. Both ciphers use 

the same 64 bit key K, which is called the common 

key. The following description of CSA refers the 

descriptions in reference [8, 10]. For scrambling, the 

plaintext is divided into blocks of 64 bit length (8 

byte) and the sequence of blocks is encrypted with a 

custom block cipher in CBC mode using reverse 
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order, then the ciphertext of the block cipher are 

encrypted with the key stream generated by the stream 

part of the cipher, the residue is directly XORed to the 

key stream of the SC and the last output of the block 

cipher is used as IV for the SC. Figure 1 depicts in the 

scrambling process how the block and the SC are 

combined. 

 

Figure 1. Structure of CSA. 

The CSA-SC consists of two FSRs and a FSM which 

are denoted as FSR-A, FSR-B and FSM-C in Figure 2. 

FSR-A and FSR-B each have ten stages, with each 

stage containing one 4 bit word. FS-C consists of two 

stages, each containing a four bit word and a single 

carry bit. Here is the structure of CSA-SC during the 

key stream generating process. Registers A and B are 40 

bit registers, p, q and c are 1 bit registers and others are 

all 4 bit registers. 

 

Figure 2. Keystream generating mode of CSA-SC. 

There are two modes of SC: The initialization mode 

and the key stream generating mode. During the 

initialization process, all of the registers are set to zero, 

then the common key K=k0, k1, k2, …, k63 are loaded into 

the registers A and B according to the equations below 

(Denote A=A0,  j,…, A9, j; B=B0, j,…, B9, j, 0≤ j≤ 3, Ai         

and Bi represent 4 bit states Ai, 0,…, Ai, 3 and Bi, 0,…Bi, 3 

respectively): 

                         

( )

( )

4×i+ j
i, j

32+4×i+ j
i, j

if i 7            k  
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if i 7         k
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Denote IV= (IV [7], IV [6], IV [5], IV [4], IV [3], IV [2], IV 

[1], IV [0]), for 32 rounds initialization process, each 4 
rounds uses a byte of IV, the turn is from the least 
significant byte to the most significant byte. In every 
odd cycle number the internal vector I

A is the high 
nibble of IV[i] and IB is the low nibble. In even cycles 
the nibbles are used the other way round. 

1. The register A is updated as follows: 

       
A

9
0

9

Initialization

Keystream generating

A X D I
A ' =

A X

⊕ ⊕ ⊕

⊕



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The new state of register A is A'=(A'0, A0, …, A8). 

2. The register B is updated as follows: 

        
B

6 9
0

6 9

Initialization

Keystream generating

B B Y I
B' =

B B Y

⊕ ⊕ ⊕

⊕ ⊕





 

     The new state of register B is as follows: 

                
( ) )

0 0 8

0 0 8

(B' , B , ..., B ) p = 0
B'=

(rol B' , B , ..., B else





 

3. The registers X, Y, Z, p and q are updated through 

Boolean functions of Fi, 0≤ i≤ 13, which can be seen 

as S-Boxes, the input variables and corresponding 

Fi are shown in Table 2 below: 

Table 2. Corresponding input and output variables of S-Boxes. 

S-Box Input Variables Output 

SX s3, s2, s1,s0 F6(s3) || F4(s2) || F3(s1) || F1(s0) 

SY s5, s4, s3, s2 F10(s5)|| F8(s4) ||  F7(s3) ||  ) 

SZ s1, s0, s5, s4 F2(s1) || F0(s0) || F11(s5)  ||  F9(s4) 

Sp s6 F13(s6) F5(s2 

Sq s6 F12(s6) 

 

The input variables of the S-Boxes are 

corresponding states of register A as follows: 

Table 3. Relationship between the internal states and the input of 
Boolean functions. 

Input Variable x0 x1 x2 x3 x4 

s0 A4, 0 A1, 2 A6, 1 A7, 3 A9, 0 

s1 A2, 1 A3, 2 A6, 3 A7, 0 A9, 1 

s2 A1, 3 A2, 0 A5, 1 A5, 3 A6, 2 

s3 A3, 3 A1, 1 A2, 3 A4, 2 A8, 0 

s4 A5, 2 A4, 3 A6, 0 A8, 1 A9, 2 

s5 A3, 1 A4, 1 A5, 0 A7, 2 A9, 3 

s6 A2, 2 A3, 0 A7, 1 A8, 2 A8, 3 

 

The algebraic normal forms 5-input boolean 

functions of Fi, 0≤ i≤ 13 are presented in the appendix 

of reference [8]. 

4. The update of FSM: The FSM include registers E, F 

and carry bit Register c, they are updated as 

follows: 

             ( ) ( ) 
( )

                   ( ( ) )
4

if  q=0 F, E
E, F '=

else F, E+Z+c mod 2





   

(1) 
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(3) 

(4) 

(5) 
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If q=0, c is unchanged. Otherwise, it is 1 if E+F+c≥ 24 

and 0 else. 

5. The output: The SC generates 2 bit-key stream each 

clock cycle, i.e., D2 ⊕ D3 || D0 ⊕ D1, D= (D3, D2, D1, 

D0)= E ⊕ Z ⊕ B
out

, 3 2 1 0
( , , , )

out out out out out
B B B B B= and 

out

iB (0≤i ≤ 3) are defined as follows: 

                     

3 2, 0 5, 1 6, 2 8, 3

2 5, 0 7, 1 2, 3 3, 2

1 4, 3 7, 2 3, 0 4, 1

0 8, 2 5, 3 2, 1 7, 0

out

out

out

out

B = b b b b

B = b b b b

B = b b b b

B = b b b b

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

   

As the block cipher part of CSA hardly relates to our 

work, we won’t introduce the details of the block cipher 

part of CSA here, for more details on the structure of 

the block cipher we refer the readers to the reference 

[11]. 

3. Distinguishing Attack on CSA-SC 

In this section we find related keys and initial value of 

the CSA-SC. For any (K, IV) pair there exists related 

(K’, IV’) pair that generate 1 bit shifted key stream, thus 

we can lead to a distinguishing attack on SC part of 

CSA. 

As the 64 bit key are filled into the registers directly 

and the structure of the encryption and the initialization 

process are similar to each other, which make the 

distinguishing attack to be possible. The following 

notations are used throughout the paper. 

• S
(t): The internal state of CSA-SC at time t. 

• A
(t): The internal state of register A at time t, 

( )

,

t

i j
A (0≤ 

i≤ 9, 0≤ j≤ 3) represents the jth bit of the ith stage for 

register A at time t. 

• B
(t): The internal state of register B at time t,

( )

,

t

i j
B (0≤ 

i≤ 9, 0≤ j≤ 3) represents the j
th bit of the i

th stage of 

register B at time t. 

• X
(t)
, Y

(t)
, Z

(t)
, E

(t)
, F

(t)
, D

(t): The internal state of registers 

X, Y, Z, E, F, D at time t, X(t)
, Y

(t)
, Z

(t)
, E

(t)
, F

(t)
, D

(t
 (0 ≤ i 

≤3) represent the i
th 

bit of corresponding registers at 

time t. 

• p
(t)
, q

(t)
, c

(t): The internal state of registers p, q, c at 

time t. 

Before the key initialization process, A
(0) and B

(0) are 

initialized with the 64 bit key as follows: 
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0
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0

0 4×i+ j
i, j

0 32+4×i+ j
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Among which ki denotes the ith bit of K, other registers 

are set to zero. 

To lead a slide resynchronization attack we should 

calculate all the state vectors of registers at different 

times. Firstly calculate state vectors A
(1) and B

(1) by 

using key initialization algorithm. 

⇒ 

 

B
(0)

0 1 2 3 4 5 6 7 8 9

0 k32 k36 k40 k44 k48 k52 k56 k60 0 0

1 k33 k37 k41 k45 k49 k53 k57 k61 0 0

2 k34 k38 k42 k46 k50 k54 k58 k62 0 0

3 k35 k39 k43 k47 k51 k55 k59 k63 0 0

⇒ 

 

Figure 3. One step transformation of register A and B. 

Among Figure 3: 

(k'3, k'2, k'1, k'0)= D
(0) ⊕ X

(0)
 ⊕ I

A
 ⊕

( )
,

0

9A  I
B
 ⊕

( )0

6B ⊕
( )0

9B  

We denote the related key K’ as follows: 

K’=(k'0, k'1, k'2, k'3, k0, k1, k2 , k3, …, k24, k25, k26, k27, k'32, 

k'33, k'34, k'35, k32, k33, k34, k35,…, k56, k57, k58, k59) 

If the following conditions occur: 

• Condition 1: (k28, k29,k30, k31, k60, k61, k62, k63)= (0, 0, 0, 

0, 0, 0, 0, 0). 

• Condition 2: q(0)
=0. 

• Condition 3: IV= (a, a, a, a, a, a, a, a, a , a, a, a, a, a, a, 

a), a∈GF (2
4
). 

• Condition 4: For K’, D(31)
 = a, a∈GF(2

4
). 

For condition 1, as we don’t know whether the (k28, k29, 

k30, k31, k60, k61, k62, k63)= (0, 0, 0, 0, 0, 0, 0, 0), we can 
realize this by trying all the related keys ∆K, ∆(k28, k29, 

k30, k31, k60, k61, k62, k63)∈GF(2
8
), the difference of other 

bits are all zero, there must be a certain ∆K which 
make condition 1 occur. 

For condition 2, if q(0)
=0, the register E and F don’t 

update for the moment and are kept zero for t= 0, the 
probability of q

(0)
= 0 is 1/2. As q

(0)
= F12(k10, k12, k29, 0, 

0)= 
1029 12.kk k⊕ , if we trying all the related keys ∆K, 

∆k12∈GF(2), the difference of other bits are all zero, it 
can be easily proven that the condition 2 must within. 

For condition 3, the IV can be chosen as (a, a, a, a, a, 

a, a, a, a, a, a, a, a, a, a, a), a∈GF(2
4
), thus the even 

cycle and odd cycle share the same IA and IB. 
As for condition 4, D

(31) can be regarded as a 
random vector, to guarantee the probability, we can 
choose any of the other bits except these positions: 

k12, k28, k29, k30, k31, k60, k61, k62, k63 

(6) 

(7) 
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It can be easily proven that the probability of D(31)
= a is 

about 0.98 if we use 2
6
 related key 

( ( ) )
624

1 1 2 0.98
−

≈− − To sum up, the total computational 

complexity of all the conditions is 215 pairs of related 

keys. 

It’s easy to see that, for K, the internal states of the 

cipher during the initialization process are denoted as 

S
(0)

, S
(1)

, S
(2)

,⋅⋅⋅, S(31)
, for K’, the corresponding states are 

denoted as S'
(0)

, S'
(1)

, S'
(2)

,⋅⋅⋅, S'
(31)

, if the four conditions 

above appear, the following equations during the 

initialization process are kept: 

S'
(0)

=S
(1)

, S'
(1)

= S
(2)

, S'
(2)

 = S
(3)

, ⋅⋅⋅, S'
(30)

= S
(31)

 

During the key generating process, the following 

relations are kept: 

S'
(31 )

= S
(32)

, S'
(32)

 = S
(33)

, S'
(33 )

= S
(34)

, ⋅⋅⋅ 

Hence, for K, CSA-SC generates 1 bit shifted of the 

keystream generated for K’. Thus, the key stream can 

be distinguished from a purely random sequence with 

computational complexity of O(2
15
). 

Further, if the 1 bit shifted of the keystream 

generated, according to the ∆K for condition 1, we can 

determine eight key bits (k28, k29, k30, k31, k60, k61, k62, k63). 

As for condition 1, k29= 0, we can determine k12 

according to the equation 
29 10 12 0k k k⋅ ⊕ =  and ∆K for 

condition 2. Hence, we have known 9 key bits which 

will decrease the exhaustive search complexity from 

O(2
64
) to O(2

55
). Last of all, we want to stress that as the 

residue is directly XORed to the key stream of the SC, 

we can get the key stream generated by the SC easily, 

which makes our attack can be applied to the whole 

algorithm. 

4. Remarks on Success Rate 

According to the result in section 3, if we trying 2
15
 

pairs of K and K’, the 1 bit shifted keystream can occur 

with probability of 0.98 and this probability can be 

increased to 0.9997 when trying 2
16
 pairs of K and K’. 

There is also another instance which may misjudge the 

distinguisher of our attack. When the key candidate 

can’t satisfy the several conditions above, the internal 

states after 32 rounds of initialization can be viewed as 

random, so S'
(31)

 is equal to S 
(32)

 with probability of 2
-89

, 

the probability is so small that it hardly affect out 

result. 

On the other hand, we should get enough key stream 

bits to distinguish the shifted key stream from the 

random case, this can be accessed from the residue bits. 

If we get n residue bits, the success rate can achieve 1-

2
-n
, when n =10, the success rate can achieve 0.999 and 

the key stream can be easily got from one residue of the 

cipher (Less than 64 bits). So, the success rate of our 

attack can be very close to 1. 

 

 

5. Conclusions 

Although, the algorithm CSA only has 64 bit key size, 
for many TV stations only 48 bit of entropy are used 
[9]. However, there haven’t any effective crypto 
results which can break the algorithm totally up to 
now. The structure of CSA and the design rationale 
are well worth studying which may improve the 
design of the symmetric encryption algorithms 
significantly. As the initialization process and the key 
stream generating process are similar, based on the 
thought of slide resynchronization attack we propose a 
distinguishing attack which can distinguish the key 
stream of the SC from a purely random sequence with 
computational complexity of O(2

15
). At the same time, 

we can recover 9 bits of the key accordingly, which 
makes the exhaustive search complexity reduce to 

O(2
55
). Our attack provides a clue to recover several 

key bits of CSA, which may be combined with other 
attacks to reduce the computational complexity 
further. The ability of CSA to resist other 
cryptanalysis is further to be studied. 
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