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Abstract: Palette re-ordering is a class of pre-processing method with the objective to manipulate the palette index such that 

the adjacent symbols are assigned close indices in the symbol space, thus enhancing the compressibility of the image with 

many lossless compressors. Finding an exact reordered palette would certainly be exhaustive and computationally complex. A 

solution to this NP hard problem is presented by using an Adaptive Particle Swarm Optimization (APSO) to achieve fast 

global convergence by maximizing the co-occurrences. A new algorithm with improved inertia factor is presented here to 

accelerate the convergence speed of the reindexing scheme. In this algorithm, the key parameter inertia weight is formulated 

as a factor of gradient based rate of particle convergence. Experimental results assert that the proposed modification helps in 

improving APSO performance in terms of solution quality and convergence to global optima. 
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1. Introduction 

A colour-mapped (pseudo-colour) image is composed 

of colour information contained in a look-up table and 

pixel values that are indices, which point to colour 

values in the look-up table. In most computer 

applications, images are used to help stimulate human 

visual perception. A true color image is a matrix of 

pixels, each consisting of red, green and blue color 

triplets. Each component (Ri, Gi, Bi) triplet has a range 

between 0 and 255 and is represented with a byte. 

Since, a color-mapped image utilises approximately 

one third of memory space of its corresponding true-

colour representation, colour-mapped images are used 

as user interface elements of most windowing 

operating systems. 

A color-quantized image is generally represented 

with a color index map each element of which serves 

as an index to select a color from a predefined set of 

colors to represent the color of a pixel in the image. 

The predefined set of colors is called a palette. To 

reduce the size of a color-indexed image further, 

lossless compression techniques are generally used 

because the index used to pick a particular palette color 

must be exact in decoding. A minor difference between 

two index values may result in a serious color shift. 

In a standard image coding scenario, pixel-to-pixel 

correlation nearly always exists in the data, especially 

if the image is a natural scene. This correlation is what 

allows predictive coding schemes (e.g., DPCM) to 

perform efficient compression. In a color mapped 

image, the values stored in the pixel array are no 

longer directly related to the pixel intensity. For each 

pixel in the image, only the index of the corresponding 

color needs to be stored. Two color indices which are 

numerically adjacent (close) may point to two very 

different colors. The correlation still exists, but only 

via the color map. The efficiency of a lossless 

compression algorithm for indexed images may greatly 

depend on the assignment of indexes in the relative 

lookup table [2].  

Palette reordering is a well-known and very 

effective approach for improving the compression of 

color-indexed images. Highly compressed palettized 

images are needed in many applications such as game 

cartridges, computer graphics and World Wide Web 

(WWW) on-line services. 

The bottleneck of this solution is the intrinsic 

inefficiency to numerically optimize the palette re-

indexing. If the optimal palette configuration is sought, 

the computational complexity involved would be high. 

As a matter of fact, a table of M colors corresponds to 

M! Configurations [26]. Clearly, this exhaustive search 

is impractical and thus transforms to an NP hard 

problem.  

In typical applications where the search space is 

large and multidimensional, prior information about 

the function is not available and traditional 

mathematical techniques are not applicable. Global 
optimization is a NP complete problem and heuristic 

approaches like Genetic Algorithms (GAs) and 

Simulated Annealing (SA) have been used historically 

to find near optimal solutions. The Particle Swarm 

Optimization (PSO) algorithm is a new sociologically 

inspired stochastic optimization algorithm introduced 

by Kennedy and Eberhart [14].  
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1.1. Related Works 

The existing solutions to the re-indexing problem can 

be classified into two groups, according to the strategy 

adopted. The first group of solutions performs the re-

indexing of colour indexes according to perceptive 

similarity between different colours.  

The second group of algorithms relies only on the 

statistical information conveyed by the index image to 

perform the reordering operation, guided by both 

information theory and local adaptive considerations. 

Menon and Venkateswaran [17] formulated the 

problem of palette reordering within the framework of 

linear predictive coding well modeled by a laplacian 

distribution formulated as the optimization version of 

the linear ordering problem. Pinho and Neves [23] had 

reported the survey on palette reordering methods 

providing details about main strategy underlying most 

effective algorithms.   

The palette re-indexing method proposed by Pinho 

and Neves [22] is based on one-step look ahead greedy 

approach. The algorithm starts by finding the index 

that is most frequently located adjacent to other 

(different) indexes and the index that is most 

frequently found adjacent to it. This pair of indexes is 

the starting base for an ordered set, S, that will be 

constructed, one index at a time, during the operation 

of the re-indexing algorithm. New indexes can only be 

attached to the left or to the right extremity of the 

ordered set.  

Battiato et al. [3] proposed a greedy strategy based 

on sequentially selecting the best edge still not 

processed, i.e., the one with the largest weight. The 

methodology tends to smooth the relative transitions in 

the indexed image, solving in an approximate way a 

related optimization problem over a weighted graph.  

A new colour image compression system dedicated 

to HSI colour space was proposed. The proposed 

algorithm was based on encoding each channel using a 

suitable encoding algorithm which tends to be very 

lossy compression technique with subjective quality 

preservation even with highly compressed gray 

channel [19]. 

Recent works in this field have concentrated on the 

application of soft computing algorithms to the 

reindexing problem. Pei et al. [20] proved that it is 

possible to achieve high compression with acceptable 

image quality using the topology-preserving property 

of self-organizing kohonen feature map which 

considers “1D string neural structure” wherein, the 
neuron closest to each fed training vector, called the 

“winning neuron”, will update itself while the 

neighboring neurons will update according to the 

neighboring function and gain function. The training 

vectors are extracted from the image using the 

butterfly-jumping sequence which leads to fast-

converging training. 

Battiato et al. [4] suggested a motor map neural 

network based re-indexing that uses an unsupervised, 

application independent, highly adaptive learning 

algorithm called “winner-take-all” learning driven by 

the reward function.  Perhaps the most recent work was 

the application of PSO by using a static inertia factor 

proposed by Hook et al. [10] that showed very slow 

convergence with the risk of getting trapped to the sub-

tours.  

1.2. Contribution  

In this paper, we give a framework of our proposed 

algorithm ordered as follows: 

1. Adaptive swarm based solution to the problem of 

reindexing is proposed aiming to relatively reduce 

the computational complexity in previous 

algorithms to improve the performance of 

compression on palette images [10]. Palette 

reordering is formulated as a graph optimization 

problem, by calculating the degree of occurrence of 

a pair of symbols in the index image using Cross 

Entropy (CE) method. This along with the palette 

index forms the input to the Adaptive Particle 

Swarm Optimization (APSO) which returns the 

ordering of palette indices that would maximize the 

edge weights of the hamiltonian path [18]. 

2. The crucial parameter inertia weight is formulated 

as a function of gradient based rate of particle 

convergence. The proposed new inertia weight 

improves diversity of the swarm. 

3. The stagnation phenomenon thus is avoided 

resulting in speeding convergence to global optima. 

Experimental results assert that the proposed 

modification helps in improving APSO performance in 

terms of solution quality and convergence to global 

optima. 

1.3. Organization 

The paper is structured as follows: Section 2 describes 

the reindexing problem. Section 3 introduces the 

outline of PSO with the basic variants in PSO. Section 

4 describes the new algorithm with improved inertia 

weight factor to yield better convergence speed for 

reindexing scheme. Experimental results and 

discussion are presented in section 5. In section 6, 

conclusions are drawn. 

2.  Problem Formulation 

The re-indexing problem can be formulated as follows: 

Let I be an image of m×n pixels with distinct colors in 

which I(x, y) denotes the color at pixel location (x, y) 

of I. Consider V to be the color palette consisting of N 

colors with typical values of 16, 64 or 256, represented 

by V={v1, v2, …, v3} If I' is an m×n matrix of indexes 

and I'(x, y) point to colors in the color palette V, then 
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the relationship between the image I and indexed 

image V(I') is expressed by the following equation:   

( , ) ( '( , ))I x y V I x y=                             (1) 

Thus, palette reordering is used to find a new palette 

P={p1, p2,…, p3} obtained from V through permutation 

such that the corresponding m×n matrix may be 

compressed efficiently [24]. The principle behind 

palette reordering is that, the frequently occurring 

colors should have close indexes. Therefore, based on 

this principle, the assignment of the indexes is usually 

guided by the function c(i, j), measuring the number of 

occurrences corresponding to pixels with index that are 

spatially adjacent to pixels with index j, according to 

some predefined neighborhood. 

3.  Particle Swarm Optimization 

Biologically inspired algorithms have been gaining 

popularity in recent decades and beyond. These 

methods are based on biological metaphor, such as 

darwinian evolution and swarm intelligence. One of 

the recent algorithms to this category is PSO, 

motivated by the observations in birds, fishes or other 

organisms that move in swarms. The PSO algorithm is 

easy to implement, has few parameters. Because of its 

simplicity, ease of implementation and high 

convergence rates, the PSO algorithm has been applied 

to a variety of problems like evolving the structure as 

well as weights for artificial neural nets, power system 

optimization, process control, dynamic optimization, 

adaptive control and electromagnetic optimization. 

3.1. Mathematical Formulation 

The dynamic behaviour of the particle swarm can be 

quantified as follows:  

               1 2( 1) ( ) ( ) ( )p nv t v t x x xxϕ ϕ+ = + − + −      

                         ( 1) ( ) ( 1)x t x t v t+ = + +  

Where, v particle velocity; x particle position 

representing test solution. xp represents position of the 

particle with overall highest fitness thus far and the 

value xp represents position of the particle with the 

highest fitness in the neighbourhood. φ1 and φ2 uniform 

random variables to prevent the convergence to a local 

solution. Historically, these random variables are a 

combination of acceleration constants c1 and c2, called 

the cognition and social constants respectively [5]. 

Low values allow the particles to roam far from the 

target regions before being pulled back, while high 

values result in abrupt movement towards or past target 

regions.  

3.2. Basic Variants of PSO  

Many variations have been developed to improve 

speed of convergence and quality of solution found by 

the PSO. The lacks of PSO have been reduced with a 

variation of parameters in PSO. The variation is 

influenced by a number of control parameters, namely 

the dimension of the problem, the number of particles 

(swarm size), acceleration coefficients, inertia weight, 

neighborhood size, number of iteration and the random 

values which scale the contribution of the cognitive 

and social component. Below are the basic variations 

of PSO:  

1. Velocity Clamping: Velocity clamping will control 

the global exploration of the particle. If the velocity 

of a particle exceeds the maximum allowed speed 

limit, it will set a maximum value of velocity. High 

value of will cause global exploration, whereas 

lower values result in local exploration. Velocity 

clamping did not influence the position of the 

particle. This only reduces the size of the step 

velocity. Changes in the search direction not only 

can make a particle to perform a better exploration 

but also has negative effects and the optimum value 

cannot be found.  

2. Inertia Weight: The inertia weight controls the 

momentum of the particle by weighing the 

contribution of the previous velocity-basically 

controlling how much memory of the previous flight 

direction will influence the new velocity. 

3. Constriction Coefficient: The constriction approach 

was developed as a natural, dynamic way to ensure 

convergence to a stable point. Condition and of the 

swarm is guaranteed to convergence.  

The performance of PSO depends on its parameters to 

a great extent. Among all other parameters of PSO, 

Inertia weight is crucial one that affects the 

performance of PSO significantly and therefore, needs 

a special attention to be chosen appropriately.  

 

3.3. Different Inertia Weight Strategies for 

PSO 

Inertia weight plays a key role in the process of 

providing balance between exploration and 

exploitation process. The inertia weight determines the 

contribution rate of a particle’s previous velocity to its 

velocity at the current time step.  
Initial studies depict the use of a constant inertia 

weight throughout the searching process, while the 
later studies emphasizes on choosing a dynamically 
varying inertia weight [28]. A linear inertia weight was 
considered in [7] and the nonlinear strategy was 
reported in [30, 21] which was shown to be more 
suitable for smoother spaces. The linearly decreasing 
strategy [31] enhances the efficiency and performance 
of PSO. In spite of its ability to converge optimum, it 
gets into the local optimum solving the question of 
more apices function. Al-Hassan et al. [1] introduced 
an optimized Particle Swarm technique (PSOSA) that 
uses simulated annealing for optimizing inertia weight 
and tested the approach on urban planning problem. 

(2) 

(3) 
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A fuzzy adaptive inertia weight was proposed by 

[15, 29] where the inertia weight is dynamically 

adjusted based on fuzzy sets and rules. An exponential 

based inertia is considered in some recent studies [9, 

16] that enhance PSO performance significantly. An 

adaption of dynamically varying inertia is conceived 

and analyzed in [33]. 

Gao et al. [8, 32] proposed a new PSO algorithm 

which combined logarithm decreasing inertia weight 

with chaos mutation operator. The logarithm 

decreasing inertia weight can improve the convergence 

speed, while the chaos mutation can enhance the 

ability to jump out of the local optima. A research on 

dynamically changing inertia was carried out in [12] 

that compare different nonlinear dynamic strategies. 

In this paper, we present inertia weight as a factor of 

gradient based rate of particle convergence to improve 

the diversity of the swarm and speed up convergence 

to global optima as an efficient extension of our 

previous work [18].  

4. Improved Inertia Weight Factor for 

Effective Reindexing Scheme  

The index image and palette table are first extracted 

from the palette image. The CE based solution [6] to 

TSP is used to re-index colors for which the edge 

weight between the colors is calculated as follows: 

             
{ ( , ) ( , )

0

i j j i
ij ji

S c c S c cif i j
e e

else

+≠
= =  

Where, S(ci, cj) denotes the number of times the pair of 

colors (ci, cj) appear together in the raster scan of the 

image for i, j=1, ..., N the index image is now 

transformed as a complete non-directed weighted 

graph G=(V, E, e) where, e is calculated as in Equation 

4. The co-occurrence matrix thus, formed acts as the 

distance measure for the palette reordering with colors 

as vertices.  

 
Figure 1. Flowchart for palette reindexing. 

An overview of the proposed algorithm as shown in 

Figure 1, Inertia Weight Adaptive Particle Swarm 

Optimization Algorithm (IWAPSO) starts with a 

population of random solutions “particles” in a D-

dimension space formed by the entries of the palette. 

The position of the i
th
 particle is represented by Xi={x1, 

x2, …, x3}, while its velocity is given by Vi={v1, v2,…, 

viD}. The particle dynamics as explained in section 3 is 

decided by the velocity and position update equations. 

The position update equation is calculated from 

Equation 3. 

The velocity update Equation in 2 is modified by 

introducing adaptiveness into the random variables as 

follows: 

1 1 2 2( 1) . ( ) ()( ) ()( )p nv t w v t c rand x x c rand x x+ = + − + −  

Where, rand1() 
and rand2() 

are uniformly distributed 

random functions between [0, 1] which determine the 

tension in the system and c1 and c1 are called the 

cognition and social constants respectively [13] which 

determine exploration or exploitation of search space.  

The term w, is the inertia weight which is employed 

to control the exploration abilities of the swarm as it 

scales the current velocity value affecting the updated 

velocity vector (5).  

1. If w>1, then the velocity will decrease with time, the 

particle will accelerate to maximum velocity and the 

swarm will be divergent. 

2.  If w<1, then the velocity of particle will decrease 

until it reaches zero. Larger values will facilitate an 

exploration rather small values will promote the 

exploitation. 

In order to, strike a balance between exploration and 

exploitation, inertia factor is made adaptive by the 

method of linearly decreasing inertia weight [7]. The 

linear expression is given as: 

            max

( )
in itial in itial f inal

iter
w w w w

iter
= − × −       

Where, wintial expresses the initial weight, wfinal 

expresses the final weight. The variables iter and itermix 

represents the current number of iterations and 

maximum number of iterations respectively. In the 

above equation the change of inertia factor is 

associated only with the number of iterations and could 

not better adapt to changes in characteristics of those 

with complex nonlinear optimization problem.  

To overcome the shortcomings in evaluating the 

inertia factor, this paper introduces a new algorithm 

i.e., improved IWAPSO. The introduction of the rate of 

particle convergence factor to the swarm optimization 

algorithm to modifies its inertia factor appreciably. It 

not only considers the role of the number of iterations, 

but also the impact of the current global optimal 

position and current time optimal position of all 

particles. 

Global optimum of particle swarm is always better 

than or equal to the current optimum value of 

individual. When all the particles have reached the 

Extract Index Image and Palrtte Table 

Start 

Raster Scan Indexes into a Pixel Sequence 

Evaluate the Co-occurrences for each Pair 

of Color Indices 

Reorder Color Indices using IWAPSO 

with Colors as Nodes and as Distance 

Stop 

(6) 

(4) 

(5) 
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global optimum value, the swarm converges to a point 

when k=0.  

1. With value of k is higher, indicating the more 

dispersed distribution of particles in a particle 

swarm, the particles easily falls into local optimum.  

2. With the decrease of k, the algorithm easily falls in 

local optimum.  

Therefore, there is a need to modify the inertia weight, 

thus increasing the search space and improve the 

ability of global optimization of the particle swarm. In 

summary, inertia weight reduces along with decrease 

in k. 

Stochastic search algorithms like the PSO algorithm 

perform a biased random walk to explore the search 

space. A random search allows stochastic optimization 

algorithms to escape from local minima and explore 

flat regions but is computationally expensive and leads 

to slow convergence rates. On the other hand, 

deterministic algorithms like gradient-based techniques 

converge faster by using derivative information to 

identify a good search direction but get stuck in local 

minima. Also, deterministic techniques perform poorly 

in minimizing functions for which the global minimum 

is surrounded by flat regions where the gradient is 

small. 

By considering combination of various parameters, 

the rate of particle convergence factor is calculated   

from one of the three different Equations 7, 8 and 9.  

                   

     1

1

( ) ( )

( )

P
size

ibest size gbest
i

P
size

ibest
i

P t P P t

k

P t

=

=

∑ − ×
=

∑

               

                   

1

1
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i
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i
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k
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=

=

∑ − ×
=

∑

 

            

1

1
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( )
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size
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i

P
size

ibest
i
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k
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=

=

∑ − ×
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Where, Pgbest expresses the current global optimum, Psize 

expresses the size of that particle swarm and Pibest 
refers to the current optimum value of individual.  

Equation 7 is formulated without using gradient 

function for the parameters used. In Equation 8 entire 

gradient is taken for the numerator of the parameter-

rate of particle convergence. For Equation 9 gradient is 

taken separately to current global optimal position and 

current time optimal position. Experimentally 

evaluating the three different cases, Equation 9 

appreciably contributed to weight factor in terms of 

distribution of particles in the swarm. 

The introduction of gradient based rate of particle 

convergence makes significant improvement to 

Equation 6 and modifies the inertia factor. 

               max

( )initial initial final

iter
w w w w k

iter
= − × − ×  

The new inertia factor in Equation 10 is replaced for w 

in Equation 5. This equation influences the 

performance of the algorithm to achieve a better 

balance in global searching ability of particle swarm 

and to accelerate the convergence speed. The 

adaptiveness in the algorithm is introduced by updating 

the new inertia factor, acceleration coefficients and 

velocity of the particle. 

The objective function for IWAPSO decides the 

criteria to select the optimal ordering of the color 

indices which is provided below: 

1 1
( ) ( ( ), ( ) ) | |

N N

i j
f p e p i p j i j

= =
∑ ∑= −  

Where, e(p(i), p(j)) denotes the number of times that 

pixels with color p(i) have neighboring pixels whose 

color is p(i) calculated from Equation 4. Together with 

the modification in the inertia term w, stochastic 

factors and acceleration coefficients c1 and c2 are also 

included in Equation 5. 

The introduction of stochastic factors may cause the 

system to enter a state of explosion because of 

increased global exploration [27] resulting in the 

particle velocities and positional coordinates tending to 

infinity. In order to, prevent such a scenario, a 

maximum value of velocity max is defined as follows: 

           
max max

max max

( ) ( )
( )

( ) ( )

if v t V v t v
v t

if v t V v t v

 > =


<− =−
 

Where, vmax is the maximum velocity allowed for each 

particle. Acceleration coefficients c1 and c2 are 

adjusted with time to increase the social component 

and reduce the cognitive component over iterations. 

Particles are allowed to wander through the search 

space initially with a larger cognitive component and 

smaller social component; rather than moving toward 

the population best [25]. The convergence towards the 

global optima in the latter part of the optimization is 

achieved with a smaller cognitive component and 

larger social component. The acceleration coefficients 

change during runtime according to the following 

equation: 

 
2

( ) exp[ (4 / ) ]1 min max min MAXc c c c iter= + − × − ×           (13) 

       2

2 ( ) exp[ (4 / ) ]min max min MAXc c c c iter= − − × − ×        
(14) 

Where, cmax and cmin are the maximum and the 
minimum acceleration values selected arbitrarily, MAX, 
the maximum number of optimization steps and iter 
represents the current iteration number. A check on 
exploration is placed by the adaptive velocity 
parameter v to limit the search space and not to wander 
into the illegal solutions. Convergence speed improves 
through the automatic control of improved inertia 
weight and acceleration coefficients c1 and c2 at run 

(7) 

(8) 

(9) 

(12) 

(10) 

(11) 
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time. Thus, the proposed method improves the 
diversity of the swarm in order to, avoid the stagnation 
phenomenon and a speeding convergence to global 
optima. The flow chart of the proposed algorithm is 
shown in Figure 2.  

 
Figure 2. Flow chart for IWAPSO. 

5. Experimental Results and Discussion  

The images were initially obtained for the work from 
the FTP site ftp://ftp.ieeta.pt/~ap/images. The images 
were converted from PPM to BMP using gimp 
program. The IWAPSO is implemented in MATLAB. 
Maximized fitness function is found for the complete 
non-directed weighted graph by taking the following 
parameter values: cmax=3, cmin=1.2, wintial=0.96 and 
wfinal=0.6. The population size of 550 has been used for 
all the images. For images with less than 32 colors, the 
maximum iteration was fixed to 300 and the maximum 
velocity was set to 1.5 while for images with colors 
between 32 and 64, the maximum iterations and 
velocity were set to 700 and 2 respectively. For images 
with colors between 64 and 128, the maximum 
iterations was 1200 and maximum velocity was 3.4 
and finally for images with colors more than 128, the 
maximum iterations and maximum velocity was set to 
1800 and 4.2 respectively. The values were chosen 
through experimentation. 
Figure 3-a, represents the different indexed images 

with distinct colors 256, 128 and 64 which are shown 
as an example from the list of test images. The 

reindexed images obtained through IWAPSO have 
been presented as an illustration in Figure 3-b.  

       

             a) Original indexed images.              b) Reindexed images through IWAPSO. 

Figure 3. Indexed images with different color palettes.  

 

In Figure 4-a, b and c, the path obtained for the 
optimised tour using APSO and the tour obtained using 
PSO for travelling salesman problem are compared for 
only images with significantly distinct 256, 128 and 64 
colors. Eventually it is evident that sub tours have been 
considerably reduced using the APSO method. 
Alternatively, in Figure 5-a, b and c the improved 
optimised tour using IWAPSO further reduces the sub 
tours and therefore, helps in reducing the run time of 
the algorithm. It is to be noted that this path is obtained 
by maximizing the co-occurrences between the pixel 
pairs as mentioned in the cost function. This according 
to information theory will eventually reduce the 
entropy of the image due to the reduced number of 
transitions between the colour indexes. Thus, a 
comparison is done for the Hamiltonian path obtained 
between the optimised tour using our previous method 
and improved optimised tour for the formulated 
IWAPSO. 
  

                    Traveling salesman problem                                            Optimized Tour 

 
                                                                                       Globalbest                          Coordinates 

a) Clegg image with a palette of 256 colours. 

                        Traveling salesman problem                                        Optimized Tour 

 
                                                                                       Globalbest                            Coordinates 

b) Descent image with a palette of 128 colours. 

                         Traveling salesman problem                                         Optimized Tour 

 
                                                                                           Globalbest                         Coordinates 

c) Seadusk image with a palette of 64 colours. 

Figure 4. Comparison of optimised tour with APSO and Improved 

optimized tour with IWAPSO. 
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                                Optimized Tour                                       Optimized Tour with Improved APSO 

 
      Globalbest                              Coordinates                Globalbest                               Coordinates 

a) Clegg image with a palette of 256 colours. 

                               Optimized Tour                                         Optimized Tour with Improved APSO 

 
     Globalbest                                Coordinates                  Globalbest                             Coordinates 

b) Descent image with a palette of 128 colours. 

                               Optimized Tour                                         Optimized Tour with Improved APSO 

 
       Globalbest                              Coordinates              Globalbest                                Coordinates 

c) Seadusk image with a palette of 64 colours. 

Figure 5. Comparison of PSO with TSP and optimized tour with 

APSO. 

Table 1. Comparison of re-indexing time.  

Configuration A B C 

Sl. No. Images No. of Colors D E F 

1 Clegg 256 40 16.56 3.53 

2 Descent 128 7 4.727 1.6388 

3 Seadusk 64 2 0.77 0.35 

A-intel dual core 2.8 GHz processor and 1GB of 

RAM; B and C-intel dual core 2.2 GHz processor and 

1GB of RAM;  

D-Re-indexing Time(Mins) From (Joshua van et al. 

2009); E-Re-indexing Time(Mins) (Niraimathi et al. 

[18]); F-Re-indexing Time(Mins) proposed algorithm 

Table 1 depicts the comparison of re-indexing time 

taken by the algorithm for images with 256, 128 and 

64 colors. It is vivid that the re-indexing time drops 

down reasonably well than our previous work. This 

highlights the performance of the proposed method in 

comparison with earlier technique in [11] and also our 

previous work [18]. 

A graphical interpretation also is made between 

number of colors and re-indexing time, distinguishing 

the methods the optimized tour using APSO and the 

improved optimized tour using IWAPSO as shown in 

Figure 6. This proves that the proposed method is 

computationally less expensive than our previous work 

[18] and the previous algorithm [11]. 
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         Improved PSO+B-INV                APSO                            IWAPSO 
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Figure 6. Graphical comparison of reindexing time. 

The rate of convergence factor has been viewed 
graphically in Figure 7, obtained by plotting for 
various values of k and the number of colors from 8 to 
256. Evaluation of k using Equations 7 and 8 yields 
constant value and there by does not notably contribute 
to the modification of inertia weight factor. The range 
of values obtained by considering k in Equation 9 with 
separate gradient for Pgbest

 
and Pibest parameters (-0.02 to 

0.14) shows the introduction of diversity of the 
particles in the swarm.  
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Figure 7. Graphical representation of rate of convergence 

parameter. 
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Figure 8. Graphical comparison of Inertia weight factor. 

In Figure 8 the inertia factor contributed by 

IWAPSO is compared with APSO algorithm. The 

modified inertia factor shows the exploration abilities 

of the swarm to better adapt changes in characteristics 

of the new reindexing scheme. 

Figure 9 compares the performance of the IWAPSO 

and APSO algorithms by evaluating the swarm fitness 

for different iterations. It can be seen that the APSO 

easily falls into local optimum and emerges premature 

phenomenon while the proposed algorithm has strong 

ability of global searching and higher precision of 
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optimum than the former. The graph shows steep 

gradients throughout the solution space for the 

IWAPSO algorithm. Therefore, the algorithm shows 

significant improvement in search ability and 

converges faster to a more accurate final solution than 

the APSO algorithm. This is because good solutions 

found by the APSO are refined using a deterministic 

gradient based inertia factor with high convergence 

rate avoiding costly random search.  
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Figure 9. Graphical comparison of swarm fitness. 

6. Conclusions  

In this paper, an efficient algorithm is proposed which 

includes improved inertia weight formulated as a factor 

of the significant parameter rate of change of particle 

convergence. This parameter involves the role of 

global optimal position and current optimal position of 
all the particles to contribute better inertia weight 

factor to the algorithm. As the extension of our 

previous work, updating the inertia weight accelerates 

the convergence speed. Comparing our previous 

method, experimental results assert that the proposed 

modification considerably reduces the sub tours in the 

hamiltonian path obtained through IWAPSO 

algorithm. Finally, this paper also, demonstrates the 

competence of the proposed algorithm by graphically 

interpreting performance of its parameters namely, 

inertia weight, rate of change of particle convergence 

and swarm fitness.   
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