
462 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

On Demand Ciphering Engine Using Artificial

Neural Network

Qutaiba Ali and Shefa Dawwd
Department of Computer Engineering, Mosul University, Iraq

Abstract: In this paper, a new light weight highly secured ciphering engine creation methodology we called On Demand

Ciphering Engine (ODCE) was suggested. The main feature of this method is that both, the ciphering engine and the secret

key, are kept secrets and created by the user or the system administrator when initiating his transmission, then the involved

sides exchange these secrets. The design methodology and structure of this system was described and prototyped using

Artificial Neural Network (ANN) as the main building block in the system. Software and hardware implementations of the

suggested system were performed to prove its practicability. Also, different experimental tests were achieved to determine the

impact of the suggested method on both network delay and system performance.

Keywords: Network security, cryptography, neural network parallel implementation, ODCE, normalized ciphering engine.

Received November 22, 2013; accepted October 26, 2014; published online August 22, 2015

1. Introduction

Data cryptography generally is the scrambling of the
content of data, such as text, image, audio, video to
make the data imperceptible during transmission or
storage [26]. The major aim of cryptography is keeping
data secure form illegal attackers [5]. In the 19th

century, a well-known theory about the security
principle of any encryption system has been proposed
by Kirchhoff. This theory has become the most
significant principle in designing a cryptosystem for
researchers and engineers. Kirchhoff observed that the
encryption algorithms are supposed to be known to the
opponents [5]. Thus, the security of an encryption
system should rely on the secrecy of the
encryption/decryption key instead of the encryption
algorithm itself. This concept was implemented in all
known encryption algorithms, i.e., the algorithm
construction is public while the key is kept secret and
known only by the concerned parts [5, 26].

2. Literature Review

Security applications of Artificial Neural Network
(ANN) is not a new topic and can be categorized into
many sub-fields such as cryptanalysis, key-exchange,
various ciphering systems, hash function,
watermarking and Steganography.

Neural cryptanalysis work was conducted by
Pandey and Mishra [19], they proposed an algorithm
that offers an approach to attack ciphering algorithm
based on the principle that any function could be
reproduced by ANN. Also, Alallayah et al. [1]
suggested the adoption of ANN as an ideal tool for
black box system identification. They developed a
mathematical black box model to construct the Neuro-
Identifier.

The work on neural key exchange and

authentication is another research area. Kanter et al.
[12] stated that the neural key-exchange protocol does
not employ number theory but is based on a
synchronization of Neural Networks (NN) by mutual
learning [12]. The architecture used is a two-layered
perceptron, exemplified by a parity machine with K

hidden units. The secret information of each entity is
the initial values for the weights which were secret.
Each network is then trained with the output of its
partner. The work was extended to multilayer
networks, parity machines [13]. In the field of key
authentication, Gomathi and Nasira [9] provided a
survey of various biometric based authentication
systems based on ANN.

Many papers deal with the adoption of ANN in
cryptographic systems. Shihab [22] suggested a
decryption scheme and a public key creation based on
a multi-layer NN that is trained by back-propagation
learning algorithm. Yu and Cao [30], proposed an
approach of encryption based on chaotic Hopfield
ANN with time varying delay. Prabakaran et al. [20]
proposed the Tree Parity Machines (TPM) in order to
generate common secret key over the public channel
where both sender and reception sides use ANN for
cryptography purposes. Ali et al. [2], examined
Artificial Spiking Neural Network (ASNN) which
interconnects group of artificial neurons that used a
mathematical model with the old block cipher.
Dalkiran and Danisman [7] made use of ANN to model
the dynamics of Chua’s circuit in order to overcome
the disadvantages of chaotic systems. Mohamed [18]
proposed a cryptosystem based on hybrid approaches
to provide multi-security services while taking the
advantage of ANN computation power to serve data

On Demand Ciphering Engine Using Artificial Neural Network 463

confidentiality. Long [16] proposed a stream cipher
algorithm based on one-way function of ANN. Shukla
and Tiwari [23] suggested the use of two ANNs in
order to overcome public key computational demands,
one of them is based on n-state sequential machine and
the other is chaotic ANN.

ANN was suggested to build Hash functions.
Kulkami et al. [14] proposed an algorithm for one-way
hash function construction based on a two Feed-
Forward Neural Networks (FFNN) along with the
Piece-Wise Linear (PWL) chaotic map. Sumangala et

al. [25] suggested an algorithm for one way hash
function construction based on two layers feed forward
ANN along with the PWL chaotic map.

Other promising research fields of using ANN in
security are watermarking and Steganography. Tsai et

al. [28] proposed an intelligent audio watermarking
method based on the characteristics of the HAS and the
techniques of ANN in the DCT domain. Anitha et al.
[3] developed a hybrid approach which comprises of
ANN and S-DES encryption scheme which is used to
detect the stago content in corporate mails.

3. The Suggested Method

In this paper, we suggest that both the ciphering engine
and the key are both secret and created by the user
when initiating his transmission, then the involved
sides exchange these secrets. These secrets can be used
in future communication attempts between the two
parties or a new secrets is created every time a new
session is initiated. However, this suggestion suffers
from many problems and challenges when
implemented using traditional methods. First, a
complete ciphering engine (encryption and decryption
sides) must be created according to user demands.
Secondly, huge amount of data (which represent the
ciphering engine code and the keys) must be
transmitted between the two sides. Also, this method
needs great deal of flexibility and synchronization
between the two sides.

In order to respond to the above challenges, we
suggest the use of ANN as an essential tool to build the
suggested On Demand Ciphering Engine (ODCE). A
proposed ciphering engine design tool is used to create
a custom made ciphering engine together with its keys
according to user demand. Our method can be
described as shown in Figure 1:

1. The intended plaintext is prepared and entered into
the ODCP. Then, the user takes his decision to
design his own ciphering engine using either
traditional ciphering methods or creates his new
ciphering engine.

2. If the user chooses the traditional ciphering option,
he can choose between two sub-options: A
traditional single ciphering method OR (for better
security) a serial/parallel combination of different
methods. To clarify the second choice, Figure 2

shows an example of a new ciphering engine
combined two ciphering methods (two 3DES and
one AES with their keys) blocks connected together
in a certain manner so that, the plaintext will go
through more administrative and controlled
scrambling process. In either case, the user must
takes into accounts the ciphering parameters
diversity among the different methods, such as
block length, key length and its value.

3. On the other hand, if the user choose to create his
own cryptographic system, he can follow the second
option in which he will design his own ciphering
engine according to fiestel type block ciphering
systems [26]. Manual and automatic creation of the
intended ciphering engine is available to the user.
Automatic option permits the program to suggest a
new ciphering engine structure, key value, no. of
rounds, scrambling functions for each round, s-box,
p-box, key scheduling, etc., on the other hand, the
user may use manual design and makes use of a
drag and drop Graphical User Interface (GUI) to
determines the structure of the ciphering engine, key
value, no. of rounds, scrambling functioning for
each round, s-box, p-box, key scheduling, …, etc., it
is worthwhile to mention that modifying traditional
ciphering methods lead to produce different cipher
text, e.g., changing the no. of rounds of any block
ciphering method creates a new ciphering method.
The user may benefit from this consequence to
produce new ciphering engines in a short time.

4. The next step after any of the above steps is to
generate the input/output relation table for both
encryption and decryption sides. The generation
process begins by giving a certain input plaintext
value to the suggested ciphering engine then
recording the output cipher text associated with this
value. This procedure is repeated continuously so
that, all the possible input/output pairs are included
in the table. The time interval of this stage is
determined mainly be the length of the input data
block.

5. The next step is to convert the different forms of
ciphering engines into a unified circuit. We suggest
that ANN could play this role, i.e., be trained to
emulate the behavior of the designed ciphering
engine. As seen later in the next section, the ANN
structure, i.e., the number of neurons for input,
hidden and output layers depends mainly on the
length of the input data block and hence, there is a
certain structure for each possible block length. The
next step is to train this NN using the previously
mentioned input/output relation table (and
output/input relation table in the decryption case).
Learning procedure will continue until error value
becomes less than a certain threshold then the
weights and biases for both encryption and
decryption ANNs are stored and prepared to be sent
to the other side.

464 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

6. The final step is to send the ODCE, i.e., ANN
structure, weights and biases, to the other side using
a secure channel.

It is noted that although different ciphering
engine structures could be obtained according to the
user design, they are converted into a unified
structured ANN. In this paper, we call this outcome
as the Normalized Ciphering Engine (NCE).

Figure 1. Flow chart of the suggested ODCE.

Figure 2. Example of a new ciphering engine.

There are several benefits obtained when adopting
the NCE:

1. The reduction in the amount of the transferred data
(which represent the ciphering engine secrets). In
other words, instead of sending variable file sizes
(ciphering engine source code) resulted from
designing different ciphering engines, the same
circuit (the ANN) is used every time.

2. Deterministic reserved resources in terms of the
required transmission bandwidth, the allocated
memory and CPU execution time for these tasks.

3. Higher flexibility in designing different ciphering
engines with great deal of ease.

However, the adoption of ANN as the ultimate black
box needs a special attention and care should be paid to
prepare the ANN to undertake the cryptography tasks
efficiently in a practical and visible fashion.

4. NCE Design Issues

ANNs provide a general, practical method for learning
real-valued, discrete-valued and vector-valued
functions from examples. NNs are composed of simple
elements operating in parallel. These elements are
inspired by biological nervous systems. As in nature,
the connections between elements largely determine
the network function. The NN can be trained to
perform a particular function by adjusting the values of
the connections (weights) between elements. NNs are
trained, so that a particular input leads to a specific
target output. The network is adjusted, based on a
comparison of the output and the target, until the
network output matches the target. Many such
input/target pairs are needed to train a network. NNs
have been trained to perform complex functions in
various fields, including pattern recognition [8],
identification [15], classification [4], speech [29] and
control systems [10]. NNs can also be trained to solve
problems that are difficult for conventional computers
or human.

The chosen type of ANN in this paper is the layered
FFNN which are theoretical machines historically
based on Rosenblatt’s perceptron model, in which
there is a layer of input units whose only role is to feed
input patterns into the rest of the network. Next, there
are one or more intermediate layers of neurons
evaluating the same kind of function of the weighted
sum of inputs, which, in turn, send it forward to units
in the following layer. One of the most general
problems in multilayer NNs is to find the connection
strengths and thresholds which transform several
known input patterns into their corresponding output
patterns according to a given interpretation of inputs
and outputs. The typical approach is a progressive
learning process based on the principle of back-
propagation, which leads to a solution by a lengthy
relaxation search after a number of iterations large
enough. Training continues on the training set until the
error function reaches a certain minimum. If the
minimum is set too high, the network might not be able
to correctly classify a pattern. But if the minimum is
set too low, the network will have difficulties in
classifying noisy patterns [4, 10, 15]. Since, the crypto-
system proposed in this paper is considered as an
encoder, therefore, the best choice to build such
encoder it to use the FFNN. Other types of NNs such
as recurrent NN or unsupervised networks are targeted
to be used for different applications such as in control,
data clustering and other domains that irrelevant to the
field of our interests.

Next, we will discuss some issues related to the
adoption of ANN as the intended NCE. First of all, a
new optimized design of ANN to serve as an encoder
is presented. Secondly, we discuss the different
approaches to choose the appropriate ANN size as a
function of the input block length. Finally, we suggest

Design Steps of
Ciphering Engine

Preparing

Tables for ANN

ANN Black box
for Encryption

Side

ANN Black box
for Decryption

Side

On Demand Ciphering Engine Using Artificial Neural Network 465

a suitable value to represent individual data units in
both hardware and software implementations.

4.1. Encoder/Decoder Design Using ANN

In order to implement our ODCE, NN must be used as
an encoder, where a set of input pattern is to be
associated to a set of desired patterns. Hence, each
input pattern has only one associated output pattern.
The binary encoder expects that either input or output
patterns are binary values [17, 27]. The FFNN is used
to model the encoder-decoder paradigm [1], where the
input is first transformed into a typically lower-
dimensional space (encoder) and then expanded to
reproduce the initial data (decoder). The output of the
hidden layer nodes represents the encoding pattern
while the output layer nodes reproduce the input
pattern. Our goal is to minimize and optimize the size
and complexity of the ANN and hence, its
performance. Unlike all previous works, we proposed
that all inputs, weights and outputs of ANN are real
values. The idea behind that is illustrated using the
following example:

If it is required to map an 8bit input vector to an 8
bit output vector using FFNN of three (input-hidden-
output) layers as shown in Figure 3-a.

The ANN requires at least 8 hidden nodes (each has
8 connection weights) with 8 biases and 8 output nodes
(each has 8 connection weights) with 8 biases, to map
each of the 28 input patterns to its associated encoded
output patterns. The weights and biases of either
hidden or output layers are real values. The training
error is reduced to an amount that makes all training
samples have separable targets.

a) 8bit binary input.

b) Two digits input.

c) First and second layer node processing element for a and b.

Figure 3. The FFNN.

Our suggestion implies that the values of input that
applied to ANN are represented by hexadecimal or
decimal radix, rather than the binary radix see Figure
3-b. For example, in an 8bits word length number, each
digit is converted to its associated radix as shown in
Table 1.

Table 1. Binary to decimal conversion.

8Bits Binary Number 2Digits Decimal Number

0000bin 0000bin 0dec 0dec
0000bin 0001bin 0dec 1dec
0000bin 0010bin 0dec 2dec

. .
1001bin 0110bin 9dec 6dec

. .

. .
1111bin 1111bin 15dec 15dec

4.2. Size of Encrypt ANN and Decrypt ANN

There is a number of theoretical results concerning the
number of hidden layers in an ANN. Specifically,
Hetcht-Nielsen [11] has shown that a network with two
hidden layers can approximate any arbitrary nonlinear
function and generate any complex decision region for
classification problems. Later, Cybenko [6] showed
that a single layer is enough to form a close
approximation to any nonlinear decision boundary.
(Furthermore, it was shown that one hidden layer is
enough to approximate any continuous function with
arbitrary accuracy-when the accuracy is determined by
the number of nodes in the hidden layer; also, one
hidden layer is enough to represent any Boolean
function).

According to Cybenko’s results, one hidden layer is
used for either the encrypt ANN or the decrypt ANN.
The number of nodes in the input, hidden, and output
layers depends on two factors: The size of the input
data block and the training performance that ensures
classifying each plaintext code to its associated cipher
text. The later factor can be realized by trial and error.
Usually, one has to train different size networks and if
they don’t yield an acceptable solution, then they are
discarded. This procedure is repeated until an
appropriate network is found. Formal experience has
shown that using the smallest network which can learn
the task, is better for both practical and theoretical
reasons. Smaller networks require less memory to store
the connection weights and can be implemented in
hardware more easily and economically. Training a
smaller network usually requires less computation
because each iteration is less computationally
expensive. Smaller networks also, have short
propagation delays from their inputs to their outputs.
This is very important during the testing phase of the
network, where fast responses are usually required.

As presented earlier, 8bits input data block requires
2 inputs, 2 hidden nodes and 2 output nodes. Table 2
below estimates the size of FFNN (either encrypt ANN
or decrypt ANN) for different input data block sizes.

The encryption key K depends on the size of
weights and biases. Thus, from the table above, one
can see that the size of K increases with the increment

466 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

in both block and network sizes. Since, each weight or
biases can be represented with m bytes, then K size (in
bytes) can be formulated as:

 [()]]K = total no. of weights +biases × m

Table 2. ANN size for different input data block sizes.

Input Block

Size (Bit)

No. of

Associated

Digits

No. of

Inputs (M)

No. of

Hidden

Nodes(N)

No. of

Output

Nodes (Q)

Total No. of

Weights

=N(M+Q)

Total No. of

Biases

=N+Q

K(Bytes),

M=2

8 2 2 2 2 8 4 24
12 3 3 3 3 18 6 48
16 4 4 6 4 48 10 116
36 9 9 16 9 288 25 626
48 12 12 22 12 528 34 1124
64 16 16 30 16 960 46 2012
80 20 20 38 20 1520 58 1578
96 24 24 46 24 2208 70 4556

112 28 28 54 28 3024 82 6212
128 32 32 62 32 3968 94 8124

4.3. Data Representation

Data representation accuracy depends on the selection
of m and either that weights or biases are represented in
fixed point or floating point. In general, NNs have low-
precision requirements, even though the exact
specification is algorithmic and application dependent.
Digital neuro-hardware can profit from this property
by using fixed-point arithmetic with reduced precision
which are less complex and less area consuming than
floating-point arithmetic and helps to reduce system
cost.
 There are two parts in a fixed-point number, the
integer part which is bws-1 to b4 and the other is the
fractional part which is b3 to b0. If the base of this
fixed-point number is β and it is a positive number, the
decimal equivalent value can be calculated by:

5 -1 -2 -3 -4

1 4 3 2 1 0, , ws-

ws-
v = b β + ... +b +b β +b β +b β +b β

Where ws is the precision.
If the base of fixed-point number is 2, the value is

determined by what kind of representation is used
(generally 2’s complement is used).

For example, In an 8bit input data block NCE as
shown in Figure 3-b, the network parameters are
shown in Table 3. The precision ws and the radix point
should be selected to attain the largest and lowest bias
or weight values: 100.6401 and -44.7387.

Table 3. 8bit NCE network parameters.

Parameter Real Value
Fixed Point, Ws=32, Radix Point Between Bit23 and

Bit24

w11 -0.0011 11111111111111111000000000000000
w12 0.0399 00000000000100000000000000000000
w21 -0.0395 11111111111100000000000000000000
w22 -0.0027 11111111111111110000000000000000
b11 0.3037 00000000100000000000000000000000
b12 -0.2795 11111111100000000000000000000000
u11 6.8383 00000111000000000000000000000000
u12 101.690 01100110000000000000000000000000
u21 100.6401 01100101000000000000000000000000
u22 2.8103 00000011000000000000000000000000
b21 54.3852 00110110100000000000000000000000
b22 -44.7387 11010011000000000000000000000000

Using floating point representation requires at least

32bit (4bytes) word length if, for example, IEEE
standard 754-1985 format is used. In other words, m is
fixed to 4bytes and K is a series of floating point
numbers. Using this choice is preferable when the

NCE is proposed to be implemented in software
paradigm. The reason behind this is that a high
precision representation, very large or very small
numbers can be represented using scientific notation as
follows:

en = ± s ×b

Where +/- the sign of the number, s the significant or
mantissa, e the exponent and b the base.

Here, we can represent numbers between -0.999×
1099 and 0.999×1099 with a magnitude that ranges from
0.100×10-99 to 0.999×1099 with only 5 digits and two
signs.

We can conclude that (m=4Bytes) is adequate for
most software and hardware implementations of the
intended NCE.

5. Prototyping The Model

This section deals with building a simple prototype
model to demonstrate the ODCE main concepts as
shown earlier in Figure 3. In the beginning we must
determine the block length, which was set to (8bits).
Then, we suggest the ciphering engine shown in Figure
4, which is a combination of different keys Simplified
AES (SAES) ciphering method.

Figure 4. A proposed ciphering engine.

For software implementation (using MATLAB
package), the (256 values) input/output relation table
were generated and used to train the ANN shown
earlier in Figure 3-b). The training time was (1.1s) on a
(2.4 GHz Core i5, 4 GBytes RAM) PC. The resulted
ANN composed the parameters presented in Table 3.
The above procedure was repeated for the decryption
side, hence, the total training time is about (2s) after
which we obtain an 48bytes (to be sent to the other
side) which were sufficient to represent the weights
and biases for both encryption and decryption sides of
the suggested NCE.

The tested NCE can also be implemented in
hardware. In such a case, the floating point arithmetic
computation of NN is more complex and area
consuming than that achieved by fixed point
computation. To achieve high precision weights and
biases, the training is wholly implemented in software
using floating point computations. After this and when
weights and biases are fixed, neural hardware is used
to model the NCE using fixed point computations. In

(2)

(1)

(3)

On Demand Ciphering Engine Using Artificial Neural Network 467

Figure 5, the weight matrix presentation of a simple
NN (four nodes with four connections weight each) is
shown in the middle, while the left side shows the
conventional presentation of the same network. The
rectangle N in the mid part of Figure 5 denotes the
activation function of the neuron.

Figure 5. Hardware NN model: Conventional (left), weight matrix
(middle), mapped neuron-parallel (right).

The right side of Figure 5 represents the mapping of
the NN into a hardware model. The system architecture
that is used to implement each of the two layers for
Encrypt ANN or Decrypt ANN is shown in Figure 6.
The circle wij represents the computation of the
synapse: yi=wij×xj+yi-1 where yi-1 is the result from the
proceeding synapse. Each processing element PEi has
an adder, a multiplier, an activation function and a
local memory to store the node’s weights vector and
biases. The area utilization bottleneck is in the
activation function of the 1st layer where sigmoid
nonlinear pattern is to be achieved. To overcome this
constrain, the sigmoid function was substituted by a
piecewise linear function. Afterward, one multiplier is
required for each sigmoid as an approximation to the
nonlinear original function. While the output layer
activation function is linear (pure line function),
therefore the function weighted sum input will be the
activation function output. Xilinx Spartan-3E FPGA of
500,000 gates is used as the implementation target. The
intended 8bits NCE consumes 220 slices and 4
embedded multipliers for encryption side as shown in
Figure 3-b and the same area utilization is consumed
for decryption side. The designed network can operate
on a 135MHz maximum frequency.

Figure 6. The complete architecture of the ciphering engine.

6. Security Analysis and Performance

Investigation

In this section, we analyzed the security and the
performance of the suggested ODCE. In this work, we
did not focus on certain encryption algorithm, but
instead, we suggest a new methodology to design,
implement and distribute any ciphering engine.
Traditional cryptanalysis techniques focus on the
different methods taken by the attacker to discover the
secret key used for encrypting the data [19] (as the
encryption algorithm is known and public). However,
the situation is different in our case in which both the
encryption algorithm and its key are secret. Also, we
suggest that encryption algorithm could be used for
certain amount of time, then replaced by another secret
algorithm according to user demands. Our primitive
conclusion is that a traditional mathematical attack is
not possible because the attacker does not have any
referenced model (i.e., the ciphering engine) to be used
for the calculation process (this claim will be proved in
details in a forthcoming future paper). However, the
attackers may take different ways focusing on
discovering the internal structure on the ANN (e.g.,
number of layers) and the values of its weights and
biases. This attack could be performed either by
monitoring the traffic between the involved parties
during ciphering engine distribution (handshaking) or
measuring the electrical characteristics of the ANN
hardware implementation.

To solve the first problem, we can make use of the
traditional secured key distribution methods, such as
Diffie-Hellman protocol [26] or Key Distribution
Center (KDC) [5], which can be modified to transfer
the NCE data between the involved parties. Also,
hardware implementation of the NCE must be
resistible against different types on power analysis
attacks using the known methods in this field [13].
 In order to discover the practicability of the
suggested method, we performed several experimental
tests. We used two Corei5, 4GBytes RAM PCs
connected together using a fast Ethernet switch. In the
first experiment, we compared between traditional
AES and an AES implemented in ANN (ANN AES) in
order to measure their encryption and decryption
delays to process a single 128bit block, as shown in
Figure 7-a. It is obvious that ANN based AES proves
its ability to outperform the speed of the traditional
AES because less calculations are needed to perform
its tasks. In the second experiment, we transferred
encrypted files (with different lengths) between the
two PCs using File Transfer Protocol (FTP), then
measuring the total FTP delay. Again, we compared
between the two AES versions as shown in Figure 7-b.
In this experiment, ANN AES do better than traditional
AES due to the less processing delay needed. In the
last Experiment, we evaluate the efficiency of using
ANN based ODCE (i.e., the NCE) to transfer the code

PE

MUX

control
unit

bufferoutputtemprory/

for weights and biasesblocksROM

iX

clk

MUX MUX MUX

indexlayer

0PE 1PE
mPE

1ŵ0ŵ m
ŵ

0N 1N mN

468 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

of the encryption algorithm itself. As mentioned
before, in traditional ODCE we need to transfer the
whole file containing the ciphering engine. However,
the adoption of ANN ODCE eliminates the amount of
transferred data to the weights and biases only which
leads to the reduction of both file size and file transfer
delay, as shown in Table 4.

T
im

e
(M

ic
ro

se
co

nd
)

ANN AES Traditional AES

a) Encryption and decryption delay.

F
T

P
 D

el
ay

 (
se

c)

File Size (Kbytes)

b) FTP delay.

Figure 7. Experimental test results.

Table 4. ODCE code transfer delay.

Block Size

(Bit)

Traditional ODCE ANN ODCE

File Size of the

C++ Code (Bytes)
FTP Delay (Sec.)

ANN Weights and

Biases Size (Bytes)
FTP Delay (Sec.)

8(SAES) 15K 0.033 48 0.00024
64(3DES) 200K 0.22 4K 0.0045
128(AES) 100K 0.11 16K 0.018

From the above results, it is obvious that ANN
proves its usefulness and practicability when used as
the NCE in implementing the suggested ODCE.

7. ODCE Implementation Issues

As known, practicability is an essential condition to
ensure the success of any suggested system. This
section presents our vision to the future
implementation of the suggested ODCE and discuses
some concerns as follows:

1. The major challenge faces the current method is the
long ANN training time. As shown earlier, 8bits
input blocks takes about 2 seconds to achieve ANN
training. When the input block and network sizes
become larger, the training time overhead increases
dramatically. For example, the training time for a 16
bit block (216 values) input/output table consumes
(187.85s) to achieve the same error accuracy which
is equal to (0.0001). To speedup the training process
of NNs, especially for very large training datasets,
multithreaded and multicore CPUs with shared
memory is used. The approach is to assign a part of
the training dataset to each thread and process
(train) them simultaneously. A training speedup of

about 7x is achieved in [21] using 2 Quad-Core
L5420 Intel CPUs (2.5GHz) with 8GByte RAM.
Also, General Purpose Graphical Processing Unit
(GPGPU) provided with massively multicore
processors can be used for training. GPUs can be
programmed using NVIDIAs CUDA C-language
GPU programming environment. In [24], a 63x
speedup is achieved using parallel training
algorithm over sequential version when using a
GPU type of the Tesla C1060 with 240 kernels and
4GB of memory that installed in a desktop Intel
Core2 Duo E6750 @ 2.66 GHz and 4GB RAM.

2. In this paper, we suggest that the proposed ODCE
could be realized by an online trusted center
supplied with a high performance parallel
processing servers (clusters) to perform the NN
training. According to this suggestion, the user can
(securely) access the web site of this ODCE center,
making use of its resources to build his own
ciphering engine (or making use of previously built
ciphering engines by other users), performing a high
speed NN training, then receiving the NN weights
and biases which represent his new ciphering
engine.

3. The other benefit of adopting the online ODCE
center is to facilitate the ciphering engine
distribution and management operations. Our
proposal is to let the ODCE center to perform
ciphering engine distribution tasks in a similar
fashion to that of the well known KDC. Firstly, we
assume that each user establishes a shared secret
key with the ODCE center. Then, the user sends a
request to the ODCE center, stating that he needs a
certain ciphering engine to be used for
communication with another user. The ODCE
center informs the other user about this request and
the intended ciphering engine is distributed between
them. This secret ciphering engine that is
established with the ODCE center is used to
authenticate both of them to the ODCE center and to
prevent the attackers from impersonating either of
them.

4. Another important issue to be discussed is the
handshaking procedure between the involved
parties. In the conventional data exchanging
operation, encryption method, key size and its value
are distributed between the two sides. However, in
the suggested ODCE, an additional data must be
exchanged. These data includes NN structure (No.
of input, hidden and output nodes) and the values of
weights and biases. For example, for the ODCE
shown later in Figure 3-b, these values are (2, 2, 2)
for the NN structure and some values similar to
those listed later in Table 3. For more security, these
values can be sent after encrypting them using
proper ciphering method.

5. One of the advantages of adopting ODCE is its
backward compatibility with the known security

On Demand Ciphering Engine Using Artificial Neural Network 469

methods in the different TCP/IP protocol suite
layers, especially network layer (IPSec protocol)
and transport layer (SSL/TLS protocols).

8. Conclusions

This paper suggests the ODCE. Many benefits could
be obtained from adopting this system, in front of them
is the augmentation in privacy due to cryptographic
algorithms secrecy. One of the consequences when
adopting this suggestion is the infinite number of
ciphering system could be created according to user
demands and hence, adding his personal touch to
secure his data. We believe that the suggested ODCE
will make the attackers’ task harder because new
ciphering engines are created every time a secure
transmission is initiated. We suggested ANN as the
main building block in implementing ODCE in order
create a unified-structure ciphering engine (we called
normalized ciphering engine) for all encryption types
and to reduce the amount of data to be transferred
between the involved parties.

References

[1] Alallayah K., Amin M., Abd W. and Alhamami
A., “Applying Neural Networks for Simplified
Data Encryption Standard (SDES) Cipher System
Cryptanalysis,” the International Arab Journal of

Information Technology, vol. 9, no. 2, pp. 163-
169, 2012.

[2] Al-Omari K. and Sumari P., “Spiking Neurons
with ASNN Based Methods for the Neural Block
Cipher,” International Journal of Computer
Science and Information Technology, vol. 2, no.
4, pp. 138-148, 2010.

[3] Anitha P., Raj M., and Sivan S., “An Efficient
Neural Network Based Algorithm for Detecting
Content in Corporate Mails: A Web Based
Steganalysis,” International Journal of Computer

Science Issues, vol. 9, no. 3, pp. 509-513, 2012.
[4] Bartlett P., “The Sample Complexity of Pattern

Classification with Neural Networks: The Size of
the Weights is More Important than the Size of
the Network,” IEEE Transactions on Information

Theory, vol. 44, no. 2, pp. 525-536, 1998.
[5] Cole E., Krutz R., and Conley J., Network

Security Bible, Wiley Publishing Inc., 2005.
[6] Cybenko G., “Approximation by Superpositions

of a Sigmoidal Function,” Mathematics of

Control, Signals and Systems, vol. 2, no. 4, pp.
303-314, 1989.

[7] Dalkiran I. and Danisman K., “Artificial Neural
Network Based Chaotic Generator for
Cryptology,” SOURCE Turkish Journal of

Electrical Engineering and Computer Sciences,
vol. 18, no. 2, pp. 225, 2010.

[8] Fukushima K., “Neocognitron: A Hierarchical
Neural Network Capable of Visual Pattern
Recognition,” Neural Networks, vol. 1, no. 2, pp.
119-130, 1988.

[9] Gomathi P. and Nasira G., “A Survey on
Biometrics Based Key Authentication Using
Neural Network,” Global Journal of Computer

Science and Technology, vol. 11, no. 11, pp. 1-3,
2011.

[10] Gomi H. and Kawato M., “Neural Network
Control For A Closed-Loop System Using
Feedback-Error-Learning,” Neural Networks,
vol. 6, no. 7, pp. 933-946,1993.

[11] Hetcht-Nielsen R., “Theory of the
Backpropagation Neural Networks,” in

proceeding of International Joint Conference on

Neural Networks, Washington, pp. 593-605,
1989.

[12] Kanter I., Kinzel W., Kanter E., “Secure
Exchange of Information by Synchronization of
Neural Networks,” available at:
http://arxiv.org/pdf/cond-mat/0202112.pdf, last
visited 2002.

[13] Kinzel W. and Kanter I., “Interacting Neural
Networks and Cryptography,” Advances in Solid

State Physics 42, pp. 383, 2002.
[14] Kulkami V., Shaheen S. and Apte S., “Hash

Function Implementation Using Artificial Neural
Network,” the International Journal on Soft

Computing, vol. 1, no. 1, pp. 1-8, 2010.
[15] Narendra K. and Parthasarathy K.,

“Identification and Control of Dynamical
Systems Using Neural Networks,” IEEE

Transactions on Neural Networks, vol. 1, no. 1,
pp. 4-27, 1990.

[16] Long H., “Stream Cipher Method Based on
Neural Network,” in Proceedings of National

Conference on Information Technology and

Computer Science Conference, pp. 1-4, 2012.
[17] Masci J., Meier U., Cireşan D., and Schmidhuber

J., “Stacked Convolutional Auto-Encoders for
Hierarchical Feature Extraction,” available at:
http://people.idsia.ch/~ciresan/data/icann2011.pd
f, last visited 2011.

[18] Mohamed M., “Multi-Service Cryptography
Scheme for Secure Data Communication,”
International Journal of Computer Science and

Network Security, vol. 11, no. 7, pp. 148-153,
2011.

[19] Pandey S. and Mishra M., “Neural Cryptanalysis
of Block Cipher,” International Journal of
Advanced Research in Computer Science and
Software Engineering, vol. 2, no. 5, pp. 50-52,
2012.

[20] Prabakaran N., Loganathan P., and
Vivekanandan P., “Neural Cryptography with
Multiple Transfers Functions and Multiple

470 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

Learning Rule,” International Journal of Soft

Computing, vol. 3, no. 3, pp. 177-181, 2008.
[21] Schuessler O. and Loyola D., “Parallel Training

of Artificial Neural Networks Using
Multithreaded and Multicore CPUs,” in

Proceedings of the 10
th
 International Conference,

ICANNGA 2011, Ljubljana, Slovenia, pp. 70-79
2011.

[22] Shihab K., “A Backpropagation Neural Network
for Computer Network Security,” Journal of

Computer Science, vol. 2, no. 9, pp. 7-10, 2006.
[23] Shukla N. and Tiwari A., “An Empirical

Investigation of Using ANN Based N-State
Sequential Machine and Chaotic Neural Network
in the Field of Cryptography,” Global Journal of

Computer Science and Technology, vol. 12, no.
10, pp. 1-11, 2012.

[24] Sierra-Canto X., Madera-Ramırez F., and Uc-
Cetina V., “Parallel Training of a Back-
Propagation Neural Network using CUDA,” in

Proceedings of the 9
th

International Conference

on Machine Learning and Applications,
Washington, pp. 307-312 2010.

[25] Sumangala G., Kulkarni V., Sali S., and Apte S.,
“Performance Analysis of SHA2 Algorithm with
and without Using Artificial Neural Networks,”
World Journal of Science and Technology, vol. 1,
no. 12, pp. 1-12, 2011.

[26] Tanenbaum A., Computer Networks, Prentice-
Hall Publishing, 2006.

[27] Tonkes B., Blair A., Wiles J., “A Paradox of
Neural Encoders and Decoders or Why Don’t We
Talk Backwards?,” in Proceedings of the 2

nd

Asia-Pacific Conference on Simulated Evolution

and Learning, SEAL’98 Canberra, Australia, pp.
357-364, 1999.

[28] Tsai H., Cheng J., and Yu P., “Audio
Watermarking Based on HAS and Neural
Networks in DCT,” available at:
http://cse.hcmut.edu.vn/~minhnguyen/NET/Com
puter%20Networks%20-%20A%20Tanenbaum%
20-%205th%20edition.pdf, last visited 2003.

[29] Waibel Álexander., Hanazawa A., Hinton T.,
Geoffery E., Kiyohiro S., and Kevin L.,
“Phoneme Recognition using Time-Delay Neural
Networks,” IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 37, no. 3, pp.
328-339, 1989.

[30] Yu W. and Cao J., “Cryptography based on
Delayed Chaotic Neural Networks,” Physical

Letters Journal, vol. 356, no. 4-5, pp. 333-338
2006.

Qutaiba Ali received BSC and MSC
in Electrical Engineering in 1996 and
1999. He obtained PHD in computer
Engineering 1n 2006. Since 2000, he
joined Mosul University/Iraq as a
faculty member and still there. His
research interests include: Network

simulation and modeling, real time and embedded
systems. He published 4 international books and more
than 56 papers (some of them are in ISI indexed
journals) in his fields of interest. He participated (as
TPC) in more than 40 IEEE International conferences
and joined the editorial board of more than 15
international journals (IEEE, IET and Elsevier
Journals).

Shefa Dawwd received the BSc
degree in Electronic and
Communication Engineering, the
MSc and the PhD degree in
Computer Engineering in 1991,
2000, and 2006, respectively. He is
presently a faculty member

(Associated Professor) in the computer engineering
department/University of Mosul. His main research
interests include image and signal processing and their
hardware models, parallel computer architecture,
hardware implementation and GPU based systems. He
has authored more than 27 research papers. He has
been an editorial member of several national and
international journals.

