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Abstract: In this paper, a new light weight highly secured ciphering engine creation methodology we called On Demand 
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1. Introduction 

Data cryptography generally is the scrambling of the 
content of data, such as text, image, audio, video to 
make the data imperceptible during transmission or 
storage [26]. The major aim of cryptography is keeping 
data secure form illegal attackers [5]. In the 19th 

century, a well-known theory about the security 
principle of any encryption system has been proposed 
by Kirchhoff. This theory has become the most 
significant principle in designing a cryptosystem for 
researchers and engineers. Kirchhoff observed that the 
encryption algorithms are supposed to be known to the 
opponents [5]. Thus, the security of an encryption 
system should rely on the secrecy of the 
encryption/decryption key instead of the encryption 
algorithm itself. This concept was implemented in all 
known encryption algorithms, i.e., the algorithm 
construction is public while the key is kept secret and 
known only by the concerned parts [5, 26].  

2. Literature Review 

Security applications of Artificial Neural Network 
(ANN) is not a new topic and can be categorized into 
many sub-fields such as cryptanalysis, key-exchange, 
various ciphering systems, hash function, 
watermarking and Steganography.   

Neural cryptanalysis work was conducted by 
Pandey and Mishra [19], they proposed an algorithm 
that offers an approach to attack ciphering algorithm 
based on the principle that any function could be 
reproduced by ANN. Also, Alallayah et al. [1] 
suggested the adoption of ANN as an ideal tool for 
black box system identification. They developed a 
mathematical black box model to construct the Neuro-
Identifier.  

     
The work on neural key exchange and 

authentication is another research area. Kanter et al. 
[12] stated that the neural key-exchange protocol does 
not employ number theory but is based on a 
synchronization of Neural Networks (NN) by mutual 
learning [12]. The architecture used is a two-layered 
perceptron, exemplified by a parity machine with K 

hidden units. The secret information of each entity is 
the initial values for the weights which were secret. 
Each network is then trained with the output of its 
partner. The work was extended to multilayer 
networks, parity machines [13]. In the field of key 
authentication, Gomathi and Nasira [9] provided a 
survey of various biometric based authentication 
systems based on ANN. 

Many papers deal with the adoption of ANN in 
cryptographic systems. Shihab [22] suggested a 
decryption scheme and a public key creation based on 
a multi-layer NN that is trained by back-propagation 
learning algorithm. Yu and Cao [30], proposed an 
approach of encryption based on chaotic Hopfield 
ANN with time varying delay. Prabakaran et al. [20] 
proposed the Tree Parity Machines (TPM) in order to 
generate common secret key over the public channel 
where both sender and reception sides use ANN for 
cryptography purposes. Ali et al. [2], examined 
Artificial Spiking Neural Network (ASNN) which 
interconnects group of artificial neurons that used a 
mathematical model with the old block cipher. 
Dalkiran and Danisman [7] made use of ANN to model 
the dynamics of Chua’s circuit in order to overcome 
the disadvantages of chaotic systems. Mohamed [18] 
proposed a cryptosystem based on hybrid approaches 
to provide multi-security services while taking the 
advantage of ANN computation power to serve data 
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confidentiality. Long [16] proposed a stream cipher 
algorithm based on one-way function of ANN. Shukla 
and Tiwari [23] suggested the use of two ANNs in 
order to overcome public key computational demands, 
one of them is based on n-state sequential machine and 
the other is chaotic ANN. 

ANN was suggested to build Hash functions. 
Kulkami et al. [14] proposed an algorithm for one-way 
hash function construction based on a two Feed-
Forward Neural Networks (FFNN) along with the 
Piece-Wise Linear (PWL) chaotic map. Sumangala et 

al. [25] suggested an algorithm for one way hash 
function construction based on two layers feed forward 
ANN along with the PWL chaotic map.  

Other promising research fields of using ANN in 
security are watermarking and Steganography. Tsai et 

al. [28] proposed an intelligent audio watermarking 
method based on the characteristics of the HAS and the 
techniques of ANN in the DCT domain. Anitha et al. 
[3] developed a hybrid approach which comprises of 
ANN and S-DES encryption scheme which is used to 
detect the stago content in corporate mails.   

3. The Suggested Method 

In this paper, we suggest that both the ciphering engine 
and the key are both secret and created by the user 
when initiating his transmission, then the involved 
sides exchange these secrets. These secrets can be used 
in future communication attempts between the two 
parties or a new secrets is created every time a new 
session is initiated. However, this suggestion suffers 
from many problems and challenges when 
implemented using traditional methods. First, a 
complete ciphering engine (encryption and decryption 
sides) must be created according to user demands. 
Secondly, huge amount of data (which represent the 
ciphering engine code and the keys) must be 
transmitted between the two sides. Also, this method 
needs great deal of flexibility and synchronization 
between the two sides.  

In order to respond to the above challenges, we 
suggest the use of ANN as an essential tool to build the 
suggested On Demand Ciphering Engine (ODCE). A 
proposed ciphering engine design tool is used to create 
a custom made ciphering engine together with its keys 
according to user demand. Our method can be 
described as shown in Figure 1: 

1. The intended plaintext is prepared and entered into 
the ODCP. Then, the user takes his decision to 
design his own ciphering engine using either 
traditional ciphering methods or creates his new 
ciphering engine. 

2. If the user chooses the traditional ciphering option, 
he can choose between two sub-options: A 
traditional single ciphering method OR (for better 
security) a serial/parallel combination of different 
methods. To clarify the second choice, Figure 2 

shows an example of a new ciphering engine 
combined two ciphering methods (two 3DES and 
one AES with their keys) blocks connected together 
in a certain manner so that, the plaintext will go 
through more administrative and controlled 
scrambling process. In either case, the user must 
takes into accounts the ciphering parameters 
diversity among the different methods, such as 
block length, key length and its value. 

3. On the other hand, if the user choose to create his 
own cryptographic system, he can follow the second 
option in which he will design his own ciphering 
engine according to fiestel type block ciphering 
systems [26]. Manual and automatic creation of the 
intended ciphering engine is available to the user. 
Automatic option permits the program to suggest a 
new ciphering engine structure, key value, no. of 
rounds, scrambling functions for each round, s-box, 
p-box, key scheduling, etc., on the other hand, the 
user may use manual design and makes use of a 
drag and drop Graphical User Interface (GUI) to 
determines the structure of the ciphering engine, key 
value, no. of rounds, scrambling functioning for 
each round, s-box, p-box, key scheduling, …, etc., it 
is worthwhile to mention that modifying traditional 
ciphering methods lead to produce different cipher 
text, e.g., changing the no. of rounds of any block 
ciphering method creates a new ciphering method. 
The user may benefit from this consequence to 
produce new ciphering engines in a short time.   

4. The next step after any of the above steps is to 
generate the input/output relation table for both 
encryption and decryption sides. The generation 
process begins by giving a certain input plaintext 
value to the suggested ciphering engine then 
recording the output cipher text associated with this 
value. This procedure is repeated continuously so 
that, all the possible input/output pairs are included 
in the table. The time interval of this stage is 
determined mainly be the length of the input data 
block.     

5. The next step is to convert the different forms of 
ciphering engines into a unified circuit. We suggest 
that ANN could play this role, i.e., be trained to 
emulate the behavior of the designed ciphering 
engine. As seen later in the next section, the ANN 
structure, i.e., the number of neurons for input, 
hidden and output layers depends mainly on the 
length of the input data block and hence, there is a 
certain structure for each possible block length. The 
next step is to train this NN using the previously 
mentioned input/output relation table (and 
output/input relation table in the decryption case). 
Learning procedure will continue until error value 
becomes less than a certain threshold then the 
weights and biases for both encryption and 
decryption ANNs are stored and prepared to be sent 
to the other side.  
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6. The final step is to send the ODCE, i.e., ANN 
structure, weights and biases, to the other side using 
a secure channel. 
 

It is noted that although different ciphering 
engine structures could be obtained according to the 
user design, they are converted into a unified 
structured ANN. In this paper, we call this outcome 
as the Normalized Ciphering Engine (NCE). 

 

Figure 1. Flow chart of the suggested ODCE. 

 

Figure 2. Example of a new ciphering engine. 

There are several benefits obtained when adopting 
the NCE: 

1. The reduction in the amount of the transferred data 
(which represent the ciphering engine secrets). In 
other words, instead of sending variable file sizes 
(ciphering engine source code) resulted from 
designing different ciphering engines, the same 
circuit (the ANN) is used every time.    

2. Deterministic reserved resources in terms of the 
required transmission bandwidth, the allocated 
memory and CPU execution time for these tasks.  

3. Higher flexibility in designing different ciphering 
engines with great deal of ease. 

However, the adoption of ANN as the ultimate black 
box needs a special attention and care should be paid to 
prepare the ANN to undertake the cryptography tasks 
efficiently in a practical and visible fashion.  

4. NCE Design Issues 

ANNs provide a general, practical method for learning 
real-valued, discrete-valued and vector-valued 
functions from examples. NNs are composed of simple 
elements operating in parallel. These elements are 
inspired by biological nervous systems. As in nature, 
the connections between elements largely determine 
the network function. The NN can be trained to 
perform a particular function by adjusting the values of 
the connections (weights) between elements. NNs are 
trained, so that a particular input leads to a specific 
target output. The network is adjusted, based on a 
comparison of the output and the target, until the 
network output matches the target. Many such 
input/target pairs are needed to train a network. NNs 
have been trained to perform complex functions in 
various fields, including pattern recognition [8], 
identification [15], classification [4], speech [29] and 
control systems [10]. NNs can also be trained to solve 
problems that are difficult for conventional computers 
or human.  

The chosen type of ANN in this paper is the layered 
FFNN which are theoretical machines historically 
based on Rosenblatt’s perceptron model, in which 
there is a layer of input units whose only role is to feed 
input patterns into the rest of the network. Next, there 
are one or more intermediate layers of neurons 
evaluating the same kind of function of the weighted 
sum of inputs, which, in turn, send it forward to units 
in the following layer. One of the most general 
problems in multilayer NNs is to find the connection 
strengths and thresholds which transform several 
known input patterns into their corresponding output 
patterns according to a given interpretation of inputs 
and outputs. The typical approach is a progressive 
learning process based on the principle of back-
propagation, which leads to a solution by a lengthy 
relaxation search after a number of iterations large 
enough. Training continues on the training set until the 
error function reaches a certain minimum. If the 
minimum is set too high, the network might not be able 
to correctly classify a pattern. But if the minimum is 
set too low, the network will have difficulties in 
classifying noisy patterns [4, 10, 15]. Since, the crypto-
system proposed in this paper is considered as an 
encoder, therefore, the best choice to build such 
encoder it to use the FFNN. Other types of NNs such 
as recurrent NN or unsupervised networks are targeted 
to be used for different applications such as in control, 
data clustering and other domains that irrelevant to the 
field of our interests. 

Next, we will discuss some issues related to the 
adoption of ANN as the intended NCE. First of all, a 
new optimized design of ANN to serve as an encoder 
is presented. Secondly, we discuss the different 
approaches to choose the appropriate ANN size as a 
function of the input block length. Finally, we suggest 

Design Steps of 
Ciphering Engine 

Preparing  

Tables for ANN 

ANN Black box 
for Encryption 

Side 

ANN Black box 
for Decryption 

Side 
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a suitable value to represent individual data units in 
both hardware and software implementations. 

4.1. Encoder/Decoder Design Using ANN 

In order to implement our ODCE, NN must be used as 
an encoder, where a set of input pattern is to be 
associated to a set of desired patterns. Hence, each 
input pattern has only one associated output pattern. 
The binary encoder expects that either input or output 
patterns are binary values [17, 27]. The FFNN is used 
to model the encoder-decoder paradigm [1], where the 
input is first transformed into a typically lower-
dimensional space (encoder) and then expanded to 
reproduce the initial data (decoder). The output of the 
hidden layer nodes represents the encoding pattern 
while the output layer nodes reproduce the input 
pattern. Our goal is to minimize and optimize the size 
and complexity of the ANN and hence, its 
performance. Unlike all previous works, we proposed 
that all inputs, weights and outputs of ANN are real 
values. The idea behind that is illustrated using the 
following example: 

If it is required to map an 8bit input vector to an 8 
bit output vector using FFNN of three (input-hidden-
output) layers as shown in Figure 3-a. 

The ANN requires at least 8 hidden nodes (each has 
8 connection weights) with 8 biases and 8 output nodes 
(each has 8 connection weights) with 8 biases, to map 
each of the 28 input patterns to its associated encoded 
output patterns. The weights and biases of either 
hidden or output layers are real values. The training 
error is reduced to an amount that makes all training 
samples have separable targets. 
 

 
a) 8bit binary input. 

 
b) Two digits input. 

 
c) First and second layer node processing element for a and b. 

Figure 3. The FFNN. 

Our suggestion implies that the values of input that 
applied to ANN are represented by hexadecimal or 
decimal radix, rather than the binary radix see Figure 
3-b. For example, in an 8bits word length number, each 
digit is converted to its associated radix as shown in 
Table 1. 

Table 1. Binary to decimal conversion. 

8Bits Binary Number 2Digits Decimal Number 

0000bin 0000bin 0dec 0dec 
0000bin 0001bin 0dec 1dec 
0000bin 0010bin 0dec 2dec 

. . 
1001bin 0110bin 9dec 6dec 

. . 

. . 
1111bin 1111bin 15dec 15dec 

4.2. Size of Encrypt ANN and Decrypt ANN  

There is a number of theoretical results concerning the 
number of hidden layers in an ANN. Specifically, 
Hetcht-Nielsen [11] has shown that a network with two 
hidden layers can approximate any arbitrary nonlinear 
function and generate any complex decision region for 
classification problems. Later, Cybenko [6] showed 
that a single layer is enough to form a close 
approximation to any nonlinear decision boundary. 
(Furthermore, it was shown that one hidden layer is 
enough to approximate any continuous function with 
arbitrary accuracy-when the accuracy is determined by 
the number of nodes in the hidden layer; also, one 
hidden layer is enough to represent any Boolean 
function).  

According to Cybenko’s results, one hidden layer is 
used for either the encrypt ANN or the decrypt ANN. 
The number of nodes in the input, hidden, and output 
layers depends on two factors: The size of the input 
data block and the training performance that ensures 
classifying each plaintext code to its associated cipher 
text. The later factor can be realized by trial and error. 
Usually, one has to train different size networks and if 
they don’t yield an acceptable solution, then they are 
discarded. This procedure is repeated until an 
appropriate network is found. Formal experience has 
shown that using the smallest network which can learn 
the task, is better for both practical and theoretical 
reasons. Smaller networks require less memory to store 
the connection weights and can be implemented in 
hardware more easily and economically. Training a 
smaller network usually requires less computation 
because each iteration is less computationally 
expensive. Smaller networks also, have short 
propagation delays from their inputs to their outputs. 
This is very important during the testing phase of the 
network, where fast responses are usually required. 

As presented earlier, 8bits input data block requires 
2 inputs, 2 hidden nodes and 2 output nodes. Table 2 
below estimates the size of FFNN (either encrypt ANN 
or decrypt ANN) for different input data block sizes.  

The encryption key K depends on the size of 
weights and biases. Thus, from the table above, one 
can see that the size of K increases with the increment 
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in both block and network sizes. Since, each weight or 
biases can be represented with m bytes, then K size (in 
bytes) can be formulated as: 

               [ ( )] ]K = total  no. of  weights +biases × m                     

Table 2. ANN size for different input data block sizes.   

Input Block 

Size (Bit) 

No. of 

Associated 

Digits 

No. of  

Inputs (M) 

No. of  

Hidden 

Nodes(N) 

No. of  

Output 

Nodes (Q) 

Total No. of 

Weights 

=N(M+Q) 

Total No. of 

Biases 

=N+Q 

K(Bytes), 

M=2 

8 2 2 2 2 8 4 24 
12 3 3 3 3 18 6 48 
16 4 4 6 4 48 10 116 
36 9 9 16 9 288 25 626 
48 12 12 22 12 528 34 1124 
64 16 16 30 16 960 46 2012 
80 20 20 38 20 1520 58 1578 
96 24 24 46 24 2208 70 4556 

112 28 28 54 28 3024 82 6212 
128 32 32 62 32 3968 94 8124 

4.3. Data Representation 

Data representation accuracy depends on the selection 
of m and either that weights or biases are represented in 
fixed point or floating point. In general, NNs have low-
precision requirements, even though the exact 
specification is algorithmic and application dependent. 
Digital neuro-hardware can profit from this property 
by using fixed-point arithmetic with reduced precision 
which are less complex and less area consuming than 
floating-point arithmetic and helps to reduce system 
cost.  
    There are two parts in a fixed-point number, the 
integer part which is bws-1 to b4 and the other is the 
fractional part which is b3 to b0. If the base of this 
fixed-point number is β and it is a positive number, the 
decimal equivalent value can be calculated by: 

         
5 -1 -2 -3 -4

1 4 3 2 1 0, , ws-

ws-
v = b  β +  ... +b +b  β +b β  +b β  +b β  

Where ws is the precision. 
If the base of fixed-point number is 2, the value is 

determined by what kind of representation is used 
(generally 2’s complement is used). 

For example, In an 8bit input data block NCE as 
shown in Figure 3-b, the network parameters are 
shown in Table 3. The precision ws and the radix point 
should be selected to attain the largest and lowest bias 
or weight values: 100.6401 and -44.7387. 

Table 3. 8bit NCE network parameters. 

Parameter Real Value 
Fixed Point, Ws=32, Radix Point Between Bit23 and 

Bit24 

w11 -0.0011 11111111111111111000000000000000 
w12 0.0399 00000000000100000000000000000000 
w21 -0.0395 11111111111100000000000000000000 
w22 -0.0027 11111111111111110000000000000000 
b11 0.3037 00000000100000000000000000000000 
b12 -0.2795 11111111100000000000000000000000 
u11 6.8383 00000111000000000000000000000000 
u12 101.690 01100110000000000000000000000000 
u21 100.6401 01100101000000000000000000000000 
u22 2.8103 00000011000000000000000000000000 
b21 54.3852 00110110100000000000000000000000 
b22 -44.7387 11010011000000000000000000000000 

 
Using floating point representation requires at least 

32bit (4bytes) word length if, for example, IEEE 
standard 754-1985 format is used. In other words, m is 
fixed to 4bytes and K is a series of floating point 
numbers. Using this choice is preferable when the 

NCE is proposed to be implemented in software 
paradigm. The reason behind this is that a high 
precision representation, very large or very small 
numbers can be represented using scientific notation as 
follows:  

en = ± s ×b  

Where +/- the sign of the number, s the significant or 
mantissa, e the exponent and b the base. 

Here, we can represent numbers between -0.999× 
1099 and 0.999×1099 with a magnitude that ranges from 
0.100×10-99 to 0.999×1099 with only 5 digits and two 
signs. 

We can conclude that (m=4Bytes) is adequate for 
most software and hardware implementations of the 
intended NCE. 

5. Prototyping The Model 

This section deals with building a simple prototype 
model to demonstrate the ODCE main concepts as 
shown earlier in Figure 3. In the beginning we must 
determine the block length, which was set to (8bits). 
Then, we suggest the ciphering engine shown in Figure 
4, which is a combination of different keys Simplified 
AES (SAES) ciphering method.  

 
Figure 4. A proposed ciphering engine. 

For software implementation (using MATLAB 
package), the (256 values) input/output relation table 
were generated and used to train the ANN shown 
earlier in Figure 3-b). The training time was (1.1s) on a 
(2.4 GHz Core i5, 4 GBytes RAM) PC. The resulted 
ANN composed the parameters presented in Table 3. 
The above procedure was repeated for the decryption 
side, hence, the total training time is about (2s) after 
which we obtain an 48bytes (to be sent to the other 
side) which were sufficient to represent the weights 
and biases for both encryption and decryption sides of 
the suggested NCE.  

The tested NCE can also be implemented in 
hardware. In such a case, the floating point arithmetic 
computation of NN is more complex and area 
consuming than that achieved by fixed point 
computation. To achieve high precision weights and 
biases, the training is wholly implemented in software 
using floating point computations. After this and when 
weights and biases are fixed, neural hardware is used 
to model the NCE using fixed point computations. In 

(2)  

(1)  

(3)  
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Figure 5, the weight matrix presentation of a simple 
NN (four nodes with four connections weight each) is 
shown in the middle, while the left side shows the 
conventional presentation of the same network. The 
rectangle N in the mid part of Figure 5 denotes the 
activation function of the neuron. 

 
Figure 5. Hardware NN model: Conventional (left), weight matrix 
(middle), mapped neuron-parallel (right).  

The right side of Figure 5 represents the mapping of 
the NN into a hardware model. The system architecture 
that is used to implement each of the two layers for 
Encrypt ANN or Decrypt ANN is shown in Figure 6. 
The circle wij represents the computation of the 
synapse: yi=wij×xj+yi-1 where yi-1 is the result from the 
proceeding synapse. Each processing element PEi has 
an adder, a multiplier, an activation function and a 
local memory to store the node’s weights vector and 
biases. The area utilization bottleneck is in the 
activation function of the 1st layer where sigmoid 
nonlinear pattern is to be achieved. To overcome this 
constrain, the sigmoid function was substituted by a 
piecewise linear function. Afterward, one multiplier is 
required for each sigmoid as an approximation to the 
nonlinear original function. While the output layer 
activation function is linear (pure line function), 
therefore the function weighted sum input will be the 
activation function output. Xilinx Spartan-3E FPGA of 
500,000 gates is used as the implementation target. The 
intended 8bits NCE consumes 220 slices and 4 
embedded multipliers for encryption side as shown in 
Figure 3-b and the same area utilization is consumed 
for decryption side. The designed network can operate 
on a 135MHz maximum frequency. 

 
 
 

      

 

 

 

 

Figure 6. The complete architecture of the ciphering engine. 

6. Security Analysis and Performance 

Investigation 

In this section, we analyzed the security and the 
performance of the suggested ODCE. In this work, we 
did not focus on certain encryption algorithm, but 
instead, we suggest a new methodology to design, 
implement and distribute any ciphering engine. 
Traditional cryptanalysis techniques focus on the 
different methods taken by the attacker to discover the 
secret key used for encrypting the data [19] (as the 
encryption algorithm is known and public). However, 
the situation is different in our case in which both the 
encryption algorithm and its key are secret. Also, we 
suggest that encryption algorithm could be used for 
certain amount of time, then replaced by another secret 
algorithm according to user demands. Our primitive 
conclusion is that a traditional mathematical attack is 
not possible because the attacker does not have any 
referenced model (i.e., the ciphering engine) to be used 
for the calculation process (this claim will be proved in 
details in a forthcoming future paper). However, the 
attackers may take different ways focusing on 
discovering the internal structure on the ANN (e.g., 
number of layers) and the values of its weights and 
biases. This attack could be performed either by 
monitoring the traffic between the involved parties 
during ciphering engine distribution (handshaking) or 
measuring the electrical characteristics of the ANN 
hardware implementation.  

To solve the first problem, we can make use of the 
traditional secured key distribution methods, such as 
Diffie-Hellman protocol [26] or Key Distribution 
Center (KDC) [5], which can be modified to transfer 
the NCE data between the involved parties. Also, 
hardware implementation of the NCE must be 
resistible against different types on power analysis 
attacks using the known methods in this field [13].  
    In order to discover the practicability of the 
suggested method, we performed several experimental 
tests. We used two Corei5, 4GBytes RAM PCs 
connected together using a fast Ethernet switch. In the 
first experiment, we compared between traditional 
AES and an AES implemented in ANN (ANN AES) in 
order to measure their encryption and decryption 
delays to process a single 128bit block, as shown in 
Figure 7-a. It is obvious that ANN based AES proves 
its ability to outperform the speed of the traditional 
AES because less calculations are needed to perform 
its tasks. In the second experiment, we transferred 
encrypted files (with different lengths) between the 
two PCs using File Transfer Protocol (FTP), then 
measuring the total FTP delay. Again, we compared 
between the two AES versions as shown in Figure 7-b. 
In this experiment, ANN AES do better than traditional 
AES due to the less processing delay needed. In the 
last Experiment, we evaluate the efficiency of using 
ANN based ODCE (i.e., the NCE) to transfer the code 
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of the encryption algorithm itself. As mentioned 
before, in traditional ODCE we need to transfer the 
whole file containing the ciphering engine. However, 
the adoption of ANN ODCE eliminates the amount of 
transferred data to the weights and biases only which 
leads to the reduction of both file size and file transfer 
delay, as shown in Table 4.  
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Figure 7. Experimental test results. 

Table 4. ODCE code transfer delay. 
 

Block Size 

(Bit) 

Traditional ODCE ANN ODCE 

File Size of the 

C++ Code (Bytes) 
FTP Delay (Sec.) 

ANN Weights and 

Biases Size (Bytes) 
FTP Delay (Sec.) 

8(SAES) 15K 0.033 48 0.00024 
64(3DES) 200K 0.22 4K 0.0045 
128(AES) 100K 0.11 16K 0.018 

From the above results, it is obvious that ANN 
proves its usefulness and practicability when used as 
the NCE in implementing the suggested ODCE.  

7. ODCE Implementation Issues 

As known, practicability is an essential condition to 
ensure the success of any suggested system. This 
section presents our vision to the future 
implementation of the suggested ODCE and discuses 
some concerns as follows: 

1. The major challenge faces the current method is the 
long ANN training time. As shown earlier, 8bits 
input blocks takes about 2 seconds to achieve ANN 
training. When the input block and network sizes 
become larger, the training time overhead increases 
dramatically. For example, the training time for a 16 
bit block (216 values) input/output table consumes 
(187.85s) to achieve the same error accuracy which 
is equal to (0.0001). To speedup the training process 
of NNs, especially for very large training datasets, 
multithreaded and multicore CPUs with shared 
memory is used. The approach is to assign a part of 
the training dataset to each thread and process 
(train) them simultaneously. A training speedup of 

about 7x is achieved in [21] using 2 Quad-Core 
L5420 Intel CPUs (2.5GHz) with 8GByte RAM. 
Also, General Purpose Graphical Processing Unit 
(GPGPU) provided with massively multicore 
processors can be used for training. GPUs can be 
programmed using NVIDIAs CUDA C-language 
GPU programming environment. In [24], a 63x 
speedup is achieved using parallel training 
algorithm over sequential version when using a 
GPU type of the Tesla C1060 with 240 kernels and 
4GB of memory that installed in a desktop Intel 
Core2 Duo E6750 @ 2.66 GHz and 4GB RAM. 

2. In this paper, we suggest that the proposed ODCE 
could be realized by an online trusted center 
supplied with a high performance parallel 
processing servers (clusters) to perform the NN 
training. According to this suggestion, the user can 
(securely) access the web site of this ODCE center, 
making use of its resources to build his own 
ciphering engine (or making use of previously built 
ciphering engines by other users), performing a high 
speed NN training, then receiving the NN weights 
and biases which represent his new ciphering 
engine.  

3. The other benefit of adopting the online ODCE 
center is to facilitate the ciphering engine 
distribution and management operations. Our 
proposal is to let the ODCE center to perform 
ciphering engine distribution tasks in a similar 
fashion to that of the well known KDC. Firstly, we 
assume that each user establishes a shared secret 
key with the ODCE center. Then, the user sends a 
request to the ODCE center, stating that he needs a 
certain ciphering engine to be used for 
communication with another user. The ODCE 
center informs the other user about this request and 
the intended ciphering engine is distributed between 
them. This secret ciphering engine that is 
established with the ODCE center is used to 
authenticate both of them to the ODCE center and to 
prevent the attackers from impersonating either of 
them. 

4. Another important issue to be discussed is the 
handshaking procedure between the involved 
parties. In the conventional data exchanging 
operation, encryption method, key size and its value 
are distributed between the two sides. However, in 
the suggested ODCE, an additional data must be 
exchanged. These data includes NN structure (No. 
of input, hidden and output nodes) and the values of 
weights and biases. For example, for the ODCE 
shown later in Figure 3-b, these values are (2, 2, 2) 
for the NN structure and some values similar to 
those listed later in Table 3. For more security, these 
values can be sent after encrypting them using 
proper ciphering method. 

5. One of the advantages of adopting ODCE is its 
backward compatibility with the known security 
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methods in the different TCP/IP protocol suite 
layers, especially network layer (IPSec protocol) 
and transport layer (SSL/TLS protocols).  
 

8. Conclusions 

This paper suggests the ODCE. Many benefits could 
be obtained from adopting this system, in front of them 
is the augmentation in privacy due to cryptographic 
algorithms secrecy. One of the consequences when 
adopting this suggestion is the infinite number of 
ciphering system could be created according to user 
demands and hence, adding his personal touch to 
secure his data. We believe that the suggested ODCE 
will make the attackers’ task harder because new 
ciphering engines are created every time a secure 
transmission is initiated. We suggested ANN as the 
main building block in implementing ODCE in order 
create a unified-structure ciphering engine (we called 
normalized ciphering engine) for all encryption types 
and to reduce the amount of data to be transferred 
between the involved parties.    
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