
The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016 403

Efficient Parallel Compression and Decompression

for Large XML Files

Mohammad Ali and Minhaj Ahmad Khan

Department of Computer Science, Bahauddin Zakariya University, Pakistan

Abstract: eXtensible Markup Language (XML) is gaining popularity and is being used widely on internet for storing and

exchanging data. Large XML files when transferred on network create bottleneck and also degrade the query performance.

Therefore, efficient mechanisms of compression and decompression are applied to XML files. In this paper, an algorithm for

performing XML compression and decompression is suggested. The suggested approach reads an XML file, removes tags,

divides the XML file into different parts and then compresses each different part on a separate core for achieving efficiency.

We compare performance results of the proposed algorithm with parallel compression and decompression of XML files using

GZIP. The performance results show that the suggested algorithm performs 24%, 53% and 72% better than the parallel GZIP

compression and decompression on Intel Xeon, Intel core i7 and Intel core i3 based architectures respectively.

Keywords: XML, distributed computing, XML compression, GZIP, performance.

Received May 26, 2014; accepted January 27, 2015; published online August 22, 2015

1. Introduction

eXtensible Markup Language (XML) [4] started
almost one decade ago and was initially used by very
few people. After some time it started to gain
popularity, and nowadays it is being used everywhere
on internet for storing and exchanging data [5, 6, 12,
23]. XML has now become a common standard for
exchanging data of heterogeneous systems. Its
deployment exists in small as well as large groups and
organizations e.g., in banks, sports, chemical, business
reporting and healthcare etc.
With the increase in data of an organization, the size

of the XML files also increases. Since, XML files are
transferred on a network to provide compatibility
among several formats, the data traffic on the network
also increases. Consequently, a bottleneck is created
thereby degrading the performance of the network as
well as associated queries. A natural solution is to
compress and decompress XML files in order to be
transferred on the network. There are different
compression mechanisms such as GZIP [7], XMILL
[11], XGRIND [21] etc., however, these mechanisms
are not very efficient when working on text oriented
XML files.
In this paper, we suggest an algorithm for

performing efficient XML compression and
decompression. The suggested approach reads an XML
file, removes tags and divides the XML file into
different parts and then compresses each different part
on separate core for achieving efficiency. We compare
performance results of the proposed algorithm with
parallel compression and decompression of XML files
using GZIP.
The remaining part of this paper is organized as

follows: Section 2 describes XML compression. The
optimized algorithm is suggested in section 3. The

experimental setup and results are given in section 4,
and last section provides conclusion and future work.

2. XML Compression

Compression [17] is a process of reducing large
amount of data in to small size. There are different
categories of compression mechanisms including
lossless and lossy compression [3], symmetric and
asymmetric compression [2], statistical and pattern
model based compression [10] and adaptive and non-
adaptive [2] compression. By using compression, the
storage space is saved and data transfer rate improves
as well. In this regard, Run-Length Encoding (RLE),
Lempel-Ziv-Welch (LZW), fractal ART, JBIG,
Discrete Cosine Transform (DCT) and CCITT
(variation of Huffman encoding) are widely used
schemes of compression.
We know that in XML files same tags and attributes

are repeated again and again. Each data item has
starting and as well as ending tags. Because of this, the
size of file may increase many times. If this file is
transferred over network, performance will degrade.
Large XML file may create bottleneck on network and
may also degrade query performance thereby requiring
compression of XML documents.
Figure 1 shows XML document that contains

metadata with a total size of 177bytes. If the metadata
is excluded, the file size becomes 29bytes. It means
that original XML file size was almost six times larger
than that without metadata. Furthermore, an XML file
may contain lengthy tags and attributes that are
repeated many times. Consequently, the XML file size
increases, but the efficiency of transfer/processing
decreases. Therefore, the XML files must be
compressed.

 404 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

Figure 1. XML file.

The following algorithms are widely used while
compressing data.

2.1. LZ77

LZ77 [24] is a general purpose algorithm and is used in

different compression tools such as GZIP. LZ77 parses

the input string and finds same pattern. It checks each

symbol one by one and when the same symbol is

repeated, it finds out the longest duplicate substring.

2.2. Huffman Encoding

In Huffman encoding [9, 15] scheme, the symbol with

higher frequency is assigned short code and the symbol

with lower frequency is assigned a longer code. An

important thing is that, longer codes are constructed in

such a way that shorter codes do not use as prefixes. In

this coding, a Huffman tree is constructed, which is a

binary tree. In binary tree, left branch represents 0 and

the right branch represents 1.

2.3. Arithmetic Encoding

As in Huffman encoding, different number of bits are

used for different symbols. But arithmetic coding uses

a different approach [8, 15, 22]. It stores the output in a

single floating point number greater than or equal to 0

and less than 1. This scheme is much flexible than

Huffman encoding.

2.4. XML Compression Tools

The following existing tools are used for compressing
XML files.

2.4.1. GZIP

GZIP [7] is one of the most common and general

purpose tools used for compression and

decompression. It was developed by Gailly and Adler

[7]. It finds out the similar substrings in an XML file

and replaces them to reduce the size of the file. It is

good enough for those documents in which same

substring is used again and again. It is normally based

on DEFLATE algorithm, where DEFLATE uses LZ77

and Huffman encoding. Gzip has following advantages

[18]:

• It does not concentrate on document structure.
• It is a general purpose tool.
• Its compression rate may be up to 50%.

The main disadvantage of GZIP is that it does not

support semantic compression because it is a general

compression algorithm.

2.4.2. XMILL

XMILL [11] is an efficient lossless compressor for
compressing and XdeMILL is a decompress or for
decompressing XML documents. Comparatively its
compression rate is twice than GZIP with a small
overhead. For compression only XML file is used, that
is, DTD is not required. The most important reason for
popularity of XMILL is that it is extensible.

2.4.3. XGRIND

The limitation of XMILL is that it does not support
querying on compressed data. For query processing
complete decompression is required which is not
possible for limited resource devices such as handheld
devices. XGRIND [21] supports querying process on
compressed data. Consequently, the disks seek time
decreases and the efficiency improves.

3. Proposed Framework

It is well known that there are many limitations of
serial/sequential computation. It is not possible to get
too much efficiency with a single processor, and
therefore, multiple processing unit/cores are required.
For achieving efficiency during XML file
compression, this paper proposes an optimized
algorithm which makes use of multiple processing
units/cores. This algorithm reads an XML file,
removes tags and then divides extracted data into
different number of parts and sends each part on
different processor for compression. For parallelism,
we used MPJ Express [14, 19, 20], which is a library
implemented by the mpiJava1.2 API [13, 16] and
supports Single Program Multiple Data (SPMD) based
model. SPMD is a subset of Multiple Instruction
Multiple Data (MIMD) [1].

3.1. Optimized Algorithm for Compression

Algorithm 1 shows the steps required for compression
of XML files.

Algorithm 1: Optimized algorithm for compression.

1. Read XML file.
2. Remove tags.
3. Store extracted data in String form.

4. Divide String into n parts, {S1, S2, …, Sn}
5. // The code below executes for each processor P1, ..., Pn
6. If “Processor is P1 [MASTER]” then
7. Send substrings towards SLAVE Processors.
8. Else // Processors Pi i€{2, 3, …, n}

9. Receive substring Si.
10. Compress substring by GZIP
11. Store each Compressed substring in a separate file Fi. i€{1,

 2, 3, …, n-1}.

12. End If

The algorithm reads an XML file (step 1). In step 2, it
removes the tags, because tags are repeated again and
again and increase the file size. After this the extracted
data (without tags) is stored in string form in step 3. In
step 4, the string is divided into n parts where n is the
number of processors and is set by the programmer.

<?xml version=”1.0” encoding=”UTF-8”?>

<Address>

<HouseNo> 744 </HouseNo>

<StreetNo> 4 </StreetNo>

<Colony> Noor-ul-Islam </ Colony>

<City name=”Multan” />

</Address>

Efficient Parallel Compression and Decompression for Large XML Files 405

Subsequently parallel execution starts. If part is
executed only by “Master” processor which is
represented by P1. Moreover, the substrings are sent
towards “Slave” processors for parallel execution. In
contrast, the Else part is executed by all the slaves
simultaneously. Each slave receives substring Si from
the Master processor and compresses it. After
compression, each slave stores the compressed string
in a separate file Fi.

3.2. Optimized Algorithm for Decompression

Algorithm 2 shows the steps required for
decompression.

Algorithm 2: Optimized algorithm for decompression.

1. Read DTD file

2. Extract tags from DTD file.
3. Read compressed files Fi i€{1, 2, 3, …, n-1}.
4. Uncompress Fi to string Si i€{1, 2, 3, …, n-1}.
5. Sn� S1+S2…..+Sn-1

6. Merge Sn with extracted tags to generate original XML file.

Initially, the algorithm reads DTD file in step 1. In step
2, the algorithm extracts tags from DTD, because
compressed files are without tags. In steps 3 and 4,
compressed files are read and uncompressed to a string
form. Subsequently the strings are concatenated to
form a single string. In the last step, the algorithm
generates the original XML file.

4. Experimentation: Setup and Results

This section presents the configuration used for
experimentation and the results obtained after
executing the optimized algorithm in comparison with
the standard parallel execution of GZIP. We have used
different files of sizes 500KB, 1MB, 1.5MB, 2MB,
2.5MB, 3MB, 4MB and 5MB on three architectures
A1, A2 and A3 as given in Table 1.

Table 1. Architectures and their configurations used for
experimentation.

Archictecture (A1) Archictecture (A2) Archictecture (A3)

Intel Xeon® X5560, 64

bit, 12GB RAM

Intel Core i7- q720, 64-bit,

6GB RAM

Intel Core i3, 2.53 GHz, 64

bit, 2GB RAM

In the rest of the paper, we use the term “optimized

algorithm” to refer to the proposed algorithm and the
term “standard algorithm” to refer to the GZIP based
parallel compression and decompression. The
execution speed for all the results is measured in
seconds.

4.1. Performance Results for File Size=500KB

The performance results for a file of size 500KB are
given in Figure 2. As shown in the figure, the
optimized code performs better than the standard code
on all the three architectures A1, A2 and A3. There is
an improvement of 25%, 43% and 65% in performance
of the optimized code in comparison with the standard
code. Overall, there is an average improvement of 44%
for the file size 500KB.

 500KB

S
ec

0

5

10

15

20

25

30

35

40

45

A1 A2 A3

Optimized

Standard

Figure 2. Performance results of optimized algorithm on 500kb.

4.2. Performance Results for File Size=1MB

The performance results for a file of size 1MB are
given in Figure 3. As shown in the figure, the
optimized code performs better than the standard code
on all the three architectures A1, A2 and A3. There is
an improvement of 20%, 59% and 83% in performance
of the optimized code in comparison with the standard
code. Overall, there is an average improvement of 54%
for the file size 1MB.

 1MB

S
ec

0

20

40

60

80

100

120

140

A1 A2 A3

Optimized

Standard

Figure 3. Performance results of optimized algorithm on 1MB.

4.3. Performance Results for File Size=1.5MB

The performance results for a file of size 1.5MB are
given in Figure 4. As shown in the figure, the The
optimized code performs better than the standard code
on all the three architectures A1, A2 and A3. There is
an improvement of 10%, 60% and 64% in performance
of the optimized code in comparison with the standard
code. Overall, there is an average improvement of 45%
for the file size 1.5MB.

 1.5MB

S
ec

0

50

100

150

200

250

A1 A2 A3

Optimized

Standard

Figure 4. Performance results of optimized algorithm on 1.5MB.

4.4. Performance Results for File Size=2MB

The performance results for a file of size 2MB are
given in Figure 5. As shown in the figure, the
optimized code performs better than the standard code
on all the three architectures A1, A2 and A3. There is
an improvement of 17%, 54% and 73% in performance
of the optimized code in comparison with the standard
code. Overall, there is an average improvement of 36%
for the file size 2MB.

 2MB

S
ec

0

100

200

300

400

500

600

700

800

900

1000

A1 A2 A3

Optimized

Standard

Figure 5. Performance results of optimized algorithm on 2MB.

 406 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

4.5. Performance Results for File Size=2.5MB

The performance results for a file of size 2.5MB are

given in Figure 6. As shown in the figure, the

optimized code performs better than the standard code

on all the three architectures A1, A2 and A3. There is

an improvement of 32%, 58% and 70% in performance

of the optimized code in comparison with the standard

code. Overall, there is an average improvement of 53%

for the file size 2.5MB.

 2MB

S
ec

0

100

200

300

400

500

600

700

800

900

1000

A1 A2 A3

Optimized

Standard

Figure 6. Performance results of optimized algorithm on 2.5MB.

4.6. Performance Results for File Size=3MB

The performance results for a file of size 3MB are

given in Figure 7. As shown in the figure, the

optimized code performs better than the standard code

on all the three architectures A1, A2 and A3. There is

an improvement of 30%, 57% and 75% in performance

of the optimized code in comparison with the standard

code. Overall, there is an average improvement of 54%

for the file size 3MB.

 3MB

S
ec

0

200

400

600

800

1000

1200

1400

1600

1800

A1 A2 A3

Optimized

Standard

Figure 7. Performance results of optimized algorithm on 3MB.

4.7. Performance Results for File Size=4MB

The performance results for a file of size 4MB are

given in Figure 8. As shown in the figure, the

optimized code performs better than the standard code

on all the three architectures A1, A2 and A3. There is

an improvement of 32%, 57% and 76% in performance

of the optimized code in comparison with the standard

code. Overall, there is an average improvement of 55%

for the file size 4MB.

4MB

S
ec

0

1000

2000

3000

4000

5000

6000

7000

A1 A2 A3

Optimized

Standard

Figure 8. Performance results of optimized algorithm on 4MB.

4.8. Performance Results for File Size=5MB

The performance results for a file of size 5MB are

given in Figure 9. As shown in the figure, the

optimized code performs better than the standard code

on all the three architectures. There is an improvement

of 30%, 39% and 74% in performance of the optimized

code in comparison with the standard code. Overall,

there is an average improvement of 35% for the file

size 5MB.

 5MB

 S
ec

0

1000

2000

3000

4000

5000

6000

7000

A1 A2 A3

Optimized

Standard

Figure 9. Performance results of optimized algorithm on 5MB.

4.9. Performance Results on Architecture 1

Figure 10 shows the performance results of both the

optimized and the standard versions on architecture 1.

As shown in the figure, there is small improvement for

small file sizes. The improvement obtained by

optimized version increases with the increases in the

file size. Overall, there is an average improvement of

24% on architecture 1.

 A1

S
ec

0

50

100

150

200

250

300

500KB 1MB 1.5MB 2MB 2.5MB 3MB 4MB 5MB

Optimized

Standard

Figure 10. Performance results of optimized algorithm on A1.

4.10. Performance Results on Architecture 2

Figure 11 shows the performance results of both the

optimized and the standard versions on architecture 2.

As shown in the figure, there is small improvement for

small file sizes. The improvement obtained by

optimized version increases with the increases in the

file size. Overall, there is an average improvement of

53% on Architecture 2.

 A2

S
ec

0

100

200

300

400

500

600

700

800

900

500KB 1MB 1.5MB 2MB 2.5MB 3MB 4MB 5MB

Optimized

Standard

Figure 11. Performance results of optimized algorithm on A2.

4.11. Performance Results on Architecture 3

Figure 12 shows the performance results of both the
optimized and the standard versions on architecture 3.
As shown in the figure, there is small improvement for
small file sizes. The improvement obtained by
optimized version increases with the increases in the
file size. Overall, there is an average improvement of
72% on architecture 3.

Efficient Parallel Compression and Decompression for Large XML Files 407

 A3
S
ec

0

1000

2000

3000

4000

5000

6000

7000

500KB 1MB 1.5MB 2MB 2.5MB 3MB 4MB 5MB

Optimized

Standard

Figure 12. Performance results of optimized algorithm on A3.

5. Conclusions

This paper suggests an algorithm for performing XML
compression and decompression. The suggested
approach reads an XML file, removes tags, divides the
XML file into different parts and then compresses each
different part on separate core for achieving efficiency.
We compare the performance results of the optimized
algorithm with parallel compression and
decompression of XML files using GZIP. We have
uses files of sizes 500KB, 1MB, 1.5MB, 2MB, 2.5MB,
3MB, 4MB and 5MB on the Intel Xeon, Intel core i7
and Intel core i3 based architectures. The performance
results show that, on average, the suggested algorithm
performs 24%, 53% and 72% better than the parallel
GZIP compression and decompression on Intel Xeon,
Intel core i7 and Intel core i3 based architectures
respectively. Moreover, for files of sizes 500KB, 1MB,
1.5MB, 2MB, 2.5MB, 3MB, 4MB and 5MB, the
optimized algorithm is able to achieve an average
improvement of 44%, 54%, 45%, 36%, 53%, 54%,
55% and 35% respectively.
In future work, we shall target the XML

compression on heterogeneous systems simultaneously
using Remote Method Invocation (RMI).

Acknowledgement

This paper is based on the research work conducted
during MS Thesis at Bahauddin Zakariya University,
Multan, Pakistan.

References

[1] Barney B., “Introduction to Parallel Computing,”

available at: https://computing.llnl.gov/tutorials/

parallel_comp/, last visited 2013.
[2] Data Compression., available at: www.file

format.info/mirror/egff/ch09_01.htm, last visited

2014.

[3] Data Compression Algorithms, “Compression,”

available at: www.ccs.neu.edu/home/jn122/

oldsite/cshonor/jeff.html, last visited 2014.

[4] Eckstein R. and Casabianca M., XML Pocket

Reference, O’Reilly and Associates, 2001.

[5] Extensible Markup Language (XML) 1.0.,

available at: http://www.w3.org/TR/REC-xml,

last visited 2014.

[6] Fawcett J., Quin L., and Ayers D., Beginning

XML, John Wiley and Sons, 2012.

[7] Gailly J., and Adler M., “GZIP,” available at:

http://www.gzip.org, last visited 2014.

[8] Howard P. and Vitter J., “Analysis of Arithmetic

Coding for Data Compression,” in Proceedings

of the IEEE Data Compression Conference,

Snowbird, pp. 3-12, 1991.

[9] Huffman D., “A Method for Construction of

Minimum-Redundancy Codes,” Proceedings of

the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.

[10] Kuri A. and Galaviz J., “Pattern-Based Data
Compression,” in Proceedings of the 3

rd
Mexican

International Conference on Artificial

Intelligence, Mexico, pp. 1-10, 2004.

[11] Liefke H. and Suciu D., “XMill: An Efficient
Compressor for XML Data,” in Proceedings of

ACM SIGMOD International Conference on

Management of Data, pp. 153-164 2000.

[12] Lv T. and Yan P., “A Framework of
Summarizing XML Documents with Schemas,”

the International Arab Journal of Information

Technology, vol. 10, no. 1, pp. 18-27, 2013.

[13] MPI: A Message-Passing Interface Standard
Version 3.0., available at: http://www.mpi-

forum.org/docs/mpi-3.0/mpi30-report.pdf, last

visited 2013.

[14] MPJ Express., available at: http://www.mpj
express.org, last visited 2013.

[15] Nelson M., “Arithmetic Coding and Statistical
Modeling,” available at:

http://www.drdobbs.com/parallel/arithmetic-

coding-and-statistical-modeli/184408491, last

visited 1991.

[16] Pacheco P., Parallel Programming with MPI,
Morgan Kauffman Publishers, 1997.

[17] Salomon D., Data Compression, the Complete
Reference, Springer, 1997.

[18] Severson E. and Fife L., “XML Compression:
Optimizing Performance of XML Applications,”

Flatirons Solutions, 2003.

[19] Shafi A., Carpenter B., and Baker M., “Nested
parallelism for Multi-Core HPC Systems using

Java,” Journal of Parallel and Distributed

Computing, vol. 69, no. 6, pp. 532-545, 2009.

[20] Shafi A., Carpenter B., Baker M., and Hussain
A., “A Comparative Study of Java and C

Performance in Two Large Scale Parallel

Applications,” Concurrency and Computation:

Practice and Experience, vol. 21, no. 15, pp.

1882-1906, 2009.

[21] Tolani P. and Haritsa J., “XGrind: A Query-
Friendly XML Compressor,” in Proceedings of

the 18
th
 International Conference on Data

Engineering (ICDE), San Jose, pp. 225-234,

2002.

[22] Witten I., Neal R., and Cleary J., “Arithmetic
Coding for Data Compression,” Communications

of the ACM, vol. 30, no. 6, pp. 520-540, 1987.

[23] XML Tutorial., available at: www.w3schools.
com/xml/default.asp, last visited 2013.

 408 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

[24] Ziv J. and Lempel A., “A Universal Algorithm
for Sequential Data Compression,” IEEE

Transactions on Information Theory, vol. 23, no.

3, pp. 337-343, 1997.

Mohammad Ali has completed his

MS degree in Computer Science

from Bahauddin Zakariya

University, Multan. Currently, his

research interests include algorithms

and networks.

Minhaj Ahmad Khan completed

his MS and PhD degree from

University of Versailles, France. He

is currently working as Assistant

Professor at Bahauddin Zakariya

University, Multan. His research

interests include code optimization

and high performance computing.

