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1. Introduction 

The key distribution is one of the most important 
issues for providing secure group communication.  
Multicasting can be defined as the process of sending a 
message to selected group members [1, 24]. Many web 
based internet applications such as stock quotes, online 
games etc., can benefit from secure multicast 
communication. For example, consider a stock data 
distribution group, which distributes stock information 
to a group of users around the world. Only the 
authorized members who have subscribed to the 
service should get the stock data information. Member 
who joins newly to the group should receive stock 
information immediately, but should not receive the 
stock information that has been shared prior to member 
joining the group. Also, when the member leaves the 
group, they should not receive any further stock 
information. 

In most of these applications, members of the group 
typically receive identical information from a single or 
multiple senders. Hence, providing a common session 
encryption key to all the group members will reduce 
the number of message units to be encrypted by the 
senders. The group key should be changed frequently 
whenever member join or leave the system to achieve a 
high level of security by means of re-key operation [4, 
5, 6, 9, 22, 23]. The secrecy should be maintained such 
that a former group member has no access to the 
current communication and a new member has no 
access to previous communications. 

Message confidentiality and message authentication 

becomes a major problem in secure multicast [8, 10, 

17, 18, 27]. In order to solve this problem a symmetric 

key, which is a secret group key must be distributed to 

all the multicast group members.  

 
These members will have the authority to access the 

multicast data using the group key. Moreover, there are 

many protocols that have been proposed to solve the 

problem of group key distribution. These protocols can 

be classified into three categories. Centralized, 

decentralized and distributed key management 

approaches [3, 5, 6, 16, 22, 23, 27]: 

• Centralized Approach: A single entity is employed 

for controlling the entire group and hence a group 

key management protocol seeks to minimize storage 

requirements, computational power on both client 

and server sides and bandwidth utilization.  

• Decentralized Approach: The management of a 

large group is divided among subgroup managers, 

trying to minimize the problem of concentrating the 

work in a single place. 

• Distributed Approach: There is no explicit entity 

like Key Generation Center (KGC) and the 

members themselves do the key generation. All 

members can perform access control and the 

generation of the key can be either contributory, 

meaning that all member contribute some 

information to generate the group key, or done by 

one the members.  

In this paper, we propose a new protocol to efficiently 
manage a shared group key among group members. 
The key can be used to encrypt the transmitted data for 
group communication confidentiality. The proposed 
key management protocol relies on a distributed and 
decentralized key server that coordinates protocol runs 
to distribute the group key to group members securely. 
In this protocol, we divide the entire group into several 
subgroups. The complexity for member join or 
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member leave is reduced from O(n) to O(m) and 
further each sub group is organized in a hierarchical 
manner as in the LKH protocol and thus subgroup 
complexity is reduced from O(m) to O(log m). The 
group key is shared only to the Intermediate Controller 
(IC). The members belongs to the particular subgroup 
must know the subgroup key to decrypt the data. The 
subgroup key is obtained using member secrets and 
server secrets assigned to each group member and also 
the inverse value of the member secret helps us to 
manage the subgroup key when there is a member 
leave operation. Each member in the group will have to 
store the inverse value of other group members except 
his own secret value. Whenever member leaves the 
group, the KGC server just sends the identity of the 
member to other subgroup members.  

The centralized approaches [11, 16, 23, 26] are 

based on the concept of LKH protocol where a Key 

Distribution Center (KDC) or Key distribution unit 

maintains a key tree. The Group Controller (GC) acts 

as a root and shares a group key with other group 

members and each member know the keys from its leaf 

to the root. For example, consider a hierarchical tree 

with the known set of keys {K2, 1, K1, 1, K1} for u1 

where K1 represents the group key. In order to, 

maintain the backward secrecy, if u8 joins the group as 

shown in Figure 1. The keys {K2, 4, K1, 2, K1} has to be 

changed into
2, 4 1, 2 1

{ , , }
' ' '

K K K . The KGC server encrypts 

the new key with that of the old key and sends the 

multicast message as:{
2, 4 2, 4 1, 2 1, 2 1 1

{ } ,{ } ,{ }
' ' ' ' ' '

K K K K K K,.u7 can 

obtain 
2,4

'
K  by decrypting the first part of the message 

using K2, 4.u5, u6 and u7 can obtain 
1, 2

'
K  by decrypting 

the second part using K1, 2 and members from u1 to u7 

can obtain 
1

'
K  by decrypting the third part using KG, 

and the message sent by uncast is: 
2, 4 1

{ , , }1, 2
' ''

K K K K8.u8 

can easily obtain the new keys by decrypting the 

message using K8. Similarly, if u8 leaves the group as 

shown in Figure 2, the key server has to change 

2, 4 1, 2 1
{ , , }

' ' '
K K K  to maintain forward secrecy. Since, the 

leaving member knows the old group key and the old 

intermediate keys, the changes has to be made with all 

group members by KGC server. In the decentralized 

approaches [1, 10, 15, 17, 18, 19, 21, 27] the entire 

group is divided into small subgroups. In order to 

overcome the single point of failure problem by 

centralized approaches, different controller acts as a 

intermediate server to manage each subgroup. 

 
Figure 1. Member (u8) joins communication system. 

 
Figure 2. Member (u8) leaves communication system. 

If the failure occurs in one IC will not affect the 

entire group. Mitrra proposed Iolus [15], which is a 

framework with hierarchical agents that helps to divide 

the entire group into different subgroups. Group 

Security Agent (GSA) maintains the subgroup 

member. The individual group key has been used in 

this approach such that if there is any changes in one 

subgroup will not affect the other subgroup.  

In [12] the principle used is secure session key 

management with key recovery function. Most of the 

distributed protocol approach is based on the DH key 

agreement protocol. More works of this approach can 

be found in [2, 7, 14, 20, 25]. The DH exchange is 

used to establish a symmetric key between two entities. 

However, DH approach suffers from the scalability 

problem as it can generate session only for two entities. 

The remaining paper is organized as follows. Section 2 

explores the proposed work and the implementation 

details. Section 3 analyzes and discusses the results 

obtained from the work. Section 4 concludes the 

proposed and implemented work and suggested some 

possible enhancements.  

2. The Proposed Work 

Based on the above survey in this secure multicast 

communication, it is necessary to propose a new model 

to solve the identified issues. The main objective is to 

establish a symmetric key between all group members 

in order to provide the security in group 

communication. In case of a change occurs in the 

group membership by joining or leaving the group, the 

group key should be updated to maintain backward 

secrecy and forward secrecy.  

The proposed protocol is based on the idea of 

splitting up the entire group into small and several 

subgroups. Our protocol is based on Iolus and LKH 

protocol. The decomposition of subgroups reduces the 

complexity for a member join or leave from O(n) to 

O(m), where n represents the number of member in the 

entire group and m represents the number of members 

in the subgroup. Each subgroup is further divided into 

hierarchical tree structure which is based on LKH 

protocol that reduces the complexity of member join or 

leave from O(m) to O(log m). The proposed protocol 

works in a hierarchy of two level controllers; the first 

is the GC and the second is the IC. The GC shares the 

group key with IC’s to transmit the data in a secure 

manner to their subgroup members. Each IC works as 

the server for their subgroup.  

K’1 

K1, 1 K’1,2 

K2, 1 K2, 2 K2, 3 K’2, 4 

U1 U2 U3 U4 U5 U6 U7 

K1 K2 K3 K4 K5 K6 K7 

K1 

K1, 1 K1, 2 

K2, 1 K2 ,2 K2, 3 K2, 4 

U1 U2 

K1 K2 K3 K4 K5 K6 K7 K8 

U2 U2 U2 U2 U2 U2 
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The hierarchical structure for the subgroup in 

the protocol is shown in Figures 3 and 4. KSG1 

represents the key for the subgroup 1. The 

following assumptions are made for our proposed 

protocol. They are: 

• ICs are trustable entities. 

• ICs are static entities means they can only join the 

group but they cannot leave the group. 

• Members are organized in a hierarchy of a binary 

tree to enhance the key distribution at leave 

operation. 

• The total number of subgroups is n, the height of 

each subgroup is h, so each subgroup contains 

m=2h users. 

• In each subgroup, the balance of the key distribution 

is considered for grouping operation.   

• When a new member joins the group, the GC is 

responsible for allocating new member in a 

appropriate subgroup. GC will search for an empty 

place in all subgroups, if it does not find any empty 

places in the subgroup, then a new subgroup is 

created to allocate the new member. 

 
Figure 3. Structure of subgroup hierarchy. 

 

Figure 4. Proposed subgroup hierarchy. 

From Figure 3, we can notice that the number of the 

subgroup members is m=8 and the height h=log28= 3: 

• u1 and u2 agree on the node key K1, 2. u3 and u4 agree 

on the node key K3, 4. u5 and u6 agree on the node 

key K5,6. u7 and u8 agree on the node key K7, 8.  

•  u1, u2 and u3, u4 agree on the node key K1, 4. u5, u6 

and u7, u8 agree on the node key K5,8. 

• u1, u2, u3, u4 and u5, u6, u7, u8 agree on the sub-group 

key KG. 

In the proposed protocol, the group key is known only 

by the ICs. The ICs shares the symmetric key with the 

members in the subgroup and this shared group key 

becomes the subgroup key. The main work of the ICs 

is to decrypt the data coming to their subgroups using 

that group key and then re-encrypt the data by their 

subgroup keys. The re-encrypted data is sent to their 

associated subgroup members by multicast. There is no 

need for a group member to know the group key 

instead they can know only the subgroup key to 

decrypt the data. The operations of our proposed 

protocol are explained as follows: 

2.1. Key Structure 

In this system, each user Ui is required to share a 

random secret value Si and also a permanent secret id 

Pi is assigned for each member Ui in the subgroup. 

Using those secrets the subgroup key for the group 

members is calculated by Equations 1 and 2. 

Mj=((P1⊕ S1)*(P2⊕ S2), ...,* (Pn⊕ Sn))+Kj for j= 1, 2, ..., n    (1) 
 

     KSG1= M1 mod (Pi⊕  Si) for all i  (2) 

Where Mj is the message of the subgroup which is used 

to calculate the subgroup key and Kj is the secret key 

for that subgroup. The node keys are constructed by 

multiplying the components of its two child node keys 

in the logical key tree. This algorithm for rekeying can 

be illustrated using a simple example of a multicast 

subgroup of seven members:  

• Member’s u1 and u2 own keys K1 and K2 

respectively, node keys K1, 2 and K1, 4, and the 

subgroup key KSG1. 

• Members u3 and u4 own keys K3 and K4 

respectively, node keys K3, 4 and K1, 4, and the group 

key KSG1. 

• Members u5 and u6 own keys K5 and K6 

respectively, node keys K5, 6 and K5,7, and the group 

key KSG1. 

• Member u7 own keys K7, the node key K5, 7 and the 

group key KG. The keys are calculated as follows: 

a. Level 1: 

K1= M1 mod (P1⊕  S1) 

K2= M1 mod (P2⊕  S2) 

K3= M1 mod (P3⊕  S3) 

K4= M1 mod (P4⊕  S4) 

K5= M1 mod (P5⊕  S5) 

K6= M1 mod (P6⊕  S6) 

K7= M1 mod (P7⊕  S7) 

b. Level 2: 

K1, 2= M1 mod (P1⊕  S1) (P2⊕  S2) 

K3, 4= M1 mod (P3⊕  S3) (P4⊕  S4) 

K5, 6= M1 mod (P5⊕  S5) (P6⊕  S6) 

c. Level 3: 

K1, 4= M1 mod(P1⊕  S1) (P2⊕  S2)(P3⊕  S3) (P4⊕  S4) 

K5, 6= M1 mod (P5⊕  S5) (P6⊕  S6) (P7⊕  S7) 

When the GC receives the partial keys from its two 

child node keys he puts his secret value K and 

generates the subgroup key KSG1 using Equation 3 and 

multicasts that key to all subgroup members. 

KSG 

K1, 4 K5, 8 

K1, 2 K3, 4 K5, 6 K7, 8 

K1 K2 K3 K4 K5 K6 K7 K8 

 Node 

KSG 

K1, 4 K5, 8 

K1, 2 K3, 4 K5, 6 K7, 8 

U1 U2 U3 U4 U5 U6 U7 U8 

Group members 

Root 

  Group 
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         KSG1= M1 mod (Pi⊕ Si) for all i= 1, 2, 3, ..., n        (3) 

2.2. IC Join 

In the case of IC join, suppose that a ICn+1 wants to join 

the group, the new group key has to be distributed to 

the new IC i.e., group key is changed from K(G) into 

K’(G). The GC distribute the new group key to the 

existing IC by broadcasting the message as;  

{K’(G)}K(G), {K’(G)}K(GC, ICn+1), where K’(G) is 

the new group key, K(G) is the old group key and 

K(GC, ICn+1) is the symmetric key shared between the 

GC and the new IC. To obtain the new group key, the 

existing ICs will decrypt the first part of the message 

using the old group key and the newly joined IC 

decrypts the second part of the message using the 

symmetric key shared with him. Therefore, once a new 

IC joined, only there is a update of the group key in 

ICs, it will not affect other group members. The GC is 

responsible for two key encryptions; one for the old 

ICs and the other for the new IC. Suppose for example, 

a sender wants to send a message to subgroup number 

1. The sender encrypts his message {M} by using a key 

KM and that key is also encrypted by using the group 

key KG. The sender sends the following message to the 

IC1: {M}KM,{KM}KG. When the IC1 received that 

message he uses the group key (KG) to decrypt the 

second part of the message and get the KM which he 

uses to decrypt the first part of the message to get the 

origin message and then encrypts it using the 

subgroup1 key (KIC1) and multicast the ciphered 

message to his subgroup members. 

2.3. Member Join 

Whenever member wants to join a group, he sends a 

“join” request to the KGC server which acts as a GC. 

The GC will direct the new member to the specified 

group. The IC of that subgroup takes the join request 

from the GC and to maintain the backward secrecy of 

that particular subgroup changes are made. Suppose for 

example, u8 wants to join the group, he sends a “join” 

request to the GC. The GC will search for the correct 

subgroup in our case subgroup 1 (SG1) and direct the 

new member to SG1. The subgroup hierarchy when 

member joins is shown in Figure 5. The following 

operations are performed by SG1. 
 

• Creates a new node key K7, 8. K7 becomes its left 

child and the key of the new member K8 becomes its 

right child. 

• Assigns a identity P8 value to the new member and 

its inverse value P8
-1

 is calculated. This inverse 

value is multicast to all the existing subgroup 

members.  

• The subgroup key is changed to maintain the 

backward secrecy. 

• When a new member join or leave then the path 

keys are updated. 

• The new group key and the inverse values of the 

existing members are distributed to the newly joined 

member via unicast. 

• The group key and the inverse value of the new 

member is distributed to all subgroup members via 

multicast. 

 

 

Figure 5. Subgroup 1 hierarchy when u8 joins. 

The IC1 sends the following message to the 

members in his subgroup:  

{K'
SG1, (P8⊕  S8)

-1} KSG1, {K5, 8} K5, 7, {K7, 8}K7, {K
'
SG1, K5, 8, K7, 8, 

(P1⊕  S1)
-1, (P2⊕  S2)

-1, ..., (P7⊕  S7)
-1}K8 

To obtain the new subgroup key K
'
SG1 and to obtain the 

inverse value of the new member secret first part of the 

message is decrypted using the old group key KSG1. 

The members u5, u6 and u7 will able to obtain the new 

node key K5, 8 by decrypting the second part of the 

message using the old node key K5, 7 and obtains the 

node key K7, 8 by decrypting the third part of the 

message. u8 obtain his path keys and the inverse values 

of the other member’s secrets by decrypting the last 

part of the message. 

                          K7, 8 = M1 mod (P7⊕  S7) (P8⊕ S8)   

K5,8= M1 mod (P5⊕ S5) (P6⊕ S6) (P7⊕ S7) (P8⊕ S8) 

K'
SG1= M

'
1mod (P1⊕ S1)*(P2⊕ S2), ...,*(P8⊕ S8)) + K

'
1
 

2.4. Member Leave 

When a member of the subgroup wants to leave, he 

sends a “leave” request to the IC of his subgroup. The 

IC sends the identity of the member who is leaving the 

group. Also, the IC sends the keys which should be 

updated to the remaining subgroup members. When the 

subgroup members receive the message from IC1, they 

will use the inverse value of the member who leaves 

the group to update the keys. Suppose for example, if 

u8 wants to leave the subgroup SG1, the keys KSG1, K5, 

8, K7, 8 should be updated to maintain forward secrecy. 

According to our protocol, there is no need to send the 

updated keys to the remaining members. Instead, the 

IC1 just prepares one message for indicating u8 leaves 

and the keys must be updated. The IC1 sends the 

message {u8, K
'
SG1}K

'
SG1, {K5, 8}K5, 8. In this message 

the keys in the message are encrypted using the same 

keys. By seeing this type of message, the remaining 

members identify that there is a leave operation and the 

leaving member identity is 8. They use the inverse 

value of u8(P8⊕  S8)
-1

 to update the sent keys. 

K’SG 

K1,4 K’5,8 

K1,2 K3,4 K5,6 K’7,8 

K1 K2 K3 K4 K5 K6 K7 K8 
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3. Protocol Analysis 

We analyse and compare the performance of the 

proposed protocol with that of Iolus and LKH based 

protocol. The following assumptions are made for 

analyzing the join and leave operation of the above 

mentioned protocols: 

• The total number of each subgroup members is m 

members. Therefore, the total number of the entire 

group is n=number of subgroups N×m members. 

• The height h of the proposed protocol is log2 m, i.e., 

the total number of group members in each 

subgroup is equal to m=2
h
.  

  

The Proposed work is implemented in java with a 

minimum group size of 16 and maximum group size of 

4096. Based on the implementation results are 

obtained. 

3.1. Key Generation 

Key generation overhead is defined as the number of 

keys generated for the member join and leave takes 

place by the key server and a member node.  

From Table 1, it is observed that for LKH protocol 

the complexity for generating the session when a new 

member joins is log2 n and this is to maintain the 

backward secrecy. Also when the member leaves the 

group the keys are generated with the complexity of 

log2 n [13]. Similarly, it is observed for Iolus protocol 

that the complexity for generating the group key while 

join and leave operation is totally 2 keys. Since the 

Iolus protocol is based on Decentralized approach i.e. 

new member joins the IC instead of GC, the subgroup 

key generated is 1 for join and 1 for leave. The 

generated subgroup key is distributed to all subgroup 

members [16]. In our proposed protocol, it is noticed 

that the complexity for generation of subgroup keys 

when member join in the subgroup is log2 m along 

with the session key and the secret value of the joining 

member. Whenever there is a leave operation, the IC 

will not generate any keys. Instead the identity of the 

leaving member is multicast to the entire subgroup 

members. Figures 6 and 7 shows the key generation for 

join and leave operation with different group size. 

Table 1. Key generation for join and leave operation. 

Protocols Key Server Member Nodes 

 Join Leave Join Leave 

LKH O(log2 n) O(log2 n) 0 0 

Iolus O(1) O(1) 0 0 

Proposed Protocol O(log2 m) 0 0 0 
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Figure 6. Number of key generation at key server for join. 
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Figure 7. Number of key generation at key server for leave. 

By analyzing the complexity of LKH, Iolus and our 

protocol, the key generation overhead is reduced in our 

protocol compared to LKH protocol. In LKH the key 

server generates log2 n keys whereas our protocol 

generates log2 m keys. 

3.2. Encryption/Decryption 

Encryption/Decryption overhead can be defined as the 

number of encryptions at the key server and the 

number of decryptions for a member node.  

In the LKH protocol, whenever member joins a 

group, the root key server performs 3log2n encryptions 

and for member leave, the key server performs 2log2n 

encryptions. Similarly, for member join and leave 

operation, each member in the LKH protocol makes 

log2 n decryptions [14]. In the Iolus protocol, the key 

server makes two encryptions at a member join 

operation. At a member leave, the key server performs 

m-1 encryptions. Whenever there is members join and 

leave operations, each member in this protocol 

performs only one decryption [15]. The proposed 

protocol is entirely different from the LKH protocol in 

the number of encryptions. It uses a one-way function 

tree, the key server makes one encryption per node but 

in the LKH protocol it makes two encryptions. During 

a join operation, the key server must update the path 

keys of the member who joins the subgroup.  

The key server encrypts the new keys by its 

corresponding old keys. Since, each subgroup of m 

members is organized in a hierarchical tree, the key 

server makes log2m encryptions. In order to obtain the 

new keys, the key server update its path keys encrypted 

by its individual key and send it to the joining member 

such that the key server makes other log2m encryptions 

for the joining member. So, the overall encryption 

performed by the key server at the join operation is 

equal to 2log2m. When a member leaves a subgroup, 

the key server must update the path keys of the leaving 

member so it performs log2m encryptions. When the 

(4)

(5)

(6)
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members of a subgroup receive the encrypted log2m 

keys from the key server, each member makes log2m 

decryptions in a member join operations, but it doesn’t 

make any decryptions at a member leave operation as 

it only factors the leaving member’s secret value from 

the necessary keys by using the inverse value of the 

leaving member.  

Table 2 shows time complexity of encryption 

/decryption overhead at key server and number of 

decryptions at a member node at both join and leave 

operations. The proposed protocol has the smallest 

number of encryptions and decryptions at the key 

server and member nodes respectively at the leave 

operation as shown from Table 2. 

Table 2. Encryption/Decryption for join and leave operation. 

Protocols Join Leave 

LKH O(log2 n) O(log2 n) 

Iolus O(1) O(m) 

Proposed  Protocol O(log2 m) O(1) 

 

From Figures 8 and 9, it is observed that proposed 

protocol is more efficient when it is compared with 

LKH protocol in terms of encryption/ decryption of 

messages. 
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Figure 8. Encryption at the key server for join. 
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Figure 9. Decryption at the member node for join. 

3.3. Multicast Message  

Message size can be defined as the number of keys 

included in one multicast message. Table 3 shows the 

message size for join and leave operation. 

Table 3. Message size for join and leave operation. 

Protocol Join Leave 

LKH O(log2 n) O(log2 n) 

Iolus O(1) O(m) 

Proposed  Protocol O(log2 m) O(1) 

 

From the analysis of LKH protocol, whenever the 

member join the total number of keys to be multicast is 

2log2 n-1 keys and for member leave the message size 

to be multicast is 2log2 n keys. While in Iolus protocol, 

for member join the multicast message includes only 2 

keys and for leave it include m-1 keys [16]. In the 

proposed protocol, the message contains 2log2m+1 

keys at a join operation and new path keys of the 

joining member and the inverse value of the joining 

member is all encrypted by the old subgroup key. At a 

leave operation, the sub GC sends a multicast message 

including only the identity of the leaving member to all 

the subgroup members. Figure 10 shows the number of 

message sizes at the join operation with respect to 

group size. 
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Figure 10. Multicast message sizes for member join 

3.4. Storage Complexity   

Storage Complexity can be defined as the number of 

keys stored in the key server and by the member node. 

Table 4 shows the storage complexity at key server and 

at member node. 

Table 4. Storage complexity. 

Protocols Key Server Member Node 

LKH O(n) O(log2 n) 

Iolus O(m) O(1) 

Proposed  Protocol O(m) O(m) 

 

In LKH protocol, the total number of keys that will 

be stored is 2n based on the d-ary protocol using the 

formula [d/d-1]n where n is the number of group 

members. Each member has to store its path keys from 

itself to the root node along with the session key. So, 

each member has to store log2 n+1 key [14]. While in 

Iolus protocol, it requires an m individual key that has 

to be stored by key server and by the member node. In 

the proposed protocol, the key storage in the key server 

is the sum of 2m-1 node keys, m inverse values of the 

group member secret. So, the key server stores 3m 

keys. Each member has to stores its path keys log2m 

and m-1 inverse values of the group member secret. 

So, each member stores m+log2m-1.  

4. Experimental Setup 

The experimental setup consists of group of 10 

members. Members 1, 2, ..., 10 has the permanent 

prime id (Prime) as, P1=55837, P2=55603, P3=35353, 

P4=54709, P5=60799, P6=45953, P7=40847, 

P8=39461, P9=42709, P10=58909 respectively along 

with the  group key K=22971. Moreover, the secret key 

shared by the users are S1=28931, S2=37123, 

S3=12347, S4=13745, S5=16231, S6=31234, 

S7=21467, S8=25431, S9=17237, S10=21719. 

By applying Equation 1 Message is generated by 

KGC and the generated messages are M=551311 
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57819910041417986790291061886647009280000 

along with the group key K=22971 is manipulated 

according to Equation 1 and then it is broadcasted to 

all the ten members in the hierarchical group. At level1 

k1 is computed as M%(P1⊕ S1). i.e., K1= 

55131157819910041417986790291061886647009302

971% (55387⊕ 28931). The value obtained from the 

above calculated results in the original key value which 

is 22971. Similarly all the other members in the group 

calculate their keys by doing M%(Pi⊕ Si), i=2, 3, ..., 

10. At level-2 k1,2 is computed as M%(P1⊕ S1) (P2⊕

S2). i.e., K1, 2= 

551311578199100414179867902910618866470093 

02971% (55387⊕ 28931)(55603⊕ 37123).  

The value obtained from the calculated results in the 

original value which is 22971. Similarly all the other 

member of pair K3, 4, K5, 6 etc., are calculated. 

We have taken K (Key) sizes as 64,128, 512, 

1024bits and the value of S (prime) has been taken has 

64, 128, 512 and 1024bits. When a non-group member 

mk attempts to compute the group key with a value 

Pk=43651, Sk=45079 and the above message M. The 

member mk will not able to calculate the key. i.e., M% 

(Pk⊕ Sk)=551311578199100414179867902910618664 

7009302971%(43651⊕ 45079)=2559≠22971≠K. 

5. Conclusions 

In this paper, we proposed an efficient and a scalable 

protocol for secure group communication to solve the 

issues such us message size, storage complexity, and 

other overheads in distributing the symmetric key 

among the group members. The decomposition of this 

technique reduces the complexity for a member join 

and leave from O(n) to O(log2 m), where n represents 

the entire group member and m represent the subgroup 

members. The performance of the proposed protocol is 

compared with that of the LKH protocol and Iolus 

protocol. The comparison is undertaken according to 

the complexity for key generation, multicast message 

size, storage complexity overhead and based on 

encryption/decryption overhead. The results show that 

the proposed protocol enhances the group performance 

in terms computation overhead specifically at the time 

of member leave operation. The main drawback in this 

approach is that whenever there is a member join or 

leave operation a inverse value is calculated which is 

distributed to all the subgroup members. Hence, when 

the number of subgroup members increased the storage 

of messages in each member node increase as well as 

there is a need to store the inverse value of other 

members in the group. Hence, the storage complexity 

in each member node increases. Further works in this 

direction could be implemented and applied in cloud 

environment. This approach will reduce the storage 

complexity and increase the scalability and the system 

performance. 
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