
566 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

Hierarchical Based Group Key Transfer for Secure

Group Communication

Kanimozhi Sakthivel
1
, Velumadhava Rajasekaran

2
, Selvamani Kadirvelu

2
, Kannan Arputharaj

1

1
Department of Information Science and Technology, Anna University, India

2
Department of Computer Science and Engineering, Anna University, India

Abstract: In this research paper, a scalable and efficient multicast secure protocol for large and dynamic systems that relies

on trusted Key Generation Center (KGC) is proposed. In this protocol, we partition the entire group into several subgroups

which is controlled by Intermediate Controller (IC). Our protocol is based on Iolus protocol and the hierarchical structure of

LKH protocol. The decomposition of subgroup is organized in an hierarchical manner as it is in the LKH protocol which helps

us to reduce the complexity for a member to join or leave from O(n) to O(log m), where n represents the number of entire

group members and m represents the number of each subgroup members. Out protocol performance is compared with that of

Iolus and LKH protocol. The performance is enhanced especially when there is a member leave operation.

Keywords: Group communication, decentralized protocols, distributed protocols, logical key hierarchy and secure multicast.

Received April 6, 2012; accepted March 13, 2013; published online October 29, 2015

1. Introduction

The key distribution is one of the most important
issues for providing secure group communication.
Multicasting can be defined as the process of sending a
message to selected group members [1, 24]. Many web
based internet applications such as stock quotes, online
games etc., can benefit from secure multicast
communication. For example, consider a stock data
distribution group, which distributes stock information
to a group of users around the world. Only the
authorized members who have subscribed to the
service should get the stock data information. Member
who joins newly to the group should receive stock
information immediately, but should not receive the
stock information that has been shared prior to member
joining the group. Also, when the member leaves the
group, they should not receive any further stock
information.

In most of these applications, members of the group
typically receive identical information from a single or
multiple senders. Hence, providing a common session
encryption key to all the group members will reduce
the number of message units to be encrypted by the
senders. The group key should be changed frequently
whenever member join or leave the system to achieve a
high level of security by means of re-key operation [4,
5, 6, 9, 22, 23]. The secrecy should be maintained such
that a former group member has no access to the
current communication and a new member has no
access to previous communications.

Message confidentiality and message authentication

becomes a major problem in secure multicast [8, 10,

17, 18, 27]. In order to solve this problem a symmetric

key, which is a secret group key must be distributed to

all the multicast group members.

These members will have the authority to access the

multicast data using the group key. Moreover, there are

many protocols that have been proposed to solve the

problem of group key distribution. These protocols can

be classified into three categories. Centralized,

decentralized and distributed key management

approaches [3, 5, 6, 16, 22, 23, 27]:

• Centralized Approach: A single entity is employed

for controlling the entire group and hence a group

key management protocol seeks to minimize storage

requirements, computational power on both client

and server sides and bandwidth utilization.

• Decentralized Approach: The management of a

large group is divided among subgroup managers,

trying to minimize the problem of concentrating the

work in a single place.

• Distributed Approach: There is no explicit entity

like Key Generation Center (KGC) and the

members themselves do the key generation. All

members can perform access control and the

generation of the key can be either contributory,

meaning that all member contribute some

information to generate the group key, or done by

one the members.

In this paper, we propose a new protocol to efficiently
manage a shared group key among group members.
The key can be used to encrypt the transmitted data for
group communication confidentiality. The proposed
key management protocol relies on a distributed and
decentralized key server that coordinates protocol runs
to distribute the group key to group members securely.
In this protocol, we divide the entire group into several
subgroups. The complexity for member join or

Hierarchical Based Group Key Transfer for Secure Group Communication 567

member leave is reduced from O(n) to O(m) and
further each sub group is organized in a hierarchical
manner as in the LKH protocol and thus subgroup
complexity is reduced from O(m) to O(log m). The
group key is shared only to the Intermediate Controller
(IC). The members belongs to the particular subgroup
must know the subgroup key to decrypt the data. The
subgroup key is obtained using member secrets and
server secrets assigned to each group member and also
the inverse value of the member secret helps us to
manage the subgroup key when there is a member
leave operation. Each member in the group will have to
store the inverse value of other group members except
his own secret value. Whenever member leaves the
group, the KGC server just sends the identity of the
member to other subgroup members.

The centralized approaches [11, 16, 23, 26] are

based on the concept of LKH protocol where a Key

Distribution Center (KDC) or Key distribution unit

maintains a key tree. The Group Controller (GC) acts

as a root and shares a group key with other group

members and each member know the keys from its leaf

to the root. For example, consider a hierarchical tree

with the known set of keys {K2, 1, K1, 1, K1} for u1

where K1 represents the group key. In order to,

maintain the backward secrecy, if u8 joins the group as

shown in Figure 1. The keys {K2, 4, K1, 2, K1} has to be

changed into
2, 4 1, 2 1

{ , , }
' ' '

K K K . The KGC server encrypts

the new key with that of the old key and sends the

multicast message as:{
2, 4 2, 4 1, 2 1, 2 1 1

{ } ,{ } ,{ }
' ' ' ' ' '

K K K K K K,.u7 can

obtain
2,4

'
K by decrypting the first part of the message

using K2, 4.u5, u6 and u7 can obtain
1, 2

'
K by decrypting

the second part using K1, 2 and members from u1 to u7

can obtain
1

'
K by decrypting the third part using KG,

and the message sent by uncast is:
2, 4 1

{ , , }1, 2
' ''

K K K K8.u8

can easily obtain the new keys by decrypting the

message using K8. Similarly, if u8 leaves the group as

shown in Figure 2, the key server has to change

2, 4 1, 2 1
{ , , }

' ' '
K K K to maintain forward secrecy. Since, the

leaving member knows the old group key and the old

intermediate keys, the changes has to be made with all

group members by KGC server. In the decentralized

approaches [1, 10, 15, 17, 18, 19, 21, 27] the entire

group is divided into small subgroups. In order to

overcome the single point of failure problem by

centralized approaches, different controller acts as a

intermediate server to manage each subgroup.

Figure 1. Member (u8) joins communication system.

Figure 2. Member (u8) leaves communication system.

If the failure occurs in one IC will not affect the

entire group. Mitrra proposed Iolus [15], which is a

framework with hierarchical agents that helps to divide

the entire group into different subgroups. Group

Security Agent (GSA) maintains the subgroup

member. The individual group key has been used in

this approach such that if there is any changes in one

subgroup will not affect the other subgroup.

In [12] the principle used is secure session key

management with key recovery function. Most of the

distributed protocol approach is based on the DH key

agreement protocol. More works of this approach can

be found in [2, 7, 14, 20, 25]. The DH exchange is

used to establish a symmetric key between two entities.

However, DH approach suffers from the scalability

problem as it can generate session only for two entities.

The remaining paper is organized as follows. Section 2

explores the proposed work and the implementation

details. Section 3 analyzes and discusses the results

obtained from the work. Section 4 concludes the

proposed and implemented work and suggested some

possible enhancements.

2. The Proposed Work

Based on the above survey in this secure multicast

communication, it is necessary to propose a new model

to solve the identified issues. The main objective is to

establish a symmetric key between all group members

in order to provide the security in group

communication. In case of a change occurs in the

group membership by joining or leaving the group, the

group key should be updated to maintain backward

secrecy and forward secrecy.

The proposed protocol is based on the idea of

splitting up the entire group into small and several

subgroups. Our protocol is based on Iolus and LKH

protocol. The decomposition of subgroups reduces the

complexity for a member join or leave from O(n) to

O(m), where n represents the number of member in the

entire group and m represents the number of members

in the subgroup. Each subgroup is further divided into

hierarchical tree structure which is based on LKH

protocol that reduces the complexity of member join or

leave from O(m) to O(log m). The proposed protocol

works in a hierarchy of two level controllers; the first

is the GC and the second is the IC. The GC shares the

group key with IC’s to transmit the data in a secure

manner to their subgroup members. Each IC works as

the server for their subgroup.

K’1

K1, 1 K’1,2

K2, 1 K2, 2 K2, 3 K’2, 4

U1 U2 U3 U4 U5 U6 U7

K1 K2 K3 K4 K5 K6 K7

K1

K1, 1 K1, 2

K2, 1 K2 ,2 K2, 3 K2, 4

U1 U2

K1 K2 K3 K4 K5 K6 K7 K8

U2 U2 U2 U2 U2 U2

568 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

The hierarchical structure for the subgroup in

the protocol is shown in Figures 3 and 4. KSG1

represents the key for the subgroup 1. The

following assumptions are made for our proposed

protocol. They are:

• ICs are trustable entities.

• ICs are static entities means they can only join the

group but they cannot leave the group.

• Members are organized in a hierarchy of a binary

tree to enhance the key distribution at leave

operation.

• The total number of subgroups is n, the height of

each subgroup is h, so each subgroup contains

m=2h users.

• In each subgroup, the balance of the key distribution

is considered for grouping operation.

• When a new member joins the group, the GC is

responsible for allocating new member in a

appropriate subgroup. GC will search for an empty

place in all subgroups, if it does not find any empty

places in the subgroup, then a new subgroup is

created to allocate the new member.

Figure 3. Structure of subgroup hierarchy.

Figure 4. Proposed subgroup hierarchy.

From Figure 3, we can notice that the number of the

subgroup members is m=8 and the height h=log28= 3:

• u1 and u2 agree on the node key K1, 2. u3 and u4 agree

on the node key K3, 4. u5 and u6 agree on the node

key K5,6. u7 and u8 agree on the node key K7, 8.

• u1, u2 and u3, u4 agree on the node key K1, 4. u5, u6

and u7, u8 agree on the node key K5,8.

• u1, u2, u3, u4 and u5, u6, u7, u8 agree on the sub-group

key KG.

In the proposed protocol, the group key is known only

by the ICs. The ICs shares the symmetric key with the

members in the subgroup and this shared group key

becomes the subgroup key. The main work of the ICs

is to decrypt the data coming to their subgroups using

that group key and then re-encrypt the data by their

subgroup keys. The re-encrypted data is sent to their

associated subgroup members by multicast. There is no

need for a group member to know the group key

instead they can know only the subgroup key to

decrypt the data. The operations of our proposed

protocol are explained as follows:

2.1. Key Structure

In this system, each user Ui is required to share a

random secret value Si and also a permanent secret id

Pi is assigned for each member Ui in the subgroup.

Using those secrets the subgroup key for the group

members is calculated by Equations 1 and 2.

Mj=((P1⊕ S1)*(P2⊕ S2), ...,* (Pn⊕ Sn))+Kj for j= 1, 2, ..., n (1)

 KSG1= M1 mod (Pi⊕ Si) for all i (2)

Where Mj is the message of the subgroup which is used

to calculate the subgroup key and Kj is the secret key

for that subgroup. The node keys are constructed by

multiplying the components of its two child node keys

in the logical key tree. This algorithm for rekeying can

be illustrated using a simple example of a multicast

subgroup of seven members:

• Member’s u1 and u2 own keys K1 and K2

respectively, node keys K1, 2 and K1, 4, and the

subgroup key KSG1.

• Members u3 and u4 own keys K3 and K4

respectively, node keys K3, 4 and K1, 4, and the group

key KSG1.

• Members u5 and u6 own keys K5 and K6

respectively, node keys K5, 6 and K5,7, and the group

key KSG1.

• Member u7 own keys K7, the node key K5, 7 and the

group key KG. The keys are calculated as follows:

a. Level 1:

K1= M1 mod (P1⊕ S1)

K2= M1 mod (P2⊕ S2)

K3= M1 mod (P3⊕ S3)

K4= M1 mod (P4⊕ S4)

K5= M1 mod (P5⊕ S5)

K6= M1 mod (P6⊕ S6)

K7= M1 mod (P7⊕ S7)

b. Level 2:

K1, 2= M1 mod (P1⊕ S1) (P2⊕ S2)

K3, 4= M1 mod (P3⊕ S3) (P4⊕ S4)

K5, 6= M1 mod (P5⊕ S5) (P6⊕ S6)

c. Level 3:

K1, 4= M1 mod(P1⊕ S1) (P2⊕ S2)(P3⊕ S3) (P4⊕ S4)

K5, 6= M1 mod (P5⊕ S5) (P6⊕ S6) (P7⊕ S7)

When the GC receives the partial keys from its two

child node keys he puts his secret value K and

generates the subgroup key KSG1 using Equation 3 and

multicasts that key to all subgroup members.

KSG

K1, 4 K5, 8

K1, 2 K3, 4 K5, 6 K7, 8

K1 K2 K3 K4 K5 K6 K7 K8

 Node

KSG

K1, 4 K5, 8

K1, 2 K3, 4 K5, 6 K7, 8

U1 U2 U3 U4 U5 U6 U7 U8

Group members

Root

 Group

Hierarchical Based Group Key Transfer for Secure Group Communication 569

 KSG1= M1 mod (Pi⊕ Si) for all i= 1, 2, 3, ..., n (3)

2.2. IC Join

In the case of IC join, suppose that a ICn+1 wants to join

the group, the new group key has to be distributed to

the new IC i.e., group key is changed from K(G) into

K’(G). The GC distribute the new group key to the

existing IC by broadcasting the message as;

{K’(G)}K(G), {K’(G)}K(GC, ICn+1), where K’(G) is

the new group key, K(G) is the old group key and

K(GC, ICn+1) is the symmetric key shared between the

GC and the new IC. To obtain the new group key, the

existing ICs will decrypt the first part of the message

using the old group key and the newly joined IC

decrypts the second part of the message using the

symmetric key shared with him. Therefore, once a new

IC joined, only there is a update of the group key in

ICs, it will not affect other group members. The GC is

responsible for two key encryptions; one for the old

ICs and the other for the new IC. Suppose for example,

a sender wants to send a message to subgroup number

1. The sender encrypts his message {M} by using a key

KM and that key is also encrypted by using the group

key KG. The sender sends the following message to the

IC1: {M}KM,{KM}KG. When the IC1 received that

message he uses the group key (KG) to decrypt the

second part of the message and get the KM which he

uses to decrypt the first part of the message to get the

origin message and then encrypts it using the

subgroup1 key (KIC1) and multicast the ciphered

message to his subgroup members.

2.3. Member Join

Whenever member wants to join a group, he sends a

“join” request to the KGC server which acts as a GC.

The GC will direct the new member to the specified

group. The IC of that subgroup takes the join request

from the GC and to maintain the backward secrecy of

that particular subgroup changes are made. Suppose for

example, u8 wants to join the group, he sends a “join”

request to the GC. The GC will search for the correct

subgroup in our case subgroup 1 (SG1) and direct the

new member to SG1. The subgroup hierarchy when

member joins is shown in Figure 5. The following

operations are performed by SG1.

• Creates a new node key K7, 8. K7 becomes its left

child and the key of the new member K8 becomes its

right child.

• Assigns a identity P8 value to the new member and

its inverse value P8
-1

 is calculated. This inverse

value is multicast to all the existing subgroup

members.

• The subgroup key is changed to maintain the

backward secrecy.

• When a new member join or leave then the path

keys are updated.

• The new group key and the inverse values of the

existing members are distributed to the newly joined

member via unicast.

• The group key and the inverse value of the new

member is distributed to all subgroup members via

multicast.

Figure 5. Subgroup 1 hierarchy when u8 joins.

The IC1 sends the following message to the

members in his subgroup:

{K'
SG1, (P8⊕ S8)

-1} KSG1, {K5, 8} K5, 7, {K7, 8}K7, {K
'
SG1, K5, 8, K7, 8,

(P1⊕ S1)
-1, (P2⊕ S2)

-1, ..., (P7⊕ S7)
-1}K8

To obtain the new subgroup key K
'
SG1 and to obtain the

inverse value of the new member secret first part of the

message is decrypted using the old group key KSG1.

The members u5, u6 and u7 will able to obtain the new

node key K5, 8 by decrypting the second part of the

message using the old node key K5, 7 and obtains the

node key K7, 8 by decrypting the third part of the

message. u8 obtain his path keys and the inverse values

of the other member’s secrets by decrypting the last

part of the message.

 K7, 8 = M1 mod (P7⊕ S7) (P8⊕ S8)

K5,8= M1 mod (P5⊕ S5) (P6⊕ S6) (P7⊕ S7) (P8⊕ S8)

K'
SG1= M

'
1mod (P1⊕ S1)*(P2⊕ S2), ...,*(P8⊕ S8)) + K

'
1

2.4. Member Leave

When a member of the subgroup wants to leave, he

sends a “leave” request to the IC of his subgroup. The

IC sends the identity of the member who is leaving the

group. Also, the IC sends the keys which should be

updated to the remaining subgroup members. When the

subgroup members receive the message from IC1, they

will use the inverse value of the member who leaves

the group to update the keys. Suppose for example, if

u8 wants to leave the subgroup SG1, the keys KSG1, K5,

8, K7, 8 should be updated to maintain forward secrecy.

According to our protocol, there is no need to send the

updated keys to the remaining members. Instead, the

IC1 just prepares one message for indicating u8 leaves

and the keys must be updated. The IC1 sends the

message {u8, K
'
SG1}K

'
SG1, {K5, 8}K5, 8. In this message

the keys in the message are encrypted using the same

keys. By seeing this type of message, the remaining

members identify that there is a leave operation and the

leaving member identity is 8. They use the inverse

value of u8(P8⊕ S8)
-1

 to update the sent keys.

K’SG

K1,4 K’5,8

K1,2 K3,4 K5,6 K’7,8

K1 K2 K3 K4 K5 K6 K7 K8

570 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

’’ *
1 1 2 2 1 1

* ’
1 1

 * , (() () ())

(() (

...,

, ...,))

j j

j j n n

M P S P S P S

P S P S K

− −

+ +

=

+

⊕ ⊕ ⊕

⊕ ⊕

'

’’
1

() 1, 2, ..., 7
SG i i

K M mod P S for i =⊕=

'

’’
5, 8 5 6 6 7 7

() () () 5K M mod P S P S P S⊕ ⊕ ⊕=)

3. Protocol Analysis

We analyse and compare the performance of the

proposed protocol with that of Iolus and LKH based

protocol. The following assumptions are made for

analyzing the join and leave operation of the above

mentioned protocols:

• The total number of each subgroup members is m

members. Therefore, the total number of the entire

group is n=number of subgroups N×m members.

• The height h of the proposed protocol is log2 m, i.e.,

the total number of group members in each

subgroup is equal to m=2
h
.

The Proposed work is implemented in java with a

minimum group size of 16 and maximum group size of

4096. Based on the implementation results are

obtained.

3.1. Key Generation

Key generation overhead is defined as the number of

keys generated for the member join and leave takes

place by the key server and a member node.

From Table 1, it is observed that for LKH protocol

the complexity for generating the session when a new

member joins is log2 n and this is to maintain the

backward secrecy. Also when the member leaves the

group the keys are generated with the complexity of

log2 n [13]. Similarly, it is observed for Iolus protocol

that the complexity for generating the group key while

join and leave operation is totally 2 keys. Since the

Iolus protocol is based on Decentralized approach i.e.

new member joins the IC instead of GC, the subgroup

key generated is 1 for join and 1 for leave. The

generated subgroup key is distributed to all subgroup

members [16]. In our proposed protocol, it is noticed

that the complexity for generation of subgroup keys

when member join in the subgroup is log2 m along

with the session key and the secret value of the joining

member. Whenever there is a leave operation, the IC

will not generate any keys. Instead the identity of the

leaving member is multicast to the entire subgroup

members. Figures 6 and 7 shows the key generation for

join and leave operation with different group size.

Table 1. Key generation for join and leave operation.

Protocols Key Server Member Nodes

 Join Leave Join Leave

LKH O(log2 n) O(log2 n) 0 0

Iolus O(1) O(1) 0 0

Proposed Protocol O(log2 m) 0 0 0

K
ey

 G
en

er
at

io
n
 a

t
th

e
K

ey

 S
er

v
er

 Group size

Figure 6. Number of key generation at key server for join.

K
ey

 G
en

er
at

io
n
 a

t
th

e
K

ey

 S
er

v
er

 Group size

Figure 7. Number of key generation at key server for leave.

By analyzing the complexity of LKH, Iolus and our

protocol, the key generation overhead is reduced in our

protocol compared to LKH protocol. In LKH the key

server generates log2 n keys whereas our protocol

generates log2 m keys.

3.2. Encryption/Decryption

Encryption/Decryption overhead can be defined as the

number of encryptions at the key server and the

number of decryptions for a member node.

In the LKH protocol, whenever member joins a

group, the root key server performs 3log2n encryptions

and for member leave, the key server performs 2log2n

encryptions. Similarly, for member join and leave

operation, each member in the LKH protocol makes

log2 n decryptions [14]. In the Iolus protocol, the key

server makes two encryptions at a member join

operation. At a member leave, the key server performs

m-1 encryptions. Whenever there is members join and

leave operations, each member in this protocol

performs only one decryption [15]. The proposed

protocol is entirely different from the LKH protocol in

the number of encryptions. It uses a one-way function

tree, the key server makes one encryption per node but

in the LKH protocol it makes two encryptions. During

a join operation, the key server must update the path

keys of the member who joins the subgroup.

The key server encrypts the new keys by its

corresponding old keys. Since, each subgroup of m

members is organized in a hierarchical tree, the key

server makes log2m encryptions. In order to obtain the

new keys, the key server update its path keys encrypted

by its individual key and send it to the joining member

such that the key server makes other log2m encryptions

for the joining member. So, the overall encryption

performed by the key server at the join operation is

equal to 2log2m. When a member leaves a subgroup,

the key server must update the path keys of the leaving

member so it performs log2m encryptions. When the

(4)

(5)

(6)

Hierarchical Based Group Key Transfer for Secure Group Communication 571

members of a subgroup receive the encrypted log2m

keys from the key server, each member makes log2m

decryptions in a member join operations, but it doesn’t

make any decryptions at a member leave operation as

it only factors the leaving member’s secret value from

the necessary keys by using the inverse value of the

leaving member.

Table 2 shows time complexity of encryption

/decryption overhead at key server and number of

decryptions at a member node at both join and leave

operations. The proposed protocol has the smallest

number of encryptions and decryptions at the key

server and member nodes respectively at the leave

operation as shown from Table 2.

Table 2. Encryption/Decryption for join and leave operation.

Protocols Join Leave

LKH O(log2 n) O(log2 n)

Iolus O(1) O(m)

Proposed Protocol O(log2 m) O(1)

From Figures 8 and 9, it is observed that proposed

protocol is more efficient when it is compared with

LKH protocol in terms of encryption/ decryption of

messages.

N
u
m

b
er

 o
f

 E
n
c
ry

p
ti

o
n

at
 K

ey
 S

er
v
er

 16 64 256 1024 4096

 Group Size

Figure 8. Encryption at the key server for join.

N
u
m

b
er

 o
f

 E
n
c
ry

p
ti

o
n
 a

t

K
ey

 S
er

v
er

 Group size

Figure 9. Decryption at the member node for join.

3.3. Multicast Message

Message size can be defined as the number of keys

included in one multicast message. Table 3 shows the

message size for join and leave operation.

Table 3. Message size for join and leave operation.

Protocol Join Leave

LKH O(log2 n) O(log2 n)

Iolus O(1) O(m)

Proposed Protocol O(log2 m) O(1)

From the analysis of LKH protocol, whenever the

member join the total number of keys to be multicast is

2log2 n-1 keys and for member leave the message size

to be multicast is 2log2 n keys. While in Iolus protocol,

for member join the multicast message includes only 2

keys and for leave it include m-1 keys [16]. In the

proposed protocol, the message contains 2log2m+1

keys at a join operation and new path keys of the

joining member and the inverse value of the joining

member is all encrypted by the old subgroup key. At a

leave operation, the sub GC sends a multicast message

including only the identity of the leaving member to all

the subgroup members. Figure 10 shows the number of

message sizes at the join operation with respect to

group size.

M
es

sa
g
e

S
iz

e
at

 t
h
e

jo
in

 O
p

er
at

io
n

 16 64 256 1024 4096

 Group Size

Figure 10. Multicast message sizes for member join

3.4. Storage Complexity

Storage Complexity can be defined as the number of

keys stored in the key server and by the member node.

Table 4 shows the storage complexity at key server and

at member node.

Table 4. Storage complexity.

Protocols Key Server Member Node

LKH O(n) O(log2 n)

Iolus O(m) O(1)

Proposed Protocol O(m) O(m)

In LKH protocol, the total number of keys that will

be stored is 2n based on the d-ary protocol using the

formula [d/d-1]n where n is the number of group

members. Each member has to store its path keys from

itself to the root node along with the session key. So,

each member has to store log2 n+1 key [14]. While in

Iolus protocol, it requires an m individual key that has

to be stored by key server and by the member node. In

the proposed protocol, the key storage in the key server

is the sum of 2m-1 node keys, m inverse values of the

group member secret. So, the key server stores 3m

keys. Each member has to stores its path keys log2m

and m-1 inverse values of the group member secret.

So, each member stores m+log2m-1.

4. Experimental Setup

The experimental setup consists of group of 10

members. Members 1, 2, ..., 10 has the permanent

prime id (Prime) as, P1=55837, P2=55603, P3=35353,

P4=54709, P5=60799, P6=45953, P7=40847,

P8=39461, P9=42709, P10=58909 respectively along

with the group key K=22971. Moreover, the secret key

shared by the users are S1=28931, S2=37123,

S3=12347, S4=13745, S5=16231, S6=31234,

S7=21467, S8=25431, S9=17237, S10=21719.

By applying Equation 1 Message is generated by

KGC and the generated messages are M=551311

572 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

57819910041417986790291061886647009280000

along with the group key K=22971 is manipulated

according to Equation 1 and then it is broadcasted to

all the ten members in the hierarchical group. At level1

k1 is computed as M%(P1⊕ S1). i.e., K1=

55131157819910041417986790291061886647009302

971% (55387⊕ 28931). The value obtained from the

above calculated results in the original key value which

is 22971. Similarly all the other members in the group

calculate their keys by doing M%(Pi⊕ Si), i=2, 3, ...,

10. At level-2 k1,2 is computed as M%(P1⊕ S1) (P2⊕

S2). i.e., K1, 2=

551311578199100414179867902910618866470093

02971% (55387⊕ 28931)(55603⊕ 37123).

The value obtained from the calculated results in the

original value which is 22971. Similarly all the other

member of pair K3, 4, K5, 6 etc., are calculated.

We have taken K (Key) sizes as 64,128, 512,

1024bits and the value of S (prime) has been taken has

64, 128, 512 and 1024bits. When a non-group member

mk attempts to compute the group key with a value

Pk=43651, Sk=45079 and the above message M. The

member mk will not able to calculate the key. i.e., M%

(Pk⊕ Sk)=551311578199100414179867902910618664

7009302971%(43651⊕ 45079)=2559≠22971≠K.

5. Conclusions

In this paper, we proposed an efficient and a scalable

protocol for secure group communication to solve the

issues such us message size, storage complexity, and

other overheads in distributing the symmetric key

among the group members. The decomposition of this

technique reduces the complexity for a member join

and leave from O(n) to O(log2 m), where n represents

the entire group member and m represent the subgroup

members. The performance of the proposed protocol is

compared with that of the LKH protocol and Iolus

protocol. The comparison is undertaken according to

the complexity for key generation, multicast message

size, storage complexity overhead and based on

encryption/decryption overhead. The results show that

the proposed protocol enhances the group performance

in terms computation overhead specifically at the time

of member leave operation. The main drawback in this

approach is that whenever there is a member join or

leave operation a inverse value is calculated which is

distributed to all the subgroup members. Hence, when

the number of subgroup members increased the storage

of messages in each member node increase as well as

there is a need to store the inverse value of other

members in the group. Hence, the storage complexity

in each member node increases. Further works in this

direction could be implemented and applied in cloud

environment. This approach will reduce the storage

complexity and increase the scalability and the system

performance.

References

[1] Ahamad M., “Multicast Communication in

Distributed Systems,” IEEE Computer Society

Press Technology Series, pp. 43-55, 1990.

[2] Aslan H., “A Scalable and Distributed Multicast

Security Protocol Using a Subgroup-Key

Hierarchy,” Elsevier Computers and Security,

vol. 23, pp. 320-329, 2004.

[3] Bonmariage N. and Leduc G., “A Survey of

Optimal Network Congestion Control for Unicast

and Multicast,” International Journal of Network

Security, vol. 12, no. 2, pp. 61-74, 2011.

[4] Cao J., Liao L. and Wang G., “Scalable Key

Management For Secure Multicast

Communication In The Mobile Environment,”

Pervasive and Mobile Computing, vol. 2, no. 2,

pp. 187-203, 2006.

[5] Challal Y. and Seba H., “Group Key

Management Protocols: A Novel Taxonomy,”

International Journal of Information Technology,

vol. 2, no. 1, pp. 105-118, 2005.

[6] Chan K. and Chan S., “Key Management

Approaches to Offer Data Confidentiality For

Secure Multicast,” IEEE Network, vol. 17, no. 5,

pp. 30-39, 2003.

[7] Chen X., MA B. and Yang C., “M-CLIQUES:

Modified CLIQUES Key Agreement for Secure

Multicast,” Elsevier Computers and Security, vol.

26, pp.238-245, 2007.

[8] Chua T. and Pheanis D., “Bandwidth Conserving

Multicast VOIP Teleconference System,”

International Journal of Network Security, vol. 7,

no. 1, pp. 42-48, 2008.

[9] Gharout S., Yacine C., and Bouabdallah A.,

“Scalable Delay-Constrained Multicast Group

Key Management,” International Journal of

Network Security, Vol. 7, No.2, pp. 160-174,

Sep.2008.

[10] Harte L., “Introduction to Data Multicasting, IP

Multicast Streaming for Audio and Video Media

Distribution,” Althos Publishing, 2008.

[11] Jun Z., Yu Z., Fanyuan Ma., Dawu Gu., and

Yingcai B, “An Extension Of Secure Group

Communication Using Key Graph,” Elsevier

Information Sciences, vol. 176, pp. 3060-3078,

2006.

[12] Kanyamee K. and Sathitwiriyawong C., “High-

availability decentralized cryptographic multi-

agent key recovery,” International Arab Journal

of Information Technology, vol. 11, no. 1, pp. 52-

58, 2014.

[13] KeiWong C., Gouda M., and Lam S., “Secure

Group Communications Using Key Graphs,”

IEEE/ACM Transactions On Networking, vol. 28,

no. 4, pp. 16-30, 2000.

[14] Kim Y., Perrig A., and Tsudik G.,

“Communication Efficient Group Key

Hierarchical Based Group Key Transfer for Secure Group Communication 573

Agreement,” IFIP SEC'01 Conference, pp. 229-

244, France, 2001.

[15] Mittra S., “Iolus: A Framework For Scalable

Secure Multicasting,” ACM SIGCOMM

Computer Communication Review, vol. 27, no. 4,

pp. 277-288, 1997.

[16] Ng W., Howarth. M., Sun Z. and Cruickshank H.,

“Dynamic Balanced Key Tree Management for

Secure Multicast Communications,” IEEE

Transactions on Computers, vol. 56, no. 5, pp.

590-605, 2007.

[17] Paul S., “Multicasting on the Internet and Its

Applications,” Springer-Verlag, 1998.

[18] Peterson L. and Davie B., Computer Networks: A

Systems Approach, Morgan Kaufmann Publishers

Inc., Fourth Edition, 2007.

[19] Peyravian M., Matyas S., and Zunic N.,

“Decentralized Group Key Management For

Secure Multicast Communications,” Computer

Communications, vol. 22, pp. 1183-1187, 1999.

[20] Pour A., Kumekawa K., Kato T. and Itoh S., “A

Hierarchical Group Key Management Scheme

for Secure Multicast Increasing Efficiency of

Key Distribution in Leave Operation,” Computer

Networks, vol. 51, pp. 4727-4743, 2007.

[21] Rafaeli S. and Hutchinson D., “A Survey of Key

Management for Secure Group Communication,”

ACM Computing Surveys, vol. 35, no. 3, pp. 309-

329, 2003.

[22] Rafaeli S. and Hutchinson D., “Hydra: A

Decentralized Group Key Management,”

Proceedings of the 11th IEEE International

WETICE: Enterprise Security Workshop, pp. 62-

67, June 2002.

[23] Setia S., Zhu S., and Jajodia S., “A Scalable and

Reliable Key Distribution Protocol For Multicast

Group Rekeying,” Technical report, George

Mason University, 2002.

[24] Srinivasan R., Vaidehi V., Rajaraman R., and

Kanagaraj S., “Secure Group Key Management

Scheme For Multicast Networks,” International

Journal of Network Security, vol. 11, no. 1, pp.

33-38, 2010.

[25] Steiner M., Tsudik G., and Waidner M., “Key

Agreement In Dynamic Peer Groups,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 11, no. 8, pp. 769-780, 2000.

[26] Wallner D., Harder E., and Agee R., “Key

Management for Multicast: Issues and

Architectures,” National Security Agency, RFC

2627, 1999.

[27] Wittmann R. and Zitterbart M., Multicast

Communication Protocols, Programming and

Applications, Morgan Kaufmann Publishers Inc.,

2000.

Kanimozhi Sakthivel received ME

degree in Computer Science and

Engineering from Anna University of

Technology, Coimbatore. Currently

she is pursuing PhD in IST

department from Anna University,

Chennai..

Velumadhava Rao Rajasekaran
received the BE degree in Computer

Science and Engineering from

C.I.E.T, Coimbatore and ME degree

in Software Engineering from Anna

University, Chennai, India. He is

currently working as an Assistant

Professor in Rajalakshmi Institute of Technology,

Chennai. He is also pursuing his Part Time Ph.D in

Computer Science and Engineering from Anna

University, Chennai.

Selvamani Kadirvelu received B.E

degree in Electrical and Electronics

Engineering from Annamalai

University and M.E degree in

Computer Science and Engineering

from Bharathiyar University and

Ph.D degree in Information and

Communication Engineering from Anna University.

He is currently working as Assistant Professor in

College of Engineering, Guindy, Anna University,

Chennai.

Kannan Arputharaj received the M.E degree

Computer Science and Engineering from

AnnaUniversity and Ph.D degree in Information

and Communication Engineering from Anna

University. He is currently working as Professor

in IST, College of Engineering, Guindy, Anna

University, Chennai.

