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Abstract: Deletion of transactions in databases is common in real-world applications. Developing an efficient and effective 

mining algorithm to maintain discovered information is thus quite important in data mining fields. A lot of algorithms have 

been proposed in recent years, and the best of them is the pre-large-tree-based algorithm. However, this algorithm only 

rebuilds the final pre-large tree every deleted transactions. After that, the FP-growth algorithm is applied for mining all 

frequent item sets. The pre-large-tree-based approach requires twice the computation time needed for a single procedure. In 

this paper, we present an incremental mining algorithm to solve above issues. An itemset tidset-tree structure will be used to 

maintain large and pre-large item sets. The proposed algorithm only processes deleted transactions for updating some nodes 

in this tree, and all frequent item sets are directly derived from the tree traversal process. Experimental results show that the 

proposed algorithm has good performance. 
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1. Introduction 

Mining Frequent Item sets (FIs) is the most important 
task in mining association rules [1, 2, 16, 18, 19, 20]. 
A lot of algorithms for mining FIs have been proposed. 
Some of famous ones are Apriori [1, 17], FP-growth 
[4], Eclat [22] and so on. All Apriori, FP-growth and 
Eclat algorithms use batch mining. In real-world 
applications, transactions are commonly inserted or 
deleted or updated [3, 5, 6, 7, 8, 9, 10, 11, 13]. 
Therefore, designing an efficient algorithm for the 
maintenance of association rules as databases change is 
critically important. The first incremental mining 
algorithm was the Fast-Update (FUP) algorithm [3]. 
Like Apriori-based algorithms, FUP generates 
candidates and repeatedly scans the database, although 
it avoids a lot of unnecessary checking. After that, 
Hong et al. [6] proposed the pre-large concept to 
further reduce the need for rescanning the original 
database. This algorithm does not require the original 
database to be rescanned until a number of new 
transactions have been inserted. The maintenance cost 
is thus reduced with the pre-large concept. 

Many pre-large-based algorithms for handling of 
inserted transactions have been proposed. Some of 
ones are Pre-FUFP [15], Pre-FUIT [12]. In addition to, 
transaction insertion, transaction deletion from 
databases is also commonly seen in real-applications. 
A lot of algorithms have been proposed in recent years,  

and the best of them is pre-large tree maintenance 

algorithm [14]. However, it only rebuilds the final pre-

large tree every deleted transactions. After that, the FP-

growth must be used to mine all FIs [4]. In fact, 

original large item sets are derived from the pre-large 

tree of the original database. So, the pre-large tree 

maintenance algorithm does not utilize the item sets 

which have been mined from the original database. 
The aim of this paper is to present an algorithm for 

handling of deleted transactions based on the concept 
of pre-large item sets. Pre-large item sets are defined 
by using lower and upper support thresholds. It does 
not require the original database to be rescanned until a 
number of transactions have been deleted. The 
proposed algorithm uses the Item set Tidset-tree (IT-
tree) for storing the pre-large and large items ets which 
are mined from the original database. When some 
transactions are deleted from the database, the 
proposed algorithm only processes them for 
maintaining large and pre-large item sets. 
Experimental results show that the proposed algorithm 
outperforms the pre-large tree maintenance algorithm. 

The rest of this paper is organized as follows. 
Related works are reviewed in section 2. The Inc-Eclat 
algorithm is described in section 3. An example to 
illustrate the proposed algorithm is given in section 4. 
Experimental results that show the performance of the 
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proposed algorithm are provided in section 5. Finally, 
conclusions and future work are presented in section 6. 

2. Related Works 

2.1. Pre-large Concepts 

The concept of pre-large item sets was proposed by 
Hong et al. [5]. It uses two thresholds, namely the 
upper threshold and the lower threshold, to set the pre-
large item sets. The upper threshold is similar to min 
sup. The lower threshold defines the lowest support 
ratio for an itemset that is to be treated as pre-large. An 
itemset with a support ratio below the lower threshold 
is seen as small. Hong et al. [5] also proposed the pre-
large-itemset algorithm. It is based on a safety number 
f of inserted transactions to reduce the need for 
rescanning the original database for the efficient 
maintenance of the large item sets.  

Considering an original database and some 
transactions that are to be deleted by the two support 
thresholds, Lin et al. [14] proposed the following 
formula for computing f in the case of deletion of 
transactions: 

                                l( )u

u

S S d
f

S

 
  
 

 

Where Su is the upper threshold, Sl is the lower 
threshold and d is the number of original transactions. 

Cases 2, 3, 4, 7, and 8 do not affect the final large 
item sets according to the weighted average of the 
counts. Case 1 may remove the existing large item sets, 
and cases 5, 6 and 9 may add new large item sets. If all 
large and pre-large item sets with their counts are 
retained after each pass, then cases 1, 5 and 6 can be 
easily handled. It has been theoretically shown that an 
itemset in case 9 cannot possibly be large enough in 
the final updated database as long as the number of 
deleted transactions is smaller than the number f  [14]. 
A summary of the nine cases and their results are given 
in Table 1. 

 Table 1. Nine cases and their results. 

Cases: Original-Deleted Results 

Case 1: Large-Large 
Large or pre-large or small, determined from existing 

information 

Case 2: Large-Pre-large Always large 

Case 3: Large-Small Always large 

Case 4: Pre-large-Large 
Pre-large or small, determined from existing 

information 

Case 5: Pre-large-Pre-large 
Large or pre-large or small, determined from existing 

information 

Case 6: Pre-large-Small 
Large or pre-large, determined from existing 

information 

Case 7: Small-Large Always small 

Case 8: Small-Pre-large Always small 

Case 9: Small-Small 
Pre-large or small, determined from existing 

information 

2.2. Maintenance of Fast Updated Frequent 

Pattern Trees for Transaction Deletion 

Transaction deletion from databases is commonly seen 
in real-world applications. Some algorithms have been 
proposed such as Fast Updated Frequent Pattern tree 
(FUFP-tree) [7], pre-large tree [14]. Hong et al. [7] 

modified the FP-tree structure and designed a FUFP-
tree for handling deleted transactions based on the FUP 
algorithm [3]. The FUFP-tree structure is similar to the 
FP-tree structure, with the difference being that the 
links between the parent nodes and their child nodes 
are bi-directional in the former. Bi-directional linking 
will help fasten the process of item deletion in the 
maintenance process. When transactions are deleted 
from the database, the FUFP-tree based approach will 
process them to maintain the FUFP-tree. It partitions 
items into four parts according to whether they are 
frequent or infrequent in the original database and in 
deleted transactions. Considering an original database 
and some transactions to be deleted, the following four 
cases may arise: 

 Case 1: An item set is frequent both in an original 

database and in deleted transactions. 

 Case 2: An item set is frequent in an original 

database but not frequent in deleted transactions. 

 Case 3: An item set is not frequent in an original 

database but frequent in deleted transactions. 

 Case 4: An item set is not frequent both in an 

original database and in deleted transactions. 

Cases 2 and 3 will not affect the final frequent item 
sets. Item sets in case 1 are frequent in both the 
original database and deleted transactions. Thus, some 
existing frequent item sets may be removed after the 
database is updated. At last, item sets in case 4 are 
infrequent in both the original database and deleted 
transactions. Some frequent item sets may thus be 
added it however, requires the original database to be 
rescanned for rebuilding the FUFP-tree of the final 
updated database. After that, the FP-growth algorithm 
must be used to mine all FIs [4].  

In order to reduce the need for rescanning the 
original database, Lin et al. [14] proposed a pre-large 
tree structure and designed an algorithm to rebuild the 
pre-large tree based on the concept of pre-large item 
sets. The pre-large tree is similar to the FUFP-tree. 
When some transactions are deleted from the database, 
the pre-large-tree-based approach will process them to 
maintain the pre-large tree. Unlike the FUFP-tree-
based approach, it partitions items into nine cases 
according to whether they are large or pre-large or 
small in the original database and in deleted 
transactions. The summary of the nine cases and their 
results is given in Table 1. The algorithm does not 
require the original database to be rescanned until a 
number of deleted transactions have been processed. 
When some transactions are deleted from the database, 
some nodes are removed from or inserted into the pre-
large tree. After that, the FP-growth algorithm is 
applied for the pre-large tree of the entire database to 
mine all frequent item sets. So, the pre-large-tree-based 
approach does not utilize item sets which have been 
mined from the original database. 

As we known, IT-tree-based approach [22] is one of 

the famous approaches for mining FIs in static 

transaction databases. It is based on equivalence 

(1) 
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classes, scans the database only once, uses the depth-

first traversal technique to generate item sets and to 

compute the supports of the item sets fast by tidset 

intersections. This paper proposes an incremental 

algorithm for handling of deleted transactions based on 

the IT-tree structure and pre-large item sets. Like the 

pre-large-tree-based approach, when transactions are 

deleted from the database, the proposed approach will 

partition items into nine cases according to whether 

they are large or pre-large or small in the original 

database and in deleted transactions. The summary of 

the nine cases and their results is given in Table 1. Its 

main idea is to use the depth-first traversal technique to 

update the final supports of the item sets from their 

tidsets in deleted transactions. The supports of the item 

sets in deleted transactions are computed by tidset 

intersections. All FIs are mined using depth-first order 

traversal. The advantage of the IT-tree-based approach 

is to utilize item sets which have been mined from the 

original database. The proposed algorithm only 

processes deleted transactions for rebuilding the final 

IT-tree. Besides, the concept of pre-large item sets is 

used to reduce the need for rescanning the original 

database to save maintenance cost. The algorithm does 

not require the original database to be rescanned until 

many deleted transactions have been processed.  

3. Proposed Algorithm 

Notations used in the proposed algorithm are listed in 

Table 2. 

Table 2. The notation used in the proposed algorithm. 
 

Symbol Description 

D The Original Database 

T The Set of Deleted Transactions 

U The Final Database, i.e., D – T 

d The Number of Transactions in D 

Sl The Lower Support Threshold for Pre-Large Item Sets 

Su The Upper Support Threshold for Large Item Sets, Su>Sl 

X An Item Set 

Tr An IT-Tree Storing the Set of Pre-Large and Large Item Sets from D 

R 
a Set of Item Sets for which the Original Database must be Rescanned to 

Update their Final Support. 

T⎺(X) Tidset of Item X in T 

SU(X) The Support Count of X in U 

SD(X) The Support Count of X in D, SD(X) 

ST(X) The Support Count of X in T, ST(X)=T⎺ (X)| 

𝜎D(X) The Support of X in D, 𝜎D(X)=SD(X) / d 

𝜎T(X) The Support of X in T, 𝜎T(X)=ST(X) / t 

𝜎u(X) The Support of X in U, 𝜎U(X)=(SD(X) - ST(X)) / (d - t - c) 

3.1. Building an IT-tree from an Original 

Database 

Given an original database and two support thresholds, 
the upper support threshold is similar to min sup, the 
lower threshold defines the lowest support ratio for an 
itemset that is to be treated as pre-large. An IT-tree, 
which stores all pre-large and large item sets, must be 
built in advance from the initially original database 
before some transactions are deleted. Its initial 
construction is stated as follows. The database is firstly 
transformed into the vertical data format in which each 
itemset has a corresponding tidset. Next, a set of all 

large and pre-large item sets with their tidsets is 
created at first level. After that, these nodes are 
combined to create nodes at higher level using depth-
first order traversal. The downward-closure property 
[1] is also used to prune unpromising item sets. The 
tree is completely constructed when no new nodes are 
created. 

3.2. Algorithm for Maintaining IT-tree 

The proposed algorithm only processes deleted 
transactions for updating the final supports of item sets 
using the depth-first search technique. The decreasing 
supports of item sets are rapidly computed using tidset 
intersections. The algorithm uses the downward-
closure property [1] to prune unpromising item sets 
while traversing the IT-tree. FIs can be directly derived 
from the tree traversal process. According to whether 
the number of deleted transactions exceeds the safety 
threshold f, the proposed algorithm requires the 
original database to be rescanned.  

If the number of deleted transactions is less than f, 
the UP-TID procedure for updating the IT-tree is 
performed. The main idea of this procedure is to 
maintain the large and pre-large item sets stored in the 
IT-tree using depth-first order traversal. Firstly, a set of 
item sets at level 1 in Tr with their tidsets is 
determined from deleted transactions. Next, the final 
support counts of them are updated. Item sets at level 1 
in Tr that does not satisfy Sl are removed from Tr. 
After L and R are determined, the procedure UP-TID-
EXTEND extends the nodes in L to one more level by 
combining the nodes following them. With each pair 
(X, Y), this procedure will compute the intersection of 
T⎺(X) and T⎺(Y). If itemset XY exists in Tr then the 
final support count is updated. Otherwise, if XY is 
small in T then itemset XY is inserted into R. After Li 
are created, the procedure UP-TID-EXTEND will be 
called recursively to update the support counts of all 
child nodes of the nodes in Li. When the deleted 
transactions are processed, other transactions can be 
deleted continuously. If the number total of deleted 
transactions does not exceed f, the UP-TID procedure 
is called and all processes are the same as above.  

Assume after that some transactions need to be 
deleted, if the number total of deleted transactions 
(including newest deleted transactions) exceeds f, the 
algorithm must rescan the original database to 
determine whether the item sets in R are large or pre-
large in the final updated database. The large or pre-
large item sets in R are inserted into Tr. A new safety 
threshold f is then computed. Algorithm 1 will 
compare the number of newest deleted transactions and 
f. All processes are then repeated as above. 

Algorithm 1: Maintaining IT-tree. 

# Procedure Inc-IT(Tr, D, T, Sl, Su, R) 

# Sl is a lower support threshold,  

# Su is an upper threshold,  

# R is a set of item sets 

# Tr is an IT-tree that stores large and pre-large item sets #derived 

from the original database D consists of (d+c) #transactions with c 



598                                                   The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016                                                                                                             
 

is a variable which is used to record #   #the number of deleted 

transactions since the last #rescan of the original database with d 

transactions. 

#A set of t deleted transactions l
( )

u

u

S S d
f

S

 
  
 

 

 

If (t + c < f) { 

         #processes deleted transactions for updating Tr 

         UP-TID(Tr, D, T, Sl, Su, R)  

         set c=c+t 

                    } 

Else             { 

                       #rescans d transactions to determine whether 

                       #item sets in R are large or pre-large in U 

        L_item sets=rescan (d) 

       Tr=TrL_item sets 

           set R=⌀; d=d+c; c=0 

          Inc-IT(Tr, D, T, Sl, Su, R)  

       } 
 

#Procedure UP-TID(Tr, D, T, Sl, Su, R)  

Update the final support count of each itemset at level 1 in Tr 

based on their tidset in T, after that remove nodes at level 1 

that does not satisfy Sl threshold. 

L={iT⎽(i)|itemset i belongs to a set of item sets at level 1 in Tr 

and 𝜎U(i)≥ Sl } 

R={ i|T⎽(i)| | itemset i belongs to 1-item sets in T, but not exists 

at level 1 in Tr, and 𝜎T(i)< Sl} 

UP-TID-EXTEND(Tr, L, R, Sl) 
 

#Procedure UP-TID-EXTEND(Tr, L, R, Sl) 

∀XT⎽(X)∊ L: 

Create the new set Li by joining X T⎽(X) with Y T⎽(Y) following X 

in L: 

If XY exists in Tr then  

      If 𝜎U(XY)≥ Sl then add XY and T⎺(XY) into Li and update 

the support count of XY in Tr 

      Otherwise remove XY from Tr 

Otherwise, if 𝜎T(XY)<Sl then add XY with |T⎺(XY)| into R 

If |Li | ≥2 then UP-TID-EXTEND(Tr, Li, R, Sl,) 
 

As the number of deleted transactions is not limited, a 

variable c is used to store it since the last rescan of the 

original database with d transactions. The details of the 

algorithm are shown in Figure 1. 

 
Figure 1. IT-tree that are constructed from the original database. 

4. Example 

In this section, an example is given to illustrate the 
proposed incremental algorithm. Assume that the 
initial D database includes 10 transactions shown in 
Table 3. For Sl=30% and Su=50%, an IT-tree that are 
constructed from D are shown in Figure 2. In fact, the 
tidsets of the item sets, which are mined from the 

original database, are not retained as the algorithm 
does not consider them in the maintenance process. 

 Table 3. An example of an original database. 

Original Database 

TID Items 

1 ACE 

2 ABDE 

3 BCDE 

4 ACE 

5 ACE 

6 ABC 

7 BDE 

8 ABCE 

9 ABCD 

10 CEF 

 
Figure 2. IT-tree Tr after nodes at level 1 have been processed. 

Assume that the last two transactions (with TIDs 9 
and 10, respectively) are deleted from the original 
database. Table 4 shows the vertical layout of two 
deleted transactions.  

Table 4. Vertical format of the two deleted transactions. 

Item Tidset 

A 9 

B 9 

C 9 10 

D 9 

E 10 

F 10 

For the above data, the proposed maintenance 
algorithm proceeds as follows. The variable c is 
initially set at 0 and the safety f threshold is computed:  

           l
( ) (0 5 0 3)10

4
0 5

u

u

S S d . .
f

S .

   
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  
  

As t+c= 2+0= 2 ≤ f, rescanning the original database is 
unnecessary, the UP-TID procedure is called. The final 
support counts of item sets at level 1 in Tr will be 
updated based on their tidsets in T.  

In this example, L={A, B, C, D, E} and R=⌀. Take 
item set {A} as an example, |T⎺(A)|=1, the support 
count of {A} in T is thus 1. As 𝜎U(A)=(7-1)/(10-2-0) ≥ 
0.3, {A} is inserted into L. Item sets {B}, {C}, {D}, 
{E} are similarly processed. For item set {F}, |T⎺(F)|= 
1, the support counts of {F} in T is thus 1. As {F} is 
small in D and 𝜎T(F)=1/2≥0.3, {F} is removed from 
Tr. The results are shown in Figure 3. 

After L and R are determined, the UP-TID-
EXTEND is called. With L= {A, B, C, D, E}, this 
procedure creates nodes at higher level, it joins each 
child node with all its following nodes. For example, 
consider node A at level 1 of the IT-tree in Figure 3. It 
will be combined with the other nodes as follow: 

{} 

A(6) 

T⎺ x9 

 

B(5) 

T⎺ x9 

 

C(6) 

T⎺ x9 10 

 

D(3) 

T⎺ x9 

 

AC(6) 

T⎺ x 

 

AE(5) 

T⎺ x 

 

ACE(4) 

T⎺ x 

 

BC(4) 

T⎺ x 

 

BD(4) 

T⎺ x 

 

BE(4) 

T⎺ x 

 

BDE(3) 

T⎺ x 

 

CE(6) 

T⎺ x 

 

DE(3) 

T⎺ x 

 

ABC(3) 

T⎺ x 

 

E(7) 

T⎺ x10 

 

AB(4) 

T⎺ x 

 

{} 

A(7) 

T⎺ x 

 

B(6) 

T⎺ x 

 

C(8) 

T⎺ x 

 

D(4) 

T⎺ x 

 

AC(6) 

T⎺ x 

 

AE(5) 

T⎺ x 

 

ACE(4) 

T⎺ x 

 

BC(4) 

T⎺ x 

 

BD(4) 

T⎺ x 

 

BE(4) 

T⎺ x 

 

BDE(3) 

T⎺ x 

 

CE(6) 

T⎺ x 

 

DE(3) 

T⎺ x 

 

ABC(3) 

T⎺ x 

 

E(8) 

T⎺ x 

 

AB(4) 

T⎺ x 

 

(2) 
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 {A} joins {B} to create a new node AB, T⎺(A)={9} 
and T⎺(B)={9}, so T⎺(AB)=T⎺(A)∩T⎺(B)={9}. As 
{AB} exists in Tr and 𝜎U(AB)=(4-1)/(10-2-0)≥0.3, 
Li=Li ⋃ {AB}.  

 {A} joins {C} to create a new node AC, T⎺(A)={9} 
and T⎺(C)={9, 10}, so T⎺(AC)=T⎺(A)∩T⎺(C)={9}. 
As {AC} exists in Tr and 𝜎U(AC)=(6-1)/(10-2-0)≥ 
0.3, Li= Li⋃{AC}. 

 {A} joins {D} to create a new node AD, T⎺(A)= {9} 
and T⎺(D)={9}, so T⎺(AD)=T⎺(A)∩T⎺(D)={9}. As 
{AD} does not exist in Tr and 𝜎T(AD)=1/2≥0.3, 
{AD} does not belong to R. 

 {A} joins {E} to create a new node AE, T⎺(A)={9} 
and T⎺(E)={10}, so T⎺(AE)=T⎺(A)∩T⎺(E)= {⌀}. As 
{AE} exists in Tr and 𝜎U(AE)=(5-0)/(10-2-0) ≥ 0.3, 
Li= Li⋃{AE}. 

 
Figure 3. IT-tree Tr after the branch corresponding to {A} has been 

processed. 

After that, the procedure UP-TID-EXTEND is 
repeated recursively with Li={AB, AC, AE} and the 
final support counts of corresponding nodes will be 
updated. This process will be repeated recursively to 
update the final support counts of all nodes in Tr. The 
results are shown in Figure 4 and the final Tr are 
shown in Figure 5. 

 
Figure 4. Final IT-tree Tr. 
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Figure 5. Comparison of execution times for sequentially deleted 

transactions (T40I10D100K database). 

When the Inc-IT algorithm finishes, R= . Besides, 
the final value of c is 2 in this example and f–c=2. This 
implies that two more transactions can be deleted 
without rescanning the original database. 

5. Experimental Results 

Experiments were conducted to show the performance 
of the proposed algorithm. All the algorithms were 
implemented on a PC with a Core 2 Duo (2×2GHz) 
CPU and 2GBs of RAM running Windows 7. All the 
algorithms were coded in C++. Two databases from 
http://fimi.cs.helsinki.fi/data/ were used for the 
experiments. The T40I10D100K (with 100000 
transactions) and kosarak (with 990002 transactions) 
databases were used. 

Experiments were made to compare execution times 
for mining all FIs using the pre-large-tree-based 
algorithm [14] and the proposed algorithm when a 
number of transactions were deleted from the database. 
The T40I10D100K database was used for the first 
experiment. A total of 100000 transactions were used 
to construct an initial IT-tree and pre-large tree. Sets of 
2000 transactions were then sequentially used as the 
deleted transactions for the experiment. The upper and 
the lower support thresholds were set at 2% and 5%, 
respectively. Figure 6 shows execution times of the 
two algorithms for processing each set of 2000 deleted 
transactions. For the experiment with incremental 
threshold values, the lower support threshold was set 
from 2% to 6% (in 1% increments) and the upper 
support threshold was set from 5% to 9% (in 1% 
increments). Sets of 2000 transactions were used as the 
deleted transactions for the experiment. Figure 7 shows 
a comparison of execution times for various threshold 
values. It can be seen that the proposed maintenance 
algorithm runs faster than the pre-large-tree-based 
algorithm. 
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{} 

A(6) 

T⎺ x9 

 

B(5) 

T⎺ x9 

 

C(6) 

T⎺ x9 10 

 

D(3) 

T⎺ x9 

 

AC(5) 

T⎺ x9 

 

AE(5) 

T⎺ x 

 

ACE(4) 

T⎺ x 

 

BC(4) 

T⎺ x 

 

BD(4) 

T⎺ x 

 

BE(4) 

T⎺ x 

 

BDE(3) 

T⎺ x 

 

CE(6) 

T⎺ x 

 

DE(3) 

T⎺ x 

 

E(7) 

T⎺ x10 

 

AB(3) 

T⎺ x9 

 

{} 

A(6) 

T⎺ x9 

 

B(5) 

T⎺ x9 

 

C(6) 

T⎺ x9 10 

 

D(3) 

T⎺ x9 

 

AC(5) 

T⎺ x9 

 

AE(5) 

T⎺ x 

 

ACE(4) 

T⎺ x 

 

BC(3) 

T⎺ x9 

 

BD(3) 

T⎺ x9 

 

BE(4) 

T⎺ x 

 

BDE(3) 

T⎺ x 

 

CE(5) 

T⎺ x10 

 

DE(3) 

T⎺ x 

 

E(7) 

T⎺ x10 

 

AB(3) 

T⎺ x9 
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  Number of Deleted Transactions kosarak 

Figure 7. Comparison of execution times for sequentially deleted 

transactions (kosarak database). 

Next, the kosarak database was used for the 
experiments. A total of 990002 transactions were used 
to build an initial IT-tree and pre-large tree. Sets of 
2000 transactions were sequentially used as deleted 
transactions for the experiment. The upper and the 
lower support thresholds were set to 0.5% and 1%, 
respectively. Figure 8 shows execution times of the 
two algorithms for processing each set of 2000 deleted 
transactions. For the experiment with incremental 
threshold values, the lower support threshold was set 
from 0.5% to 2.5% (in 1% increments) and the upper 
support threshold was set from 1% to 3% (in 1% 
increments). Sets of 2000 transactions were used as the 
deleted transactions for the experiment. Figure 9 shows 
a comparison of execution times for various threshold 
values. It can be observed that the proposed 
maintenance algorithm also runs faster than the pre-
large-tree-based algorithm. 
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Figure 8. Comparison of execution times for various threshold 

values (kosarak database). 

6. Conclusions and Future Work 

This paper proposed an approach based on the concept 
of pre-large item sets for the maintenance of an IT-tree 
during transaction deletion. The proposed algorithm 
uses the IT-tree structure to facilitate tree traversal and 
the updating of itemset supports. Instead of batch 
mining, the proposed algorithm only concentrates on 
processing deleted transactions. The incremental 
supports of candidate item sets can be rapidly 
computed using tidset intersections. Besides, pre-large 
item sets are used to reduce the number of database 
scans. User-specified upper and lower support 
thresholds are used to avoid the small items directly 
becoming large in the updated database when 
transactions are deleted. All the tasks are processed 
using the IT-tree structure. With these strategies, the 
execution time of the proposed approach is lower than 
the pre-large-tree-based algorithm. 

The proposed algorithm belongs to calculations of 
tidset intersections. Dynamic Bit Vectors (DBVs) [21] 
is an efficient data structure for mining FIs. DBVs can 
be used to compress a database in one scan and shorten 
the length of the tidset, speeding up the tidset 
intersections process. In the future, we will apply 
DBVs structure for handling of deleted transactions.  
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