
 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016 595

An Efficient Approach for Mining Frequent Item

sets with Transaction Deletion Operation

Bay Vo1, 2, Thien-Phuong Le3, Tzung-Pei Hong4, Bac Le5, Jason Jung6

1Division of Data Science, Ton Duc Thang University, Vietnam
2Faculty of Information Technology, Ton Duc Thang University, Vietnam

3Faculty of Technology, Pacific Ocean University, Vietnam
4Department of Computer Science and Information Engineering,

National University of Kaohsiung, Taiwan
5Department of Computer Science, University of Science, Vietnam

6Department of Computer Engineering, Chung-Ang University, Republic of Korea

Abstract: Deletion of transactions in databases is common in real-world applications. Developing an efficient and effective

mining algorithm to maintain discovered information is thus quite important in data mining fields. A lot of algorithms have

been proposed in recent years, and the best of them is the pre-large-tree-based algorithm. However, this algorithm only

rebuilds the final pre-large tree every deleted transactions. After that, the FP-growth algorithm is applied for mining all

frequent item sets. The pre-large-tree-based approach requires twice the computation time needed for a single procedure. In

this paper, we present an incremental mining algorithm to solve above issues. An itemset tidset-tree structure will be used to

maintain large and pre-large item sets. The proposed algorithm only processes deleted transactions for updating some nodes

in this tree, and all frequent item sets are directly derived from the tree traversal process. Experimental results show that the

proposed algorithm has good performance.

Keywords: Data mining, frequent item sets, incremental mining, pre-large item sets, item set-tidset tree.

Received November 1, 2012; accepted June 19, 2013; published online October 29, 2015

1. Introduction

Mining Frequent Item sets (FIs) is the most important
task in mining association rules [1, 2, 16, 18, 19, 20].
A lot of algorithms for mining FIs have been proposed.
Some of famous ones are Apriori [1, 17], FP-growth
[4], Eclat [22] and so on. All Apriori, FP-growth and
Eclat algorithms use batch mining. In real-world
applications, transactions are commonly inserted or
deleted or updated [3, 5, 6, 7, 8, 9, 10, 11, 13].
Therefore, designing an efficient algorithm for the
maintenance of association rules as databases change is
critically important. The first incremental mining
algorithm was the Fast-Update (FUP) algorithm [3].
Like Apriori-based algorithms, FUP generates
candidates and repeatedly scans the database, although
it avoids a lot of unnecessary checking. After that,
Hong et al. [6] proposed the pre-large concept to
further reduce the need for rescanning the original
database. This algorithm does not require the original
database to be rescanned until a number of new
transactions have been inserted. The maintenance cost
is thus reduced with the pre-large concept.

Many pre-large-based algorithms for handling of
inserted transactions have been proposed. Some of
ones are Pre-FUFP [15], Pre-FUIT [12]. In addition to,
transaction insertion, transaction deletion from
databases is also commonly seen in real-applications.
A lot of algorithms have been proposed in recent years,

and the best of them is pre-large tree maintenance

algorithm [14]. However, it only rebuilds the final pre-

large tree every deleted transactions. After that, the FP-

growth must be used to mine all FIs [4]. In fact,

original large item sets are derived from the pre-large

tree of the original database. So, the pre-large tree

maintenance algorithm does not utilize the item sets

which have been mined from the original database.
The aim of this paper is to present an algorithm for

handling of deleted transactions based on the concept
of pre-large item sets. Pre-large item sets are defined
by using lower and upper support thresholds. It does
not require the original database to be rescanned until a
number of transactions have been deleted. The
proposed algorithm uses the Item set Tidset-tree (IT-
tree) for storing the pre-large and large items ets which
are mined from the original database. When some
transactions are deleted from the database, the
proposed algorithm only processes them for
maintaining large and pre-large item sets.
Experimental results show that the proposed algorithm
outperforms the pre-large tree maintenance algorithm.

The rest of this paper is organized as follows.
Related works are reviewed in section 2. The Inc-Eclat
algorithm is described in section 3. An example to
illustrate the proposed algorithm is given in section 4.
Experimental results that show the performance of the

596 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

proposed algorithm are provided in section 5. Finally,
conclusions and future work are presented in section 6.

2. Related Works

2.1. Pre-large Concepts

The concept of pre-large item sets was proposed by
Hong et al. [5]. It uses two thresholds, namely the
upper threshold and the lower threshold, to set the pre-
large item sets. The upper threshold is similar to min
sup. The lower threshold defines the lowest support
ratio for an itemset that is to be treated as pre-large. An
itemset with a support ratio below the lower threshold
is seen as small. Hong et al. [5] also proposed the pre-
large-itemset algorithm. It is based on a safety number
f of inserted transactions to reduce the need for
rescanning the original database for the efficient
maintenance of the large item sets.

Considering an original database and some
transactions that are to be deleted by the two support
thresholds, Lin et al. [14] proposed the following
formula for computing f in the case of deletion of
transactions:

 l()u

u

S S d
f

S

 
  
 

Where Su is the upper threshold, Sl is the lower
threshold and d is the number of original transactions.

Cases 2, 3, 4, 7, and 8 do not affect the final large
item sets according to the weighted average of the
counts. Case 1 may remove the existing large item sets,
and cases 5, 6 and 9 may add new large item sets. If all
large and pre-large item sets with their counts are
retained after each pass, then cases 1, 5 and 6 can be
easily handled. It has been theoretically shown that an
itemset in case 9 cannot possibly be large enough in
the final updated database as long as the number of
deleted transactions is smaller than the number f [14].
A summary of the nine cases and their results are given
in Table 1.

 Table 1. Nine cases and their results.

Cases: Original-Deleted Results

Case 1: Large-Large
Large or pre-large or small, determined from existing

information

Case 2: Large-Pre-large Always large

Case 3: Large-Small Always large

Case 4: Pre-large-Large
Pre-large or small, determined from existing

information

Case 5: Pre-large-Pre-large
Large or pre-large or small, determined from existing

information

Case 6: Pre-large-Small
Large or pre-large, determined from existing

information

Case 7: Small-Large Always small

Case 8: Small-Pre-large Always small

Case 9: Small-Small
Pre-large or small, determined from existing

information

2.2. Maintenance of Fast Updated Frequent

Pattern Trees for Transaction Deletion

Transaction deletion from databases is commonly seen
in real-world applications. Some algorithms have been
proposed such as Fast Updated Frequent Pattern tree
(FUFP-tree) [7], pre-large tree [14]. Hong et al. [7]

modified the FP-tree structure and designed a FUFP-
tree for handling deleted transactions based on the FUP
algorithm [3]. The FUFP-tree structure is similar to the
FP-tree structure, with the difference being that the
links between the parent nodes and their child nodes
are bi-directional in the former. Bi-directional linking
will help fasten the process of item deletion in the
maintenance process. When transactions are deleted
from the database, the FUFP-tree based approach will
process them to maintain the FUFP-tree. It partitions
items into four parts according to whether they are
frequent or infrequent in the original database and in
deleted transactions. Considering an original database
and some transactions to be deleted, the following four
cases may arise:

 Case 1: An item set is frequent both in an original

database and in deleted transactions.

 Case 2: An item set is frequent in an original

database but not frequent in deleted transactions.

 Case 3: An item set is not frequent in an original

database but frequent in deleted transactions.

 Case 4: An item set is not frequent both in an

original database and in deleted transactions.

Cases 2 and 3 will not affect the final frequent item
sets. Item sets in case 1 are frequent in both the
original database and deleted transactions. Thus, some
existing frequent item sets may be removed after the
database is updated. At last, item sets in case 4 are
infrequent in both the original database and deleted
transactions. Some frequent item sets may thus be
added it however, requires the original database to be
rescanned for rebuilding the FUFP-tree of the final
updated database. After that, the FP-growth algorithm
must be used to mine all FIs [4].

In order to reduce the need for rescanning the
original database, Lin et al. [14] proposed a pre-large
tree structure and designed an algorithm to rebuild the
pre-large tree based on the concept of pre-large item
sets. The pre-large tree is similar to the FUFP-tree.
When some transactions are deleted from the database,
the pre-large-tree-based approach will process them to
maintain the pre-large tree. Unlike the FUFP-tree-
based approach, it partitions items into nine cases
according to whether they are large or pre-large or
small in the original database and in deleted
transactions. The summary of the nine cases and their
results is given in Table 1. The algorithm does not
require the original database to be rescanned until a
number of deleted transactions have been processed.
When some transactions are deleted from the database,
some nodes are removed from or inserted into the pre-
large tree. After that, the FP-growth algorithm is
applied for the pre-large tree of the entire database to
mine all frequent item sets. So, the pre-large-tree-based
approach does not utilize item sets which have been
mined from the original database.

As we known, IT-tree-based approach [22] is one of

the famous approaches for mining FIs in static

transaction databases. It is based on equivalence

(1)

An Efficient Approach for Mining Frequent Item sets with Transaction Deletion Operation 597

classes, scans the database only once, uses the depth-

first traversal technique to generate item sets and to

compute the supports of the item sets fast by tidset

intersections. This paper proposes an incremental

algorithm for handling of deleted transactions based on

the IT-tree structure and pre-large item sets. Like the

pre-large-tree-based approach, when transactions are

deleted from the database, the proposed approach will

partition items into nine cases according to whether

they are large or pre-large or small in the original

database and in deleted transactions. The summary of

the nine cases and their results is given in Table 1. Its

main idea is to use the depth-first traversal technique to

update the final supports of the item sets from their

tidsets in deleted transactions. The supports of the item

sets in deleted transactions are computed by tidset

intersections. All FIs are mined using depth-first order

traversal. The advantage of the IT-tree-based approach

is to utilize item sets which have been mined from the

original database. The proposed algorithm only

processes deleted transactions for rebuilding the final

IT-tree. Besides, the concept of pre-large item sets is

used to reduce the need for rescanning the original

database to save maintenance cost. The algorithm does

not require the original database to be rescanned until

many deleted transactions have been processed.

3. Proposed Algorithm

Notations used in the proposed algorithm are listed in

Table 2.

Table 2. The notation used in the proposed algorithm.

Symbol Description

D The Original Database

T The Set of Deleted Transactions

U The Final Database, i.e., D – T

d The Number of Transactions in D

Sl The Lower Support Threshold for Pre-Large Item Sets

Su The Upper Support Threshold for Large Item Sets, Su>Sl

X An Item Set

Tr An IT-Tree Storing the Set of Pre-Large and Large Item Sets from D

R
a Set of Item Sets for which the Original Database must be Rescanned to

Update their Final Support.

T⎺(X) Tidset of Item X in T

SU(X) The Support Count of X in U

SD(X) The Support Count of X in D, SD(X)

ST(X) The Support Count of X in T, ST(X)=T⎺ (X)|

𝜎D(X) The Support of X in D, 𝜎D(X)=SD(X) / d

𝜎T(X) The Support of X in T, 𝜎T(X)=ST(X) / t

𝜎u(X) The Support of X in U, 𝜎U(X)=(SD(X) - ST(X)) / (d - t - c)

3.1. Building an IT-tree from an Original

Database

Given an original database and two support thresholds,
the upper support threshold is similar to min sup, the
lower threshold defines the lowest support ratio for an
itemset that is to be treated as pre-large. An IT-tree,
which stores all pre-large and large item sets, must be
built in advance from the initially original database
before some transactions are deleted. Its initial
construction is stated as follows. The database is firstly
transformed into the vertical data format in which each
itemset has a corresponding tidset. Next, a set of all

large and pre-large item sets with their tidsets is
created at first level. After that, these nodes are
combined to create nodes at higher level using depth-
first order traversal. The downward-closure property
[1] is also used to prune unpromising item sets. The
tree is completely constructed when no new nodes are
created.

3.2. Algorithm for Maintaining IT-tree

The proposed algorithm only processes deleted
transactions for updating the final supports of item sets
using the depth-first search technique. The decreasing
supports of item sets are rapidly computed using tidset
intersections. The algorithm uses the downward-
closure property [1] to prune unpromising item sets
while traversing the IT-tree. FIs can be directly derived
from the tree traversal process. According to whether
the number of deleted transactions exceeds the safety
threshold f, the proposed algorithm requires the
original database to be rescanned.

If the number of deleted transactions is less than f,
the UP-TID procedure for updating the IT-tree is
performed. The main idea of this procedure is to
maintain the large and pre-large item sets stored in the
IT-tree using depth-first order traversal. Firstly, a set of
item sets at level 1 in Tr with their tidsets is
determined from deleted transactions. Next, the final
support counts of them are updated. Item sets at level 1
in Tr that does not satisfy Sl are removed from Tr.
After L and R are determined, the procedure UP-TID-
EXTEND extends the nodes in L to one more level by
combining the nodes following them. With each pair
(X, Y), this procedure will compute the intersection of
T⎺(X) and T⎺(Y). If itemset XY exists in Tr then the
final support count is updated. Otherwise, if XY is
small in T then itemset XY is inserted into R. After Li
are created, the procedure UP-TID-EXTEND will be
called recursively to update the support counts of all
child nodes of the nodes in Li. When the deleted
transactions are processed, other transactions can be
deleted continuously. If the number total of deleted
transactions does not exceed f, the UP-TID procedure
is called and all processes are the same as above.

Assume after that some transactions need to be
deleted, if the number total of deleted transactions
(including newest deleted transactions) exceeds f, the
algorithm must rescan the original database to
determine whether the item sets in R are large or pre-
large in the final updated database. The large or pre-
large item sets in R are inserted into Tr. A new safety
threshold f is then computed. Algorithm 1 will
compare the number of newest deleted transactions and
f. All processes are then repeated as above.

Algorithm 1: Maintaining IT-tree.

Procedure Inc-IT(Tr, D, T, Sl, Su, R)

Sl is a lower support threshold,

Su is an upper threshold,

R is a set of item sets

Tr is an IT-tree that stores large and pre-large item sets #derived

from the original database D consists of (d+c) #transactions with c

598 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

is a variable which is used to record # #the number of deleted

transactions since the last #rescan of the original database with d

transactions.

#A set of t deleted transactions l
()

u

u

S S d
f

S

 
  
 

If (t + c < f) {

 #processes deleted transactions for updating Tr

 UP-TID(Tr, D, T, Sl, Su, R)

 set c=c+t

 }

Else {

 #rescans d transactions to determine whether

 #item sets in R are large or pre-large in U

 L_item sets=rescan (d)

 Tr=TrL_item sets

 set R=⌀; d=d+c; c=0

 Inc-IT(Tr, D, T, Sl, Su, R)

 }

#Procedure UP-TID(Tr, D, T, Sl, Su, R)

Update the final support count of each itemset at level 1 in Tr

based on their tidset in T, after that remove nodes at level 1

that does not satisfy Sl threshold.

L={iT⎽(i)|itemset i belongs to a set of item sets at level 1 in Tr

and 𝜎U(i)≥ Sl }

R={ i|T⎽(i)| | itemset i belongs to 1-item sets in T, but not exists

at level 1 in Tr, and 𝜎T(i)< Sl}

UP-TID-EXTEND(Tr, L, R, Sl)

#Procedure UP-TID-EXTEND(Tr, L, R, Sl)

∀XT⎽(X)∊ L:

Create the new set Li by joining X T⎽(X) with Y T⎽(Y) following X

in L:

If XY exists in Tr then

 If 𝜎U(XY)≥ Sl then add XY and T⎺(XY) into Li and update

the support count of XY in Tr

 Otherwise remove XY from Tr

Otherwise, if 𝜎T(XY)<Sl then add XY with |T⎺(XY)| into R

If |Li | ≥2 then UP-TID-EXTEND(Tr, Li, R, Sl,)

As the number of deleted transactions is not limited, a

variable c is used to store it since the last rescan of the

original database with d transactions. The details of the

algorithm are shown in Figure 1.

Figure 1. IT-tree that are constructed from the original database.

4. Example

In this section, an example is given to illustrate the
proposed incremental algorithm. Assume that the
initial D database includes 10 transactions shown in
Table 3. For Sl=30% and Su=50%, an IT-tree that are
constructed from D are shown in Figure 2. In fact, the
tidsets of the item sets, which are mined from the

original database, are not retained as the algorithm
does not consider them in the maintenance process.

 Table 3. An example of an original database.

Original Database

TID Items

1 ACE

2 ABDE

3 BCDE

4 ACE

5 ACE

6 ABC

7 BDE

8 ABCE

9 ABCD

10 CEF

Figure 2. IT-tree Tr after nodes at level 1 have been processed.

Assume that the last two transactions (with TIDs 9
and 10, respectively) are deleted from the original
database. Table 4 shows the vertical layout of two
deleted transactions.

Table 4. Vertical format of the two deleted transactions.

Item Tidset

A 9

B 9

C 9 10

D 9

E 10

F 10

For the above data, the proposed maintenance
algorithm proceeds as follows. The variable c is
initially set at 0 and the safety f threshold is computed:

 l
() (0 5 0 3)10

4
0 5

u

u

S S d . .
f

S .

   
     

  

As t+c= 2+0= 2 ≤ f, rescanning the original database is
unnecessary, the UP-TID procedure is called. The final
support counts of item sets at level 1 in Tr will be
updated based on their tidsets in T.

In this example, L={A, B, C, D, E} and R=⌀. Take
item set {A} as an example, |T⎺(A)|=1, the support
count of {A} in T is thus 1. As 𝜎U(A)=(7-1)/(10-2-0) ≥
0.3, {A} is inserted into L. Item sets {B}, {C}, {D},
{E} are similarly processed. For item set {F}, |T⎺(F)|=
1, the support counts of {F} in T is thus 1. As {F} is
small in D and 𝜎T(F)=1/2≥0.3, {F} is removed from
Tr. The results are shown in Figure 3.

After L and R are determined, the UP-TID-
EXTEND is called. With L= {A, B, C, D, E}, this
procedure creates nodes at higher level, it joins each
child node with all its following nodes. For example,
consider node A at level 1 of the IT-tree in Figure 3. It
will be combined with the other nodes as follow:

{}

A(6)

T⎺ x9

B(5)

T⎺ x9

C(6)

T⎺ x9 10

D(3)

T⎺ x9

AC(6)

T⎺ x

AE(5)

T⎺ x

ACE(4)

T⎺ x

BC(4)

T⎺ x

BD(4)

T⎺ x

BE(4)

T⎺ x

BDE(3)

T⎺ x

CE(6)

T⎺ x

DE(3)

T⎺ x

ABC(3)

T⎺ x

E(7)

T⎺ x10

AB(4)

T⎺ x

{}

A(7)

T⎺ x

B(6)

T⎺ x

C(8)

T⎺ x

D(4)

T⎺ x

AC(6)

T⎺ x

AE(5)

T⎺ x

ACE(4)

T⎺ x

BC(4)

T⎺ x

BD(4)

T⎺ x

BE(4)

T⎺ x

BDE(3)

T⎺ x

CE(6)

T⎺ x

DE(3)

T⎺ x

ABC(3)

T⎺ x

E(8)

T⎺ x

AB(4)

T⎺ x

(2)

An Efficient Approach for Mining Frequent Item sets with Transaction Deletion Operation 599

 {A} joins {B} to create a new node AB, T⎺(A)={9}
and T⎺(B)={9}, so T⎺(AB)=T⎺(A)∩T⎺(B)={9}. As
{AB} exists in Tr and 𝜎U(AB)=(4-1)/(10-2-0)≥0.3,
Li=Li ⋃ {AB}.

 {A} joins {C} to create a new node AC, T⎺(A)={9}
and T⎺(C)={9, 10}, so T⎺(AC)=T⎺(A)∩T⎺(C)={9}.
As {AC} exists in Tr and 𝜎U(AC)=(6-1)/(10-2-0)≥
0.3, Li= Li⋃{AC}.

 {A} joins {D} to create a new node AD, T⎺(A)= {9}
and T⎺(D)={9}, so T⎺(AD)=T⎺(A)∩T⎺(D)={9}. As
{AD} does not exist in Tr and 𝜎T(AD)=1/2≥0.3,
{AD} does not belong to R.

 {A} joins {E} to create a new node AE, T⎺(A)={9}
and T⎺(E)={10}, so T⎺(AE)=T⎺(A)∩T⎺(E)= {⌀}. As
{AE} exists in Tr and 𝜎U(AE)=(5-0)/(10-2-0) ≥ 0.3,
Li= Li⋃{AE}.

Figure 3. IT-tree Tr after the branch corresponding to {A} has been

processed.

After that, the procedure UP-TID-EXTEND is
repeated recursively with Li={AB, AC, AE} and the
final support counts of corresponding nodes will be
updated. This process will be repeated recursively to
update the final support counts of all nodes in Tr. The
results are shown in Figure 4 and the final Tr are
shown in Figure 5.

Figure 4. Final IT-tree Tr.

E
x

ec
u

ti
o

n
 T

im
e

(%
)

180

160

140

120

100

80

60

40

20

0

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

 Number of Deleted Transactions T40I10D100K

Figure 5. Comparison of execution times for sequentially deleted

transactions (T40I10D100K database).

When the Inc-IT algorithm finishes, R= . Besides,
the final value of c is 2 in this example and f–c=2. This
implies that two more transactions can be deleted
without rescanning the original database.

5. Experimental Results

Experiments were conducted to show the performance
of the proposed algorithm. All the algorithms were
implemented on a PC with a Core 2 Duo (2×2GHz)
CPU and 2GBs of RAM running Windows 7. All the
algorithms were coded in C++. Two databases from
http://fimi.cs.helsinki.fi/data/ were used for the
experiments. The T40I10D100K (with 100000
transactions) and kosarak (with 990002 transactions)
databases were used.

Experiments were made to compare execution times
for mining all FIs using the pre-large-tree-based
algorithm [14] and the proposed algorithm when a
number of transactions were deleted from the database.
The T40I10D100K database was used for the first
experiment. A total of 100000 transactions were used
to construct an initial IT-tree and pre-large tree. Sets of
2000 transactions were then sequentially used as the
deleted transactions for the experiment. The upper and
the lower support thresholds were set at 2% and 5%,
respectively. Figure 6 shows execution times of the
two algorithms for processing each set of 2000 deleted
transactions. For the experiment with incremental
threshold values, the lower support threshold was set
from 2% to 6% (in 1% increments) and the upper
support threshold was set from 5% to 9% (in 1%
increments). Sets of 2000 transactions were used as the
deleted transactions for the experiment. Figure 7 shows
a comparison of execution times for various threshold
values. It can be seen that the proposed maintenance
algorithm runs faster than the pre-large-tree-based
algorithm.

E
x
ec

u
ti

o
n
 T

im
e

(%
)

160

140

120

100

80

60

40

20

0

 2% 3% 4% 5% 6%

 Threshold Values T40I10D100K

Figure 6. Comparison of execution times for various threshold

values (T40I10D100K database).

E
x

ec
u

ti
o

n
 T

im
e

(%
)

30

25

20

15

10

5

0

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

{}

A(6)

T⎺ x9

B(5)

T⎺ x9

C(6)

T⎺ x9 10

D(3)

T⎺ x9

AC(5)

T⎺ x9

AE(5)

T⎺ x

ACE(4)

T⎺ x

BC(4)

T⎺ x

BD(4)

T⎺ x

BE(4)

T⎺ x

BDE(3)

T⎺ x

CE(6)

T⎺ x

DE(3)

T⎺ x

E(7)

T⎺ x10

AB(3)

T⎺ x9

{}

A(6)

T⎺ x9

B(5)

T⎺ x9

C(6)

T⎺ x9 10

D(3)

T⎺ x9

AC(5)

T⎺ x9

AE(5)

T⎺ x

ACE(4)

T⎺ x

BC(3)

T⎺ x9

BD(3)

T⎺ x9

BE(4)

T⎺ x

BDE(3)

T⎺ x

CE(5)

T⎺ x10

DE(3)

T⎺ x

E(7)

T⎺ x10

AB(3)

T⎺ x9

600 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

 Number of Deleted Transactions kosarak

Figure 7. Comparison of execution times for sequentially deleted

transactions (kosarak database).

Next, the kosarak database was used for the
experiments. A total of 990002 transactions were used
to build an initial IT-tree and pre-large tree. Sets of
2000 transactions were sequentially used as deleted
transactions for the experiment. The upper and the
lower support thresholds were set to 0.5% and 1%,
respectively. Figure 8 shows execution times of the
two algorithms for processing each set of 2000 deleted
transactions. For the experiment with incremental
threshold values, the lower support threshold was set
from 0.5% to 2.5% (in 1% increments) and the upper
support threshold was set from 1% to 3% (in 1%
increments). Sets of 2000 transactions were used as the
deleted transactions for the experiment. Figure 9 shows
a comparison of execution times for various threshold
values. It can be observed that the proposed
maintenance algorithm also runs faster than the pre-
large-tree-based algorithm.

E
x

ec
u

ti
o

n
 T

im
e

(%
)

25

20

15

10

5

0

 0.5% 1% 1.5% 2% 2.5%

 Threshold Values kosarak

Figure 8. Comparison of execution times for various threshold

values (kosarak database).

6. Conclusions and Future Work

This paper proposed an approach based on the concept
of pre-large item sets for the maintenance of an IT-tree
during transaction deletion. The proposed algorithm
uses the IT-tree structure to facilitate tree traversal and
the updating of itemset supports. Instead of batch
mining, the proposed algorithm only concentrates on
processing deleted transactions. The incremental
supports of candidate item sets can be rapidly
computed using tidset intersections. Besides, pre-large
item sets are used to reduce the number of database
scans. User-specified upper and lower support
thresholds are used to avoid the small items directly
becoming large in the updated database when
transactions are deleted. All the tasks are processed
using the IT-tree structure. With these strategies, the
execution time of the proposed approach is lower than
the pre-large-tree-based algorithm.

The proposed algorithm belongs to calculations of
tidset intersections. Dynamic Bit Vectors (DBVs) [21]
is an efficient data structure for mining FIs. DBVs can
be used to compress a database in one scan and shorten
the length of the tidset, speeding up the tidset
intersections process. In the future, we will apply
DBVs structure for handling of deleted transactions.

References

[1] Agrawal R. and Srikant R., “Fast Algorithm for

Mining Association Rules,” In VLDB’94

Proceedings of the 20th International Conference

on Very Large Data Bases, Santiago de Chile,

Chile, pp. 487-499, 1994.

[2] Bodon F. and Ronyai L., “Trie: An Alternative

Data Structure for Data Mining Algorithms,”

Mathematical and Computer Modelling, vol. 38,

no. 7, pp. 739-751, 2003.

[3] Cheung D., Han J., Ng V., and Wong C.,

“Maintenance of Discovered Association Rules

in Large Databases: An Incremental Updating

Approach,” in Proceedings of the 12th IEEE

International Conference on Data Engineering,

New Orleans, USA, pp. 106-114, 1996.

[4] Han J., Pei J., and Yin Y., “Mining Frequent

Patterns without Candidate Generation,” in

Proceedings of ACM SIGMOD International

Conference on Management of Data, Dallas,

Taxas, USA, pp. 1-12, 2000.

[5] Hong T., Wang C., and Tao Y., “A New

Incremental Data Mining Algorithm using Pre-

Large Itemsets,” Intelligent Data Analysis, vol. 5,

no. 2, pp. 111-129, 2001.

[6] Hong T., Lin C., and Wu Y., “Incrementally Fast

Updated Frequent Pattern Trees,” Expert Systems

with Applications, vol. 34, no. 4, pp. 2424-2435,

2008.

[7] Hong T., Lin C., and Wu Y., “Maintenance of

Fast Updated Frequent Pattern Trees for Record

Deletion,” Computational Statistics and Data

Analysis, vol. 53, no. 7, pp. 2485-2499, 2009.

[8] Hong T. and Wang C., “An Efficient and

Effective Association-Rule Maintenance

Algorithm for Record Modification,” Expert

Systems with Applications, vol. 37, no. 1, pp.

618-626, 2010.

[9] Hong T., Wang C., and Tseng S., “An

Incremental Mining Algorithm for Maintaining

Sequential Patterns using Pre-Large Sequences,”

Expert Systems with Applications, vol. 53, no. 6,

pp. 7051-7058, 2011.

[10] Koh J. and Shied S., “An Efficient Approach for

Maintaining Association Rules based on

Adjusting FP-Tree Structures,” available at:

http://www.csie.ntnu.edu.tw/~jlkoh/publications/

dasfaa04.pdf, last visited 2004.

[11] Le T., Hong T., Vo B., Le B., and Hwang D.,

“Improving Efficiency of Incremental Mining by

Trie Structure and Pre-Large

Itemsets,” Computing and Informatics, vol. 33,

no. 3, pp. 609-632, 2014.

[12] Le T., Vo B., Hong T., and Le B., “An Efficient

Incremental Mining Approach based on IT-

An Efficient Approach for Mining Frequent Item sets with Transaction Deletion Operation 601

Tree,” in Proceedings of tIEEE International

Conference on Computing and Communication

Technologies, Research, Innovation, and Vision

for the Future, Ho Chi Minh, VietNam, pp. 57-

61, 2012.
[13] Lin X., Deng Z., and Tang S., “A Fast Algorithm

for Maintenance of Associations Rules in
Incremental Databases,” in Proceedings of the
2nd International Conference on Advanced Data
Mining and Applications, XiAn, China, pp. 56-
63, 2006.

[14] Lin C., Hong T., and Lu W., “Maintenance of the
Prelarge Trees for Record Deletion,” in
Proceedings of the 12th WSEAS International
Conference on Applied Mathematics, Stevens
Point, Wisconsin, USA, pp. 105-110, 2007

[15] Lin C., Hong T., and Lu W., “The Pre-FUFP
Algorithm for Incremental Mining,” Expert
Systems with Applications, vol. 36, no. 5, pp.
9498-9505, 2009.

[16] Srikant R. and Agrawal R., “Mining Generalized
Association Rules,” available at:
http://www.vldb.org/conf/1995/P407.PDF, last
visited 1995.

[17] Senhadji S., Khiat S., and Belbachir H.,
“Association Rule Mining and Load Balancing
Strategy in Grid Systems,” The International
Arab Journal of Information Technology, vol. 11,
no. 4, pp. 338-344, 2014.

[18] Srikant R. and Agrawal R., “Mining Quantitative
Association Rules in Large Relational Tables,” in
Proceedings of ACM SIGMOD International
Conference on Management of Data, New York,
USA, pp. 1-12, 1996.

[19] Thomas S., Bodagala S., Alsabti K., and Ranka
S., “An Efficient Algorithm for the Incremental
Updation of Association Rules in Large
Databases,” available at: https://www.aaai.org/
Papers/KDD/1997/KDD97-055.pdf, last visited
1997.

[20] Toivonen H., “Sampling Large Databases for
Association Rules,” available at:
http://www.vldb.org/conf/1996/P134.PDF, last
visited 1996.

[21] Vo B., Hong T., and Le B., “DBV-Miner: A
Dynamic Bit-Vector Approach for Fast Mining
Frequent Closed Item Sets,” Expert Systems with
Applications, vol. 39, no. 8, pp. 7196-7206, 2012

[22] Zaki M., “Scalable Algorithms for Association
Mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 12, no. 3, pp. 372-390,
2000.

Bay Vo received his PhD degrees in

Computer Science from the

University of Science, Vietnam

National University of Ho Chi Minh,

Vietnam in 2011. His research

interests include association rules,

classification, mining in incremental

database, distributed databases and privacy preserving

in data mining.

Thien-Phuong Le received his MSc

degrees in Information System from

the University of Science, Vietnam

National University of Ho Chi Minh,

Vietnam in 2011. His research

interests include association rules,

clustering, classification, mining in

incremental databases.

Tzung-Pei Hong received his PhD

degree in computer science and

information engineering from

National Chiao-Tung University in

1992. He served as the first director

of the library and computer center,

the Dean of Academic Affairs and

the Vice President in National

University of Kaohsiung. He is currently a

distinguished professor at the Department of Computer

Science and Information Engineering in NUK. He has

published more than 400 research papers in

international/national journals and conferences and has

planned more than fifty information systems. He is

also the board member of more than thirty journals and

the program committee member of more than two

hundreds conferences. His current research interests

include parallel processing, machine learning, data

mining, soft computing, management information

systems and www applications.

Bac Le received the BSc degree, in

1984, the MSc degree, in 1990, and

the PhD degree in Computer

Science, in 1999. He is an Associate

Professor, Vice Dean of Faculty of

Information Technology, Head of

Department of Computer Science,

University of Science, Ho Chi Minh City. His research

interests are in artificial intelligent, soft computing,

and knowledge discovery and data mining.

http://www.informatik.uni-trier.de/~ley/db/journals/iajit/iajit9.html#YafiAAB12
http://www.informatik.uni-trier.de/~ley/db/journals/iajit/iajit9.html#YafiAAB12
http://www.informatik.uni-trier.de/~ley/db/journals/iajit/iajit9.html#YafiAAB12
https://www.aaai.org/

602 The International Arab Journal of Information Technology, Vol. 13, No. 5, September 2016

Jason Jung is an associate professor

of Computer Engineering

Department at Chung-Ang

University, Korea. He was a

postdoctoral researcher in INRIA

Rhone-Alpes, France in 2006, and a

visiting scientist in Fraunhofer

Institute (FIRST) in Berlin, Germany in 2004. He

received the B.Eng. in Computer Science and

Mechanical Engineering from Inha University in 1999.

He received M.S. and Ph.D. degrees in Computer and

Information Engineering from Inha University in 2002

and 2005, respectively. His research topics are

knowledge engineering on social networks by using

machine learning, semantic Web mining, and ambient

intelligence. He has about 25 international journal

articles published in Knowledge-Based Systems,

Information Retrieval, Information Processing &

Management, Knowledge and Information Systems,

and Expert Systems with Applications. Also, he is an

editorial member of Journal of Universal Computer

Science and International Journal of Intelligent

Information and Database Systems. Moreover, he has

been editing 10 special issues in Information Sciences,

Journal of Network and Computer Applications,

Computing and Informatics and so on.

	An Efficient Approach for Mining Frequent Item sets with Transaction Deletion Operation

