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Abstract: Flow allocation problem is one of the important steps in reliability evaluation or optimization of a stochastic flow 

network. In a single source single sink networks it is easy to determine the flow on each path by using one of best known 

methods. While, in the case of multisource multisink flow network the flow allocation problem becomes more complicated and 

few studies have dealt with it. This paper investigates the flow allocation problem of multisource multisink stochastic-flow 

network with assuming that there are several sorts of resource flows transmitting through that network with unreliable nodes. 

The mathematical formulation of the problem is modified to increase the efficiency of obtaining optimal solutions that satisfy 

all constraints. A Genetic Algorithm (GA) is proposed to solve the flow allocation problem in existing multisource multisink 

networks such that the reliability of the system capacity vector is maximized. The results obtained for test cases are compared 

with other proposed methods to show that the proposed algorithm is efficient in obtaining optimal solutions that satisfy all 

constraints, and it achieves a maximum value of reliability of the system capacity vector. Finally, the proposed GA has 

employed to optimize the system reliability of multisource multisink stochastic flow networks. 
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1. Introduction 

The paper addresses the capacitated-flow networks, 

whose capacities of arcs are independent, limited, and 

integer-valued random variables. For these types of 

flow networks, several different approaches have been 

proposed to compute the probability that the system 

capacity level (i.e., the maximal flow of the system) is 

not less than a single commodity [8, 9, 10, 16, 18, 26]. 

In particular, Lin et al. [9, 18, 26] evaluated the 

reliability of flow networks with a single commodity 

and budget constraints, while in [16], the reliability has 

been evaluated under cost constraint.  The reliability of 

flow networks with multiple commodities has been 

studied in [20, 21]. Stochastic-flow networks has been 

studied in [8, 9, 10, 16, 18, 19, 20, 21, 26] are single-

source single-sink networks. 

System reliability evaluation in the case of existing 

bi-directed arcs has been studied in [17], where an 

algorithm presented to evaluate the reliability of an 

overall-terminal multistate flow network whose arcs 

are all bi-directed in terms of Minimal Paths (MPs). 

The system reliability under time constraints has been 

studied in [12, 15, 19]. 

Recently, Genetic Algorithms (GAs) have been used 

to solve many problems related to the reliability of 

flow networks. Lin and Yeh [14] proposed a GA based 

algorithm to determine the optimal components 

assignment with maximal network reliability subject to 

the  assignment  budget.  In  [27],  a  GA  is  used  to 

calculate   the   reliability   of   a   flow   network   with 

unreliable nodes. Lin and Yeh [11] introduced a GA to 

evaluate optimal network reliability under components 

assignments subject to a transmission budget, where 

the transmission cost depends on the capacity of each 

component. The algorithm in [11] depends on 

searching the best set of components to maximize the 

reliability. Lin and Yah [13] proposed a two-stage 

Non-dominated Sorting Genetic algorithm II (NSGA-

II) and Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) based approach to solve the 

problem of finding the optimal transmission line 

assignment with maximal network reliability and 

minimal cost for an stochastic computer network in 

which each transmission line has multiple states with a 

probability distribution. It should be noted that the 

stochastic-flow networks studied in [11, 13, 14, 27] are 

single-source single-sink networks. 

Flow allocation problem in the case of multisource 

multisink stochastic-flow networks [22] where a GA is 

applied to solve the flow allocation problem. The 

algorithm in [22] succeeds in finding optimal solutions, 

but these solutions do not satisfy all constraints, such 

as: Reliability of the capacity vector.  

The Flow allocation problem in the case of 

multisource multisink stochastic-flow networks with 

cost constraint has been studied in [23] proposed a 

multi-objective GA to solve the flow allocation 

problem with cost constraint. Also, the algorithm in 
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[23] succeeds in finding optimal solutions, but these 

solutions do not satisfy the demand constraints. 

In this paper, the mathematical formulation of the 

flow allocation problems will be modified to increase 

the efficiency of searching the optimal solutions that 

satisfy all constraints. Also, presents a GA to solve that 

modified formulation of the flow allocation problems. 

In addition, the presented GA has employed to 

optimize the reliability of multisource multisink flow 

network by searching the optimal capacity vectors.  

This paper is organized as follows. Section 2 

presents notations and assumptions. Section 3 

investigates the mathematical formulation of the flow 

problem. Section 4 presents reliability calculation of 

the capacity vector. Section 5 describes the different 

components of the proposed GA. Section 6 provide the 

pseudo code of the GA. Section 7 shows the illustrative 

examples used. Section 8 investigates the system 

reliability optimization problem. Finally, section 9 

presents conclusions.   

2. Notations and Assumptions 

2.1. Notations 

● G(A, N, M, S, T): Denotes a multisource multisink 

stochastic-flow network containing a set of n arcs 

A={ae| 1≤e ≤ n} and a set of q nodes N={ae| n+1≤e 

≤ n+q}. The maximum capacity of each component 

ae (arc or node) is denoted by M={M1, M2, …, 

Mn+q}, where Me is an integer.   

● S{s1,…, sσ}: set of source nodes, σ is number of 

source nodes.  

● T{t1, …, tθ}: Set of sink nodes, θ is the number of 

sink nodes. 

● R: {rw, i| 1≤w ≤ m, 1≤i ≤ σ}, where rw, i is the 

maximum quantity of resource w that source node si 

can supply. 

● D: {dw, j| 1≤w ≤ m, 1≤ i≤ θ}, where dw, j is the 

demand for resource w at sink node tj. 

● MPi,j,k: The k
th
 MP  from si to tj. 

● MPS {MPi, j, k| 1≤ i≤ σ, 1≤ j≤ θ, 1≤ k≤ ki, j}: A set of 

all MPs, where ki, j represents the number of MPs 

from si to tj. 

● Np: Total number of MPs contained in MPS.   

● fi,j,k,w: Quantity of resource w flowing through MPi,j,k. 

● F: Flow vector defined as F= (f1, 1, 1, 1, f1,1,2,1, …, 

1i,j,k ,i,j
f , …, 

i,j,k ,mi,j
f , …, 

σ,θ,k ,mσ,θ
f ). 

● X: Capacity vector defined as X= (x1, x2, …, xe,, …, 

xn+q), where 
1 1 1 1

{ }
k i , j m

i , j ,k ,w e i , j ,k
i j k w

x f a MPe
σ θ

= = = =

= ∈∑ ∑ ∑ ∑ . 

● R(X): Probability of X. 

● Popsize: Population size.  

● Maxgen: Maximum number of generations. 

● gn: Generation number. 

● pm: GA mutation rate. 

● pc: GA crossover rate. 
 

2.2. Assumptions 

1. The capacity of each component ea  is an integer-
valued random variable, which takes values 0< 1< 
2< …< Me according to a given distribution. 

2. The capacities of the components are statistically 

independent. 

3. Formulation of Flow Allocation Problem  

In this section, we analyze the formulation of the flow 

allocation problem introduced in [22] and then 

investigate how to modify it. Every F is considered as 

the solution of problem model and each element of 

stands for the flow quantity in a certain MPs. For each 

flow allocation pattern F, one can construct a vector 

XF=(xF1, xF2, …, xFe,,…, xF(n+q)):  

               
1 1 1 1

{ }
k i , j m

Fe i , j ,k ,w e i , j ,k
i j k w

x f a MP
σ θ

= = = =

= ∈∑ ∑ ∑ ∑  

Let Ω Set of all generated XF. The objective function is 

the probability of successfully transmitting resources 

according to F denoted by R(XF). The problem 

formulation presented in [22] is as follows: 

Max R(XF) FX Ω∀ ∈  s.t. 

           
1

, 1,  ..., 1, ...,
1

k i,j

i , j , k ,w w,j

i

f d w m ; j
k

σ

θ
=

= = =∑ ∑
=

     

             
1 1

, 1, ..., 1, ...,
k i,j

i , j ,k ,w w,j

j k

f r w m ;i
θ

σ
= =

≤ = =∑ ∑               

1, ...,
Fe e

x M e n q≤ = +  

1, ..., 1,..., 1, 1, ...,*

i , j ,k ,w , j
f N  i σ, j θ    w ..., m, k ki∈ = = = =  

Where N
*
 is the set of nonnegative integers. 

Constraint 5 implies that the flow on every MP 

belongs to N
*
. In the absence of any restrictions, the 

abovementioned result leads to the following 

realizations:  

1. The selected flow values on any MP may exceed the 

capacity of that path.   

2. A greater number of generations will be required to 

obtain feasible solutions.  

To alleviate the disadvantages mentioned above, the 

formulation of the flow allocation problem is modified 

as follows: 

If MP
1
, MP

2
, …, MP

np
 are MPs contained in MPS, 

then the maximum capacity Lj of MP
j
 is defined as: 

                         { }j
j e eL min M a MP= ∈  

According to Equation 6 the lowest capacity of any 
component (arc or node) contained in a MP MP

j
 is the 

maximum capacity of that path. For example, consider 
the path MP={a1, a2, a5} and M1= 3, M2= 2 and M5= 6 
then the maximum capacity of that path equals to 2.  
Additional details about the maximum path capacity 
and its applications can be found in [1, 16]. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Flow f
j
 on MP

j
 must satisfy f

j
≤ Lj for each j= 1, 2, 

…, np i.e., the flow carried by the path doesn’t exceed 

the maximum capacity of that path. 

We define Min C=min {Lj| j= 1, 2, …, np}, where 

Min C is the maximum  value of the flows generated 

on the MPs contained in MPs. Consequently, 

constraint 5 becomes: 

1,..., 1,...,

1,..., , 1, ...,

i , j ,k ,w

i, j

f MinC i σ, j θ

w m k k

≤ = =

= =
 

Where wf ,k,j,i is a nonnegative integer. 

To obtain optimal solutions, constraint 2 is modified 

as: 

           
1 1

1, ..., 1, ...,
k i,j

i , j ,k ,w w, j

i k

f d , w m ; j
σ

θ
= =

≤ = =∑ ∑  

By modifying constraints 2 and 5, we guarantee that 

our algorithm solves the flow allocation problem and 

obtains the optimal solution with fewer generations. 

4. Calculating the Reliability of the 

Capacity Vector 

Let X= (x1, x2, xe, …, xn+q) represent the capacity vector 

of the network, where xe is an integer-valued random 

variable representing the current capacity of 

component ae. We define B=(b1, b2, …,be, …, bn+q), 

where be represents the probability that the 

transmission is successful, i.e., be=Pr{be ≥  xe}. Then: 

              
1 2

1

( ) ( ) ( )
n q

n q
e

x Pr b b ... b Pr beR
+

+
=

∩ ∩ ∩ == ∏  

For more details about computing the state probability 

of a multistate system, [6]. 

5. Proposed GA 

A GA is an evolutionary algorithm that provides near 

optimal solutions to combinatorial optimization 

problems [7]. A chromosome is a data structure 

containing a “string” of task parameters, or genes. A 

chromosome represents a potential problem solution 

and is typically encoded as a string to facilitate 

mutation and crossover operations. The fitness of an 

individual solution is a value that reflects its 

performance (i.e., how well it solves a certain task). A 

fitness function is a mapping of the chromosomes in a 

population to their corresponding fitness values. A 

more detailed discussion on GAs [2]. For more details 

about GA operations (coding, mutation, crossover, 

etc.,) refer to [3]. 

In the following subsections, we define the basic 

operations of our proposed GA. 

5.1. Coding 

If the network has np MPs, then the chromosome F 

contains m×np fields, where m is the number of 

resources. Each field in F represents the (current) flow 

of a path, F= (f1,1,1,1, f1,1,1,2, …, 
1i, j,k ,i, j

f ,…,
i, j,k ,mi, j

f , 

…,
σ,θ,k ,mσ,θ

f ).     

5.2. Crossover 

In our algorithm, we apply a one-cut-point crossover 

approach, [2]. In particular, an integer value (rn) is 

randomly generated in the range (1, m×np−1) where 

m×np is the length of the chromosome. This value is 

used to breed two offsprings (two new chromosomes fC 

and fD) from two parents (fA and fB) selected randomly. 

The rate of the breeding operation is defined by the 

value of Pc:  

1

1 1

1

1 1

[ ( )] [ ( )]

[ ( )] [ ( )]

t t rn t m* np

C A j B j rn

t t rn t m* np

D B j A j rn

f f j f j

f f j f j

+
= = +

+
= = +

= +

= +
 

5.3. Mutation 

Chromosomes undergo mutation according to mutation 

rate Pm, [22, 23] as follows: 

Generate a random number rm∈ [0,1] 

if  rm≤ Pm then 

     { 

 for j = 1 to m*np, do 

         
( ( ) ) ( ) 0

( ) {0 1 }

t t

A A

t

A

If f j Minc  then f j

Else f j v,v , ,...,MinC

= =

= ∈
 

     ( ) ( )t 1 t

A A
f j f j+ =  

 End for 

} 

5.4. Fitness Function 

The fitness function E(F) equals to the probability of 

the capacity vector R(XF) only if the generated 

chromosome satisfies all constraints. Otherwise, E(F) 

is set to 0. Hence, the fitness function has the following 

form:  
 

           
( )

( )
0

F
R X if F satisfies all constraints

E F  
otherwise


= 


 

5.5. Selection Mechanism 

The Fitness Uniform Selection Scheme (FUSS), [5], is 
used in the proposed GA to select new chromosomes. 
FUSS is defined as: if the lowest/highest fitness values 
in the current population are E(F)min/max, we select a 
fitness value E(F) uniformly in the interval [E(F)min, 
E(F)max]. Then, the individual ip with fitness nearest 
to E(F) is selected.  

6. Pseudo-Code of the Proposed Algorithm 

Algorithm 1: Overall GA to maximize R(XF).   

Begin GA. 

Input parameters: M, R, D, Pc, Pm, Popsize, Maxgen; 

        gn=0, gt=0; 

        Initialize P(gn); 

(7) 

(8) 

(9) 

(10) 
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        While gn < Maxgen, do 

While gt < Popsize, do 

  Use FUSS to select two chromosomes; 

  Apply crossover according to Pc; 

  Apply mutation according to Pm; 

  Evaluate the current chromosome; 

  If (E(F) > 0), then gt= gt+1; 

End do; 

  Save best p(gn); 

  gn:=gn+1; 

  Replace worst p(gn) with best p(gn−1); 

        End do 

End GA 

7. Illustrative Examples 

7.1. Network with Two Source and Two Sink 

Nodes 

To illustrate the proposed GA, we use the network 

presented in Figure 1, taken from [22]. This network 

contains two source and two sink nodes. The 

probability distribution of the capacity of each arc was 

included in [22]. The genetic parameters used in the 

proposed algorithm are Popsize=10, Maxgen=1000, 

Pc=0.95 and Pm=0.05. The algorithm is iterated 10 

times. The MPs are as follows: 

MP1,1,1={a1, a15, a5} 

MP1,1,2={a1, a15, a6, a18, a9} 

MP1,1,3={a2, a16, a7, a18, a9} 

MP1,2,1={a1, a15, a6, a18, a14} 

MP1,2,2={a2, a16, a7, a18, a14} 

MP2,1,1={a3, a16, a7, a18, a9} 

MP2,1,2={a4, a17, a8, a19, a13, a18, a9} 

MP2,2,1={a3, a16, a7, a18, a14} 

MP2,2,2={a4, a17, a8, a19, a13, a18, a14} 

MP2,2,3={a4, a17, a8, a19, a10} 

MP2,2,4={a4, a17, a11, a20, a12} 

Note that, M=(12,10, 10, 14, 8, 10, 14, 12, 16, 8, 10, 

10, 12, 16, 14, 16, 16, 24, 14, 10), R= (r1,1, r1,2, r2,1, 

r2,2)= (15,17,10,13), D=( d 1,1, d 1,2, d2,1, d 2,2)= (11, 12, 

7, 10). 

 
Figure 1. Network with two source and two sink nodes. 

In Table 1, we list the best value of E(F) and the 

corresponding F vector for the 10 best generations. In 

the table, “No.” denotes the generation number. 

Table 1. Best E(F) values at each generation and the corresponding 
F vector. 

No. Best E(F) Corresponding F 

419 0.764049 1  2  0  2  1  1  1  0  1  0  2  0  0  0  0  0  0  3  3  0  0  1 

421 0.752860 3  2  0  2  1  1  1  0  1  0  0  0  0  0  0  0  0  3  3  0  0  1 

405 0.752518 1  2  0  2  1  1  1  0  1  0  0  2  0  0  0  0  0  3  4  0  0  1 

434 0.749821 3  2  0  2  1  1  0  0  1  0  0  2  0  0  0  0  0  3  3  0  0  1 

436 0.733635 3  2  0  2  1  1  0  0  1  0  0  1  0  1  0  0  1  4  0  0  0  1 

414 0.718476 1  2  0  2  1  1  1  0  1  0  2  2  0  0  0  0  0  3  3  0  0  1 

415 0.716303 3  2  0  2  1  1  1  0  1  0  0  2  0  0  0  0  0  3  3  0  0  1 

371 0.716053 3  2  0  2  1  1  1  0  1  0  2  2  0  1  0  0  0  2  0  0  0  1 

387 0.716053 3  2  0  2  1  1  1  0  1  0  2  2  0  1  0  0  0  2  0  0  0  1 

671 0.706817 4  0  1  1  1  1  0  0  1  0  0  1  1  1  0  1  0  4  1  1  0  1 

The best value of E(F) is 0.764049, which was 

obtained in generation No. 419. In comparison with the 

results obtained by [22], the best value of E(F) was 

0.16969. Also, R(X) values have been calculated to the 

six optimal solutions obtained by the algorithm 

presented in [22] and it has discovered that all R(X) 

values equal to 0.  

In addition, to compare our algorithm with that one 

presented in [23], the cost constrain has been added to 

the problem formulation. Table 2 compares the results 

obtained by the GA presented in [23] and the results 

obtained by the proposed algorithm presented in this 

paper. The values of E(F) (named in [23] as R(F)) 

obtained by the presented algorithm are better than that 

obtained by [23] with less costs. 

Table 2. Comparison between the proposed algorithm and the 
algorithm presented in [23]. 

Results Obtained by the Proposed Algorithm Results Obtained by [18] 

E(F) CPe(F) R(F) CPe(F) 

0.76405 2.9958 0.6534176 3.8822 

0.75286 2.9466 0.6287173 3.7453 

0.75252 3.3021 0.5890704 3.6284 

0.74982 3.253 0.5316544 3.5326 

0.73364 3.1726 0.5509963 3.5605 

0.71848 3.4592 0.5700666 3.5873 

0.71630 3.4100 0.6366206 3.7587 

0.71605 3.2820 0.5175207 3.5159 

0.70682 3.5593 0.5305662 3.5315 

0.70596 3.5358 0.5272422 3.5293 

7.2. Network with Two Source and Three Sink 

Nodes 

The algorithm has been applied to another network 

given in Figure 2.  

          
Figure 2. Network with two source and three sink nodes. 

Let, M= (12, 10, 10, 14, 8, 10, 14, 12, 16, 8, 10, 10, 12, 16) 

R= (r1,1, r1,2, r2,1, r2,2 )= (15, 17, 17, 18) 

D=(d1,1, d1,2, d1,3, d2,1, d2,2, d1,3)= (16, 18, 17, 15, 20, 18) 
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The information of each component is given in Table 

3. The MPs are as follows: 

MP1,1,1={a1, a12, a7} 

MP1,1,2={a2, a13, a5, a12, a7} 

MP1,2,1={a1, a12, a8} 

MP1,2,2={a2, a13, a9} 

MP1,2,3={a2, a13, a5, a12, a8} 

MP1,3,1={a2, a13, a10} 

MP2,1,1={a3, a13, a5, a12, a7} 

MP2,1,2={a4, a14, a6, a13, a5, a12, a7} 

MP2,2,1={a3, a13, a9} 

MP2,2,2={a4, a14, a6, a9} 

MP2,3,1={a3, a13, a10} 

MP2,3,2={a4, a14, a6, a10} 

MP2,3,3={a4, a14, a11} 

Table 3. Probability distribution of components’ capacities. 

an 0 1 2 3 4 5 6 7 

a1 0.001 0.001 0.003 0.004 0.005 0.005 0.006 0.007 

a2 0.001 0.003 0.003 0.004 0.005 0.007 0.007 0.008 

a3 0.002 0.002 0.003 0.006 0.007 0.007 0.010 0.012 

a4 0.001 0.001 0.002 0.003 0.005 0.008 0.010 0.011 

a5 0.001 0.002 0.009 0.012 0.020 0.040 0.050 0.060 

a6 0.001 0.002 0.002 0.005 0.010 0.012 0.015 0.017 

a7 0.001 0.001 0.002 0.005 0.008 0.010 0.012 0.015 

a8 0.001 0.002 0.005 0.005 0.007 0.008 0.010 0.012 

a9 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.008 

a10 0.002 0.003 0.005 0.006 0.007 0.009 0.012 0.015 

a11 0.002 0.002 0.003 0.005 0.007 0.008 0.010 0.011 

a12 0.001 0.002 0.003 0.005 0.008 0.009 0.010 0.012 

a13 0.001 0.001 0.003 0.005 0.005 0.010 0.011 0.017 

a14 0.001 0.001 0.002 0.002 0.003 0.005 0.007 0.009 

8 9 10 11 12 13 14 15 16 

0.010 0.015 0.060 0.150 0.733 0.000 0.000 0.000 0.000 

0.009 0.010 0.943 0.000 0.000 0.000 0.000 0.000 0.000 

0.015 0.017 0.919 0.000 0.000 0.000 0.000 0.000 0.000 

0.012 0.015 0.015 0.016 0.020 0.025 0.856 0.000 0.000 

0.806 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.020 0.025 0.891 0.000 0.000 0.000 0.000 0.000 0.000 

0.015 0.017 0.020 0.022 0.025 0.030 0.817 0.000 0.000 

0.015 0.015 0.016 0.020 0.884 0.000 0.000 0.000 0.000 

0.009 0.010 0.011 0.015 0.016 0.017 0.019 0.020 0.857 

0.941 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.020 0.030 0.902 0.000 0.000 0.000 0.000 0.000 0.000 

0.015 0.040 0.895 0.000 0.000 0.000 0.000 0.000 0.000 

0.018 0.020 0.025 0.031 0.853 0.000 0.000 0.000 0.000 

0.016 0.021 0.024 0.025 0.030 0.035 0.040 0.060 0.719 

Table 4 summarizes the results of applying the 

proposed GA on the network given in Figure 2. 

Table 4. Best E(F) values and the corresponding F vector of the 
network given in Figure 2. 

Best F(F) Corresponding F 

0.616239 0 0 2 0 0 2 2 0 0 2 0 1 0 1 1 1 0 2 1 0 1 2 2 0 0 1 

0.551932 0 1 2 1 0 1 2 0 0 2 1 0 0 1 0 1 2 2 2 0 1 0 0 0 1 0 

0.723281 0 1 2 1 0 1 2 0 0 2 1 0 0 0 0 0 1 2 0 1 1 2 1 0 0 1 

0.676186 2 0 2 0 2 2 0 0 0 2 0 0 1 1 0 0 2 1 1 1 2 0 0 0 0 2 

0.510357 0 1 2 1 0 1 2 0 0 2 1 0 0 1 0 1 1 2 1 1 2 2 0 0 1 0 

0.617383 1 1 0 2 1 2 1 1 0 0 0 1 2 0 0 0 1 2 0 1 1 2 1 0 0 1 

0.646794 0 0 2 0 0 2 2 0 0 2 0 1 0 1 0 1 1 2 1 1 2 2 0 0 1 0 

0.576957 1 0 0 1 0 1 0 1 0 2 0 0 1 1 1 1 0 2 1 0 1 2 2 0 0 1 

0.766645 2 1 1 0 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 0 2 2 0 0 1 1 

0.486069 0 1 2 1 0 1 2 0 0 2 1 0 0 1 1 0 2 2 0 2 0 2 2 0 1 0 

8. Optimizing System Reliability RS of 

Multisource Multisink Stochastic-Flow 

Network 

This section investigates how to modify the GA 
presented in section V to optimize the system reliability 
of multisource multisink network. It is known that, if 
the flows have been determined then the capacity 
vector XF can be evaluated. So, the proposed GA can 

be used to determine the optimal set of lower boundary 
points that maximize the system reliability. The 
following subsections investigate the formulation of 
the RS optimization problem, RS Evaluation, solving RS 
optimization problem, and presenting an illustrative 
example to show how the presented GA solve RS 
optimization problem. 

8.1. Formulation of RS Optimization Problem  

The formulation of the system reliability optimization 
problem in the case of the multisource multisink 
networks is as follows: 

Find the optimal set of XF  s.t. 
RS is maximized 

The set of optimal capacity vectors XF are obtained by 
using the presented GA to solve the flow allocation 
problem presented in section 2.   

B. Evaluating RS 

If X
1
, X

2
, …, X

Popsize
 are the generated set of the 

capacity vectors by using proposed GA presented in V. 

Then, all lower boundary points can be obtained by 

removing non-minimal ones in X
1
, X

2
, …, X

Popsize
 [15]. 

If X
1
, X

2
, …, X

q
 are all lower boundary points, then 

the system reliability RS is evaluated by:   

1
{ { }}iq

S i
R Pr Y Y X== ≥U  

Where Pr{Y}= Pr{y1}. Pr{y2}, …, Pr{yn}. The 

inclusion-exclusion rule presented in [6] can be used to 

calculate RS as follows: 

If A1= {Y|Y≥X
1
}, A2= {Y|Y≥X

2
}, …, Aq= {Y|Y≥X

q
}, 

then apply inclusion-exclusion rule to calculate RS by 

using the relation: 

    
1

1 2

{ } { } { }

( 1) { }

S i i j i j k
i i j i j k

q

q

R Pr A Pr A A Pr A A A

... Pr A A ... A

≠ ≠ ≠

−

= − ∩ + ∩ ∩ −∑ ∑ ∑
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Note that, if A= (a1, a2, …, ae,…, an+q) then: 

                              
1

( ) ( )
n q

e
e

Pr aPr A
+

=

= ∏  

8.2. Solving RS Optimization Problem  

The pseudo code of the proposed GA Algorithm 1 

given in section V will be extended to solve the Rs 

optimization problem as the following steps: 
 

Algorithm 2: Overall GA to maximize RS. 

Begin GA 

Input parameters: M, R, D, Pc, Pm, Popsize, Maxgen; 

        gn= 0, gt= 0; 

Initialize P(gn); 

  While gn < Maxgen, do 

While gt < Popsize, do 

  Use FUSS to select two chromosomes; 

  Apply crossover according to Pc; 

  Apply mutation according to Pm; 

  Evaluate the current chromosome; 

  If (E(f) > 0), then gt= gt+1; 

End do; 

(13) 

(12) 

(11) 
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  Evaluate the set of lower boundary points XF for the  

  obtained F; 

  Evaluate RS  for the generated Xs as described in B. 

      save best p(gn); 

     gn:=gn+1; 

 Replace worst p(gn) with best p(gn−1); 

        End do 

End GA 

8.3. Illustrative Example 

The proposed GA presented in B has been applied to 

the network example given in section 7.1. Table 5 

shows the set of lower boundary points of the first 

generation, RS equals to 0.764049. The genetic 

parameters used in the proposed algorithm are 

Popsize=10, Maxgen=1000, Pc=0.95 and Pm=0.05. The 

algorithm is iterated 10 times. 

Table 5. Results of first generation. 

The Optimal Lower Boundary Points 
9  1  4  13  5  4  5  8  7  3  5  5  5  5  9  4  13  14  8  5 

6  5  4  13  2  4  9  8  9  3  5  5  5  6  6  7  13  18  8  5 

5  5  4  14  1  4  9  8  11  4  6  6  4  5  5  8  14  17  8  6 

8  8  5  12  3  5  13  8  9  4  4  4  4  12  8  8  12  22  8  4 

9  1  8  12  5  4  9  9  10  2  3  3  7  8  9  8  12  20  9  3 

8  8  1  12  3  5  9  10  12  6  2  2  4  5  8  4  12  18  10  2 

6  5  8  7  2  4  13  5  9  2  2  2  3  8  6  11  7  20  5  2 

8  5  3  10  1  7  8  9  12  4  1  1  5  5  8  6  10  20  9  1 

12  4  6  10  3  9  10  9  14  4  1  1  5  6  12  7  10  24  9  1 

In Table 6, we list the best value of RS for the 10 

best generations.  

The best value of RS is 0.830087, which was 

obtained in generation No. 421.  

 

 

 

 

Table 6. Best 10 RS values and the corresponding generation 
number. 

No. RS  No. RS 
421 0.830087 405 0.801639 

420 0.815528 414 0.801074 

419 0.814427 426 0.799554 

406 0.804929 413 0.801442 

416 0.802693 412 0.801401 

9. Conclusions and Discussion 

We modified the formulation of the flow allocation 
problem to guarantee that the optimal solution is 
obtained. Then, we proposed a GA to solve this 
problem while considering that the probability of the 
capacity vector is maximized.  

The proposed algorithm obtained solutions with 

values of E(F) greater than 0, i.e., R(XF) was 

maximized. For comparison, we used the algorithm 

presented in [22] to obtain solutions for the same 

problem and their R(XF) values have been calculated. 

We discovered that all R(XF) values were equal to 0, 

which implies that the solutions obtained using the 

algorithm in [22] fail to satisfy all constraints.  

Our algorithm, which is based on the proposed 

formulation, can efficiently solve the flow allocation 

problem while maximizing the reliability of the 

capacity vector with least costs in comparison with 

[23].  

Finally, the presented GA has been employed to 

solve the system reliability optimization problem. The 

presented GA is based on generating the optimal set of 

lower boundary points and then the system reliability 

can be evaluated. 

For the future work, the flow problem presented in 

this paper can be solved by IGA [24] or by other 

famous algorithms such as DE [4] and PSO [25], May 

improve the results. 
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