
The International Arab Journal of Information Technology 125

Using Ontologies for Extracting Differences in the

Dynamic Domain: Application on Cancer Disease

Nora Taleb
Laboratory for Electronic Document Management LABGED, Badji Mokhtar University, Algeria

Abstract: Over time, the data representatives a given domain can change, both the data model reflecting the area. In this
situation, the presence of strategies that can summarize the produced changes is mandatory. This study presents an

implemented approach based on data mining techniques in order to extract the differences, the model is domain ontology and

the changes are represented by two ontology’s versions. The results are summarized in changes report. An experimentation of

the tool was made on the ontology of the cancer disease and satisfactory results were obtained.

Keywords: Ontology change, ontology versioning, web ontology language scheme, retrieval information.

Received February 27, 2013; accepted September19, 2013; published online March 8, 2015

1. Introduction

The analysis of changes between ontologies is an
important service for ontology engineering [16] it
presents a very critical task in information retrieval. As
one of important management of ontology versioning,
detecting changes provide information about
differences between versions of ontologies. Generally,
the differences between ontology’s versions are caused

by changes in the domain itself [2٢] they can arise

from different situations:

• The increase in the number of ontologies specifying
the same field.

• The need to establish correspondences, to trace the
evolution of ontology through the comparison of the
various versions [29].

• The generation of mediators for queries.

• Several versions can result, when a distributed
ontology is developed in an independent way [8].

An ontology resulting from the application of a change
can be considered as a new version as shown in Figure
1.

Figure 1. Ontology development process [2٥].

The analysis task must be carried out in a
completely automatic way as it is not realistic to
perform the mapping of ontologies by hand, a fortiori

when these ontologies exceed a certain size or
complexity. Most analysis studies compare file based
ontologies to find differences between them [3].
However, version comparison by comparing text files
is an approach which does not work [2]. In order to,
cope with the complex problem of ontology’s versions
differences, several related research disciplines have
emerged (such us: Ontology alignment, margins,
mapping, etc.,), each dealing with a different facet of
the problem [3]. The current state of the art in ontology
engineering ignores logically changes and lacks any
further characterization of even significant changes.
The problem of computing the difference between
pairs of ontologies has been approached both
syntactically and semantically.

The ideal would be to preserve the various versions
of ontology and to keep all the information concerning
the differences and compatibilities between them. This
requires methods of versions identification of versions
differentiation (based on the same principles as the
methods of measurement of semantic similarities in
ontology alignment) and of specification of relations
between versions; procedures of update of ontology;
and of the mechanisms of access to the various
versions of ontology [3].

Two major aspects of ontology differences can be
distinguish: The detection of changes and the
presentation of changes to the user.

In this paper, we propose a framework both logical
and probabilistic allowing the automatic comparison of
ontologies. The method extract the differences between
ontology’s versions both syntactic by using the
characteristics of Web Ontology Language (OWL)
scheme [30] and semantic by using some similarity
measures in order to detect the distance between the
entities of ontology versions (concepts, relations). In
particular, we present a software tool using the

Normalisation Formalisation Opérationnalisation

Detection et spécifi-
cation des besoins Validation

Déploiement
et diffusion

Evolution

Maintenance Evaluation Utilisation

126 The International Arab Journal of Information Technology

semantics of the definitions and axioms of OWL in
order to establish the journal of changes between two
ontological versions.

The remainder of this paper is structured as follows:
We start with a short discussion of related works
section 2. We continue with the presentation of OWL
language in section 3. Then, we present our proposed
approach in detail in section 4 with two correspondent
algorithms. We introduce the software tool used for
extraction differences in section 5. Before the
conclusion, we evaluate the performance of our
software tool by using two versions of the same
ontology for cancer disease, V1 includes information
concerning inflammatory cancer and V2 for Non
inflammatory in section 6 and finally we conclude in
section 7.

2. Related Works

2.1. Tools to Manage Ontology Changes

Within the framework of management of change
suggested for ontologies, several specialized
prototypes have been developed [9, 10, 13, 17]. Noy et
al. [2٢٤ ,١] presents a web-based tool the onto view
tool implements a procedure of detection of changes
for ontologies in Resource Description Framework
(RDF) [2٠]. Its principle consists in observing rules in
order to discover specific operations of change and to
produce sets of transformation between the versions of
ontology [12] it compares ontologies on the data model
not the representation to detect changes. By grouping
RDF-triples per definition, the necessary
representational knowledge can be retained. Djedidi et
al. [6, 7, 8] have developed Two extensions of the
PROMPTdiff tool-one plug-in developed for protected
to research mappings between frames while basing
itself on heuristics [٢٤] were proposed in [٢٤] their
role is to define the relations of evolution between the
elements of two ontologies versions. The user interface
makes it possible to visualize certain complex changes
between versions of ontology.

A more complete system of ontology evolution is
described in [15, 2٦]. The core of the system is based
on the CHAO ontology of changes and annotations
(Exchange and Ontology Annotation). The instances of
the CHAO ontology represent the changes between
two versions of the ontology and the annotations users
related to these changes. The system is implemented in
the form of two protected plug-in:

• Plug-in management of change giving the access to
a list of changes and allowing the users to add
individual or grouped annotations of change and to
consult the history of the concepts.

• PROMPT Plug-in providing comparisons between
two versions of an ontology and information on the
users having made these changes and facilitating the
acceptance or the rejection of the changes [14, 31].

These methods perform comparison based on file-
storage ontologies. When ontologies continue to
evolve, There is Much redundancy among all versions
of ontologies. It is not space efficient [2٦].

2.2. Classification of the Changes

The objective of classification changes is to define, for
a given language of representation of ontologies,
taxonomy of changes specifying of the classes of
changes and their properties. The principal
classifications defined in the literature were proposed
for languages KAON2 [4, 5, 7] and OWL3 [14]. The
KAON ontology of changes classifies the changes
according to three levels of abstraction [16]:

• Elementary Changes: Applying modifications to
only one entity of ontology.

• Composite Changes: Applying modifications in the
direct neighborhood of an entity of ontology.

• Complex Changes: Applying modifications to an
arbitrary set of entities of ontology.

Moreover, the KAON changes were also classified
according to their effect [6]:

• Additive Changes: Adding new entities to ontology
without deteriorating the existing entities.

• Subtractive Changes: Removing certain entities or
parts of entities. Thought like a minimal and
complete unit, the ontology of changes KAON does
not take into account the modifications of entities.
Klein and Fensel [14] differentiates from the basic
operations of changes and complex changes:

1. The basic changes are simple and atomic changes
which can be specified while being based only on
the structure of ontology and which modify only
one characteristic of the model of knowledge
OWL [28] i.e., only one entity of the ontology
(like an addition operation of a class or a relation
suppression “is-a”).

2. The complex changes correspond to composite
and rich changes grouping logical sequences of
basic changes and incorporating information on
their impact on the logical model of ontology (as
for example moving up subclasses, widening the
same domain of a property object to its super
classes, amalgamating classes, etc.,). In addition
to, their specification, complexity also appears in
the effects of these changes. If the effects of the
basic changes remain relatively minor, the
cumulated effects of all the intermediate changes
carrying out change complexes can be important.

2.3. Methods of Ontological Comparison

There are four methods of comparison of ontologies
[19]:

1. Comparison of the Internal Structures: Compare the
internal structure of the entities (e.g., value interval,
cardinality of attributes, etc.,).

Using Ontologies for Extracting Differences in the Dynamic Domain: Application on Cancer Disease 127

2. Comparison of the External Structures: Compare
the relations entities with others. It is composed of
methods of comparison of the entities within their
taxonomies and methods of comparison of the
external structures by taking the cycles into account.

3. Comparison of the Instances: Compare the
extensions of the entities, i.e., it compares the set of
the other entities which are attached to them
(concepts of ontology).

4. Semantic Method: Compare interpretations (or more
exactly the Models) of the entities.

3. Web Ontology Language

The OWL is a standard OWL proposed by W3C
recently. OWL is intended to be used by applications
to represent terms and their interrelationships. It is an
extension of RDF and goes beyond its semantics.
OWL provides a richer set of vocabulary by further
restricting on the set of triples that can be represented.
An OWL document can include an optional ontology
header and any number of class, property and
individual descriptions or axioms [2٧]. A named class
in an OWL ontology can be described by a class
identifier, for example, “<owl: Class
rdf:ID=”Cancer_disease”/>” defines a class
“Cancer_disease” which is an instance of “owl: Class”.
There are two kinds of properties can be defined in
OWL: Object property (owl: ObjectProperty) which
links individuals to individuals and data type property
(OWL: DatatypeProperty) which links individuals to
data values.

The semantics of OWL is defined in the way
analogous to the semantics of description logic [12, 2٢]
as shown in Figure 2.

Figure 2. Multiple range OWL properties in Java [2٣].

4. Proposed Approach for the Comparison

between Versions of Ontologies

We propose CompOnto method for extracting the
differences between the versions of ontology, it is
divided into two stages: The first concerns a syntax
extraction, based on the formalism of OWL syntax,
and the second is using a measure of similarity which
calculates the distance between two ontological
entities.

Before starting, We must present our definitions for:
Ontology, version of ontology, and how a change can
be represented as shown in Figure 3.

Figure 3. Fonctionnel architecture of compdiff method.

• Definition 1. In OWL ontology, concepts are
arranged in hierarchical structure called classes and
relate each other with properties and axioms. The
structure of an OWL ontology is represented by a
tuple S:={C, R, <, X}

Where C, R: Are separated sets containing the
concepts and no taxonomic relationships. <: CXC is
a partial order on C, which defines the concept
hierarchy. X: R CXC is the signature of a taxonomic
relationships.

The lexicon of the ontology is the tuple L:={Lc,
Lr, F, G} where Lc, lr: Are separated disjoint sets.
F, G: Are two references relationships.

The hierarchy of concepts is defined by a
structure: S0:={C, <}

The A concept is defined by L0:={Lc, F}.

• Definition 2. One version of an ontology is a four-
tuple, = < CV I, PV I, AV I, IVi >. Each has the
same meaning as defined in Definition 1.

In our approach, we extend Definition 1 in which
version numbers are applied to every ontology
components.

• Definition 3. Given an ontology O and two arbitrary
versions V1 and V2.

The comparison of two versions (V1 and V2) of
ontology consists in identifying the various types of
change: Consequently, the various types of
comparisons being able to be drawn are as follows:

1. Exact Comparison: V1∩V2 this comparison
consists in finding the concepts (or the relations)

Utilisateur

Base de Programme Java

Version 1

Version 1

Analyse

Erreur

Comparaison

Le Journal des Concepts Le Journal des Relations

Versions d’ontologie (.OWL)

Analyser

Oui

<Interface: Thing

<interface: Int

person>

Person

<Interface>

Change Listener

<Interface>

List

RangeConChecker

Change(): Void

RangeMaleChecle

Change(): Void

RangeeratherChecker

128 The International Arab Journal of Information Technology

with the same name which exists in the two
versions of the ontologies. We name this case
“the stability”.

2. Comparison Different: V1≠V2 this comparison
consists in finding the concepts (or relations)
which exist in the first version and do not exist in
the second one. It can results from adding or
deleting concepts (relations) from the first
version V1.

3. Approximate Comparison: This comparison is
more interesting because it consists in finding
synonymous terms for concept names or concepts
with similar names. The method is based on
hybridization of the algorithms of fusion with a
dictionary of the synonyms.

4. Similar Comparison: The similar comparison is a
manual comparison; the user selects the names
of concepts which he considers similar. We are
based on the syntax of OWL scheme in order to
compare versions of ontology.

In order to, calculate the distance between the two
versions of ontology (expressed by owl files), we use a
string metric, which is a metric that measures
similarity or dissimilarity (distance), between two text
strings for approximate string matching or comparison
and in fuzzy string searching.

The most widely known string metric is
Levenshtein Distance. It operates between two input
strings, returning a score equivalent to the number of
substitutions and deletions needed, in order to,
transform one input string into another.

The Levenshtein distance between two strings is
defined as the minimum number of edits needed to
transform one string into the other, with the allowable
edit operations being insertion, deletion or substitution
of a single character. Mathematically, the Levenshtein
distance between two strings a and b is given by lev a,
b (|a|, |b|) where:

()

(-1) 1
()

(1) + 1

(-1 - 1) + []

a,b

a, b

a,b

a,b i j

Max i, j

Lev i , j +
Lev i, j =

Min Lev i, j -

Lev i , j a b≠

Based on Levenshtein edit distance we propose a
syntactic similarity measure for strings, in order to,
compare the two OWL files (which represent the
ontology’s versions). As follows is Distance Algorithm
based on Levenshtein edit distance for extracting
differences between ontologies.

Algorithm 1: Distance.

Input

V1, V2 : :={C, R, <, X} // OWL files
int n=V1.length(); // length of Version V1
int m=V2.length(); // length of Version V2
char t_j; // j

th
character of t

int I, j, cost;

Output

if (n==0) return m
 else if (m==0) return n;

 int p[]=new int[n+1]; //'previous' cost array, horizontally
int d[]=new int[n+1]; // cost array, horizontally
int _d[]; //placeholder to assist in swapping p and d
for (i=0; i<=n; i++) p[i]=i;
 for (j=1; j<=m; j++) t_j = t.charAt(j-1);
 d[0]=j;
 for (i=1; i<=n; i++) {

a. cost=s.charAt(i-1)==t_j ? 0 : 1;
b. // minimum of cell to the left+1, to the top+1,
diagonally left and up+cost

c. d[i]=Math.min(Math.min(d[i-1]+1, p[i]+1) and nbsp;
p[i-1]+cost);

 End

 // copy current distance counts to 'previous row' distance

counts

 _d = p; p = d; d = _d;

 // our last action in the above loop was to switch d and p,

so p now

 // actually has the most recent cost counts

 return p[n];
 End distance.

5. Un Algorithm for the Management of the

Ontological Comparison

Our project of ontology versions comparison makes it
possible to compare two versions selected by the user.
As follows is the implemented algorithm.

5.1. Definition of the Algorithm

Figure 3 illustrates the COMP Algorithm; it takes two
ontologies as input in the form of OWL files as
follows:

• Traverse the two versions of ontology.

• For each version, extract the concepts and the
relations.

• Compare the two versions.

• Post the comparison result in the form of a journal
changes (concepts, relations) the following
architecture explains in detail the tool: The system
is a tool made up of several complementary
components where each one has a precise task to
achieve. Among the major functionalities which
these components offer:

1. Analysis of two input versions.
2. Localization of the differences between these two

versions through the posting of the journal of the
changes of concepts (or relations) for each one.

The COMP algorithm is composed of two principal
modules: Analyze and comparison.

5.2. Analysis

To analyze the two versions of the program written in
OWL, we benefited from the capacities of Java; in
extracting the concepts and the relations of these two

(1)

Using Ontologies for Extracting Differences in the Dynamic Domain: Application on Cancer Disease 129

versions, it returns as result the Journal of the changes
for these concepts and relations for each version.

5.3. Comparison

The entities of the two versions which we want to
compare are the concepts and the relations. To
compare these entities, we distinguish the following
classes:

• Class 1: This class is the main class. It is
responsible for the initialization of COMP; it
manages the graphic interface and the interaction
with the user. It offers a window with various
menus specific to precise functionalities (to extract
the concepts (relations) of an OWL file², to analyze
the program, comparison of two ontology versions).

• Class 2: This class is regarded as one of the most
important classes in COMP. It provides the means
and the structures necessary to extract the concepts
(relations) of ontology which exist in the form of an
OWL file and visualizes them in a Journal of
changes as shown in Figure 4.

• Class 3: This class deals with the detection of the
differences (to make the comparison itself).

Figure 4. The results of comparision algorithm.

6. Evaluation

6.1. Evaluation Environment

Our application was developed in Java; it can be
integrated in other resource supporting the Java virtual
machine. For the implementation of our ontology, we
chose Protégé.3.4; several reasons justified our choice:
Protégé-3.4. Source is a free open editor, it allows to
import and to export ontologies in various
implementation languages (RDF-Schema, OWL,
DAML, OIL, ..., etc.,), it has a modular interface,
which allows its enrichment by additional modules
(plug-in), Protégé-3.4.1 allows the edition and the
visualization of ontologies. Finally, it is provided with
API written in Java, which makes it possible to
develop applications being able to access Protégé
anthologies and to handle them.

Our ontology is implemented in OWL. However,
OWL files are not easily exploitable in their rough
form because of their complex structure. In order to, be
able to exploit it we needed a “translator” able to
translate the mark-up tags and the semantics conveyed

by OWL files into objects easy to handle by programs.
For this purpose, we used the JENA API [11].

In order to, build the instance of a Java class, we use
the standard Java-beans [8] approach to access the
values of the properties of the class (set/ get methods).
In order to, maintain class relationships present in the
ontology (including multiple inheritance), we use Java
interfaces to define the OWL classes.

6.2. Evaluation Results

To evaluate the efficiency of our proposed
ontology comparison, we run the evaluated ontology
comparison tools on two versions of cancer disease
ontology [18] as shown in Figure 5. The result of the
algorithm is the Journal of the changes. The first
column contains the concepts which exist in the
version1 and does not exist in the second version. The
second column contains the concepts which exist in the
version and does not exist in the first version. The third
column contains the intersection of the concepts
between the two versions of ontologies (common
concepts). The first column presents the relations
which exist in the version1 and does not exist in the
second version. The second column shows the relations
which exist in the version and does not exist in the first
version. The third column shows the intersection of the
relations between the two versions of ontology as
shown in Figure 6.

Figure 5. Sequence diagram.

Figure 6. The results of comparision algorithm 2.

Display Journals

 Analyse V1, V2

Ask for 2 Versions

 Comparision V1, V2

Ask for 2 Versions

Users
CVO Program Bases

False

Version

Display Versions

130 The International Arab Journal of Information Technology

7. Conclusions

This paper is a refinement and extension of the
ontology technology in the medical field; it presents an
implemented approach for detecting changes between
two versions of ontology. We described how to obtain a
sketch of our comparison algorithm. The evaluation of
our prototypic implementation gives promising
numbers, which outrun the results from existing
approaches.

An experimentation of the tool was made on the
ontology of the cancer disease and satisfactory results
were obtained. We aim to use the tool to make the
comparison in more complicated fields such as
sociology in order to be able to find the differences
between two companies and to trace the common
points and the points in disjunction between them.

We hope that more research continues in this
direction in order to realize practical widely used
applications based on semantic web technologies.

References

[1] Almeida R. and Guizzardi G., “Knowledge
Engineering an Ontological Approach to Domain
Engineering,” in Proceedings of the 14

th

International Conference on Software
Engineering and Knowledge Engineering, pp.
351-358, 2002.

[2] Benslimane S., Malki M., and Rahmouni M.,
“Towards Ontology Extraction from Data,” the
International Arab Journal of Information
Technology, vol. 5, no. 1, pp. 34-44, 2008.

[3] Charlet J., Bachimont B., and Troncy R.,
“Ontologies Pour Le Web Sémantique. Le Web
Sémantique,” available at:
http://www.eurecom.fr/~troncy/Publications/Tro
ncy-revue_i304.pdf, last visited 2005.

[4] Di Pinto F., Lembo D., Lenzerini M., Mancini R.,
Poggi A., Rosati R., Ruzzi M., and Savo F.,
“Optimizing Query Rewriting in Ontology-Based
Data Access,” in Proceedings of the 16th
International Conference on Extending Database
Technology, pp. 561-572, 2013.

[5] Ding Z., “A Probabilistic Extension to Ontology
Language OWL,” in Proceedings of the 37th
International Conference on System Sciences,
Hawaii, pp. 1-10, 2004.

[6] Djedidi R. and Aufaure A., “Change
Management Patterns (CMP) for Ontology
Evolution Process,” available at : http://ceur-
ws.org/Vol-519/djedidi.pdf, last visited 2009.

[7] Djedidi R. and Aufaure A., “Ontology Change
Management,” in: A. Paschke, H. Weigand, W.
Behrendt, K. Tochtermann, Pellegrini (Eds.), I-
Semantics 2009, Proceedings of IKNOW ’09 and
I-SEMANTICS, 611-621, Verlag der
Technischen Universitt Graz. 2009.

[8] Doan A., Halevy Y., and Ives G., Principles of
Data Integration, Morgan Kaufmann, 2012.

[9] Fethallah H. and Mohammed C., “Automated
Retrieval of Semantic Web Services:
A Matching Based on Conceptual Indexation,”
the International Arab Journal of Information
Technology , vol. 10, no. 1, pp. 61-66, 2013.

[10] Ghobadi A. and Rahgozar M., “An Ontology-
Based Semantic Extraction Approach for B2C
Ecommerce,” the International Arab Journal of
Information Technology, vol. 8, no. 2, pp. 163-
156, 2011.

[11] Groner G., Parreiras S., and Staab S., “Semantic
Recognition of Ontology Refactoring,” in
Proceedings of the 9

th
 International Semantic

Web Conference, Shanghai, pp. 273-288, 2010.
[12] Kalyanpur A., Pastor J., Battle S., and Padget J.,

“Automatic Mapping of OWL Ontologies into
Java,” in Proceedings of the 16th International
Conference on Software Engineering and
Knowledge Engineering, 2004.

[13] Klein B., Cosmides L., Tooby J., and Chance S.,
“Decisions and the Evolution of Memory:
Multiple Systems, Multiple Functions,”
Psychological Review, vol. 109, no. 2, pp. 306-
329, 2002.

[14] Klein M. and Fensel D., “Ontology Versioning
on the Semantic Web, ” International Semantic
Web Working Symposium, USA, pp. 75-91, 2001.

[15] Klein M. and Noy N., “A Component-Based
Framework for Ontology Evolution,”
available at : http://se-pubs.dbs.uni-
leipzig.de/files/Klein2003Acomponentbasedfram
eworkfor.pdf, last visited 2001.

[16] Klein M., “Change Management for Distributed
Ontologies,” PhD Thesis, Vrije Amesterdam
University, 2004.

[17] Kondylakis H., Plexousakis D., and Tzitzikas Y.,
“Ontology Evolution in Data Integration,”
available at: http://ceur-ws.org/Vol-
651/paper4.pdf, last visited 2010.

[18] Kun L., Shengqun T., Zhang L., and Tian H., “A
Method Based on RDB for Detecting Changes
Between Multi-version Ontologies,” Journal of
Computational Information Systems, vol. 8, no.
8, pp. 45-52, 2012.

[19] Maedche A. and Staab A., “Measuring Similarity
between Ontologies,” in Proceedings of the 13th
European Conference on Knowledge Acquisition
and Management, Madrid, pp. 251-263, 2002.

[20] Nguyen P., Kaneiwa K., and Nguyen M.,
“Ontology Inferencing Rules and Operations in
Conceptual Structure Theory, available at:
http://krr.meraka.org.za/~aow2010/Nguyen-etal.
pdf, 2010.

[21] Noy N. and Kelin M., “Ontology Evolution: Not
the Same as Schema Evolution,” the Knowledge
and Information Systems, vol. 6, no. 4, pp. 428-
440, 2004.

[22] Noy N. and Musen M., “Ontology Versionning
as an Element of an Ontology Management
Framework,” IEEE Intelligent System, 2003.

Using Ontologies for Extracting Differences in the Dynamic Domain: Application on Cancer Disease 131

[23] Noy N. and Musen M., “Promptdiff: A Fixed
Point Algorithm for Comparing Ontology
Versions,” in Proceedings of the 8th National
Conference on Artificial Intelligence, Menlo
Park, CA, pp. 744-750, 2002.

[24] Noy N., Chugh A., Liu W., and Musen M.,
“Framework for Ontology Evolution in
Collaborative Environments,” in Proceedings of
the 5

th
 International Semantic web Conference,

Lecture notes in computer science, USA, pp.
544-558, 2006.

[25] Noy N., Kunnatur S., Klein M., and Musen A.,
“Tracking Changes During Ontology Evolution,”
in Proceedings of the 3

rd
 International Semantic

Web Conference, Hiroshima, pp. 259-273, 2004.
[26] Noy N., Kunnatur S., Klein M., Mark A., and

Musen., “Tracking Changes During Ontology
Evolution,” in Proceedings of the 3

rd

International Semantic Web Conference, pp. 259-
273, 2004.

[27] OWL Web Ontology Language Semantics and
Abstract Syntax, available at:
http://www.w3.org/TR/owl-semantics/, last
visited 2004.

[28] Rafael S., Parsia B., and Sattler U., “Categorising
Logical Differences Between OWL Ontologies,”
in Proceedings of the 20

th
 ACM International

Conference on Information and Knowledge
Management, New York, pp. 1541-1546, 2011.

[29] Stojanovic L., “Methods and Tools for Ontology
Evolution,” Thesis of the Karlsruhe University,
Germany, 2004.

[30] Suntisrivaraporn B., “Modularization-based
Approach to Finding All Justifications for OWL
DL Entailments,” in Proceedings of the 3rd
ASWC, Bangkok, pp. 1-15, 2008.

[31] Wiggisser K. and Eder J., “Detecting Changed in
Ontologies via DAG Comparison,” in
Proceedings of the 19

th
 International Conference,

Trondheim, pp. 21-35, 2007.

Nora Taleb was Engineer in computer science in
1996. She received a MS degree in artificial
intelligence: l’acquisition des connaissances pour la
construction d’un système à base de connaissance” in
2003. She received a PhD degree in knowledge
acquisition for managing an evolving ontology.
Currently, she is searcher and lecture at the
Department of Computer Science in Annaba
University (Algeria). She participated at several
internationals conferences: ISPS (International
symposium on programming and systems, Algeria,
2003), NACET (North African conference of
enginnering technology, Algeria, 2003), TIA’07
(Terminology and artificial intelligence, Toulouse,
2007), ICOSE’09 (International conference on
ontology and semantic engineering, Italy, 2009), and I-
semantics (International conference on semantic
systems, Austria, 2009). She is member of the project
of Management of the knowledge, the ontologies and
the system of decision-making: Application in the
industrial maintenance. Her research interests are:
Ontology, knowledge acquisition, and expert systems.

