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Abstract: Software maintenance is a major source of expense in software projects. A proper evolution process is a critical 

ingredient in the cost-efficient development of high-quality software. A special case of software evolution is refactoring that 

cannot change the external behaviour of the software system yet should improve the internal structure of the code. Hence, 

there is always a need to verify after refactoring, whether it preserved behaviour or not. As formal approaches are hard to 

employ, unit tests are considered the only safety net available after refactoring. Refactoring may change the expected interface 

of the software therefore unit tests are also affected. The existing tools for refactoring do not adequately support unit test 

adaptation. Also, refactoring tools and guidelines may introduce semantic and syntactic errors in the code. This paper 

qualitatively and quantitatively analyses data from an empirical investigation involving 40 graduate students, performed 

against a set of semantic and syntactic defects. Findings from the expert survey on refactoring support have also been shared. 

The analysis in this paper shows that there are notable discrepancies between preferred and actual definitions of refactoring. 

However, continued research efforts are essential to provide Guide Lines (GL) in the adaptation of the refactoring process to 

take care of these discrepancies, thus improving the quality and efficiency of the software development. 
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1. Introduction 

Software refactoring as a concept has been widely 
accepted in the industry and is considered a practice 
that can provide significant improvements in software 
quality. However, during the entire history of software 
development, automated refactoring techniques have 
not been able to fully evolve to provide complete and 
reliable support in all software development 
paradigms. There are multiple reasons for the lack of 
use of refactoring support. Some being deficient 
usability, efficiency and reliability. The effects of 
refactoring have to be analyzed to access the program 
locations that require change. But, if the preconditions 
are not adequately evaluated and the required 
adaptations are not performed, refactoring not only 
negatively affects the artifacts from the phases in the 
development life cycle but also affects clients in the 
production code. Nonetheless, many times the unit 
tests which are specialized clients [3, 4] in the context 
of refactoring are crippled due to the refactoring 
process, leaving the developer with no way to verify 
the behavior preservation after refactoring. The 
research question answered in this paper is: Are the 
professionals, academics and students satisfied with 
certain features of refactoring support they are using 
and what are the obstacles for software development 
practitioners? This paper covers the following: 

1. Evaluation of three commonly used refactoring 
including  Move  Method  (MM),  Pull  Up  Method  

(PUM) and Push Down Method (PDM) provided by 
Eclipse, Netbeans, IntellijIDEA and JBuilder [14, 
15, 19, 31]. 

2. Empirical investigation of fowler’s refactoring 
guidelines involving 40 graduate students.  

3. Discussion on the results from our expert survey on 
refactoring support. 

This study shall assist in pointing out directions for 
future research within software refactoring and unit 
testing. 

2. Related Works 

The outcome of a refactoring process should be 
preserved behaviour, improved software quality and 
consistency between the refectories code and other 
software artefacts including documentation, design 
documents, tests, etc., [24]. However, in practice in 
addition to breaking the production code, the evolution 
of the other artefacts is generally not taken into 
account. Unit testing is a fundamental component of 
the refactoring process. Fowler [16] is of the view that 
every class should have a main function that tests the 
class or separate test classes should be built that work 
in a framework to make testing easier, which implies 
that test code cannot be separated from the production 
code. Therefore, any process affecting the production 
code should readily adapt the associated clients and the 
test code [11, 12, 23]. Zaidman et al. [32] are also of 
the view that there is a need for tools and methods that 
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can help the co-evolution of source and test code. In 
our earlier work [1, 2, 3, 4, 5, 17, 22] the state of art 
and practice that addresses or should address client and 

unit test adaptation while refactoring has been 
discussed in detail the. It has been summarized in 
Table 1. 

Table 1. Summary of the work related to client and test code adaptation after refactoring. 

Researcher Research Summary 

Fowler [16] 

• A widely adopted extensive catalog of 68 refactoring guidelines.  

• Informal and inconsistent level of detail.  

• Do not provide guidelines on the adaptation of unit tests. In most cases, steps on client adaptation are also missing. 

Deursen et al. [11] 
Presented a test taxonomy that categorizes refactoring based on their effect on test code. These are: compatible, backwards compatible, make backwards compatible and 

incompatible.  

Counsell et al. [6, 7, 8] 

• Assessed the test taxonomy presented in [11]. 

• In our previous work [3] it has been shown that the categorization used by [6-8] has various loop holes. 

• A refactoring dependency graph is developed for Fowler‘s catalogue [16] and a shorter list of compatible refactoring is suggested by excluding all the other refactoring that 

may use those refactoring that break unit tests. 

• This approach essentially rejects the use of many important refactoring that are necessary for improving the program structure. 

Jiau et al. [20, 28] 

• Test Driven Refactoring (TDR) [20] and Test-first Refactoring (TFR) [28] involve adaptation of associated unit tests before the refactoring process takes place.  

• These approaches fit well in Extreme Programming paradigm but are not general enough to be used in all development environments where testing first is not always possible.  

• Do not provide guidelines to adapt test code according to the targeted refactoring. 

Soares et al. [29] 

• Soares et al. [29] propose a technique for generating a set of unit tests that can be useful for detecting semantic errors after a sequence of object-oriented program refactoring.  

• They have also evaluated the refactoring support provided by Eclipse, IntelliJ IDEA, JBuilder, NetBeans. They observe that program refactoring in IDEs are commonly 

implemented in an ad hoc way and the semantic aspects of behavior are several times not preserved.  

Basit et al. [1, 2, 3, 4, 5, 22] 

In [3] a mutually exclusive categorization of refactoring guidelines has been presented based on the impact of refactoring on clients and unit tests. In [2] the problems with 

Fowler’s refactoring catalog and java refactoring tools including Net Beans, Eclipse, Intellij IDEA and JBuilder have been discussed. These tools introduce semantic errors in the 

refectories code. It has also been shown that the quality of the unit tests is also deteriorated if existing approaches for refactoring are used. In order to prove the effectiveness of 

extended refactoring guidelines, the results from an experiment have also been shared. In [1] the extended refactoring guidelines for pull up method have been presented. The 

semantic issues that can be introduced due to this refactoring have been discussed through examples. Test Adaptation Plug-in for Eclipse (TAPE) [22] makes easier for the 

developer to organize the unit tests along the changes in the refectories code. In [5] it has been demonstrated with the help of various examples that unit test is a specialized client 

in the context of refactoring. The formal specification of the extended refactoring guidelines and an adaptation framework is presented in [4]. 

Daniel et al. [9] 
Proposed an approach to check whether refactoring tools introduce compilation errors or not. This work ignores detection of semantic errors that could be introduced through 

existing refactoring tools. 

TestCareAssistant [26] 
This tool is implemented as a Java prototype that provides automated guidance to developers for repairing test compilation errors caused due to changes such as adding, removing 

or changing types of parameters and return values of methods.  

ReAssert [10] 
Reassert repairs assertions in test code by traversing the failure trace. It performs dynamic and static analysis to suggest repairs to developers. Again this tool does not help in 

fixing the semantic errors introduced through refactoring 

CatchUp! [18] 
Catch-up! adapts clients of the evolving Application Programming Interfaces (API‘s). This tool takes care of only compilation errors that can appear in the clients due to a subset 

of refactoring performed on any API, and therefore ignore the semantic errors that could be caused due to refactoring process.  

Kaba [28] 
KABA also includes all clients in the refactoring process. It guarantees preservation of behaviour for the clients either through static analysis or all test runs (dynamic analysis) 

for any input.  

Reba [13] 
ReBA instead of adapting the clients of the evolving API, creates compatibility layers between new library APIs and old clients .This layer is created in the form of an adapted 

version that supports both versions of the API.  

3. Comparative Analysis of Refactoring 

Tools and Guidelines 

Before code transformation takes place, an early check 

should be performed to evaluate preconditions of the 

refactoring; if all preconditions are satisfied, 

refactoring mechanics are executed. These mechanics 

include Guide Lines (GL) for restructuring and 

corrective transformations required to preserve 

externally observable behaviour of the program. 

However, there are gaps between the definitions and 

the actual implementation of refactoring.  

Fowler’s refactoring catalog [16] is widely used 

both in the industry and academia for training and 

pedagogical purposes. Based on Fowler’s GL many 

refactoring tools for Java have been developed 

including the most commonly used: Eclipse, IntelliJ 

IDEA, JBuilder and NetBeans etc., [14, 15, 19, 31]. 

These tools do not completely address the issues 

related to behaviour preservation including client/test 

adaptation. One of the reasons is lack of refactoring GL 

that include all necessary pre and post conditions for 

the preservation of program behaviour [3]. Fowler’s 

refactoring GL (FGL) give a good starting point to 

developers in order to re-factor a program but lack 

focus on various aspects of behaviour preservation. 

Using  these GL [16] refactoring  process can  not only 

flag semantic but also syntactic violations in the code. 

Syntactic errors are cheap to fix but identification and 

resolution of semantic violations is hectic as well as  

 
expensive [5]. The missing detail in the refactoring GL 

is also inherited by various refactoring tools for Java 

[5]. Therefore, Fowler’s catalog is also included in this 

analysis. Because, with the help of extended 

refactoring GL, existing tools can be improved and 

new tools can be developed that preserve program 

behaviour. In this section, a few semantic as well as 

syntactic defects that are introduced by refactoring 

tools in various locations throughout the software 

system have been defined and demonstrated. 

Three commonly used refactoring: PUM, PDM and 

MM [16] have been discussed. PUM refactoring is 

used by software designers to generalize and eliminate 

the duplicate code present in subclasses, as a result the 

cohesion of the super class is increased and the 

coupling of the subclasses is reduced. Similarly, PDM 

increases cohesion of the subclasses by specializing 

certain behaviour of a super class that is relevant only 

for some of its subclasses. MM is used for moving 

features between classes such that coupling in the 

system is loosened [16]. These refactoring are most 

commonly used refactoring. The automated support for 

these refactoring is provided by almost all commonly 

used Java refactoring tools [14, 15, 19, 31]. But, the 

precondition evaluation and adaptation is implemented 

in an Ad-Hoc way ignoring many aspects of behaviour 

preservation. Table 2 highlights the semantic as well as 

syntactic errors that could appear in the refactored code 

by performing these refactoring either manually 

through GL or with the use of refactoring tools. 
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Table 2. Comparative analysis of refactoring tools and GL. 

  Tools GL 

Preconditions  Eclipse NetBeans IntelliJ JBuilder FGL 

Invalid Access to Super 

Object 

PUM × × � � × 

MM × N/A × � × 

PDM × × � � × 

Overriding Wrongly 

Enabled 

PUM × × × � × 

MM × N/A � � × 

PDM × × × � × 

Invalid Access to 

Duplicate Variable  

PUM � � � � × 

MM × N/A � � × 

PDM � � � � × 

Constructor  

PUM × × � � × 

MM × N/A � � × 

PDM  × � � × 

Main Method  

PUM × × � � × 

MM × N/A × � × 

PDM  × � � × 

Checks Due to Static 

Import 

PUM × × × × × 

MM × N/A × × × 

PDM × × × × × 

Relocating Test Code 

PUM × × × × × 

MM × N/A × × × 

PDM × × × × × 

Appropriate 

Replacement of Calls to 

Candidate Method in 

Clients/ Unit Tests 

PUM × × × × × 

MM × N/A × × × 

PDM × × × × × 

� means the system warns the developer but allows to continue. 

×  means the system does not recognize the issue. 

� means the system recognizes the issue and handles it appropriately. 

3.1. Invalid Access to Super Object  

In object oriented programming, access to parent 

class’s methods is a common practice. The super 

object in Java gives child classes access to parent’s 

overridden constructors and methods. But movement 

of methods up and above in the inheritance hierarchy 

can create a semantic violation which will not be 

flagged by the compiler. For example, if a refactoring 

is performed using Fowler’s GL, where method foo is 

implemented in class A and class B, in each class the 

method foo returns a different value. Before 

refactoring, the clients of method m get return value 

equal to ‘23’ (by calling method in class B) but, after 

refactoring the same method returns ‘43’(by calling 

method in class A). This simple scenario highlights the 

fact that by ignoring the context sensitive constructs 

like Super, semantic errors can be injected in the 

production and test code.  

Table 3. Behaviour altered due to invalid access to super object. 

 Before Refactoring After Refactoring 

MM 

Class A{ int foo() { return 43;  }} 

Class B { int foo(){  return 23;  }} 

Class C extends B{ int m(){ super.foo(); 

}} 

Class D extends A{ int n(){ 

super.foo()+1; }} 

// n() returns 44 

Class A{ int foo(){  return 43;  }} 

Class B { int foo(){  return 23; }} 

Class C extends B{ int m(){ super.foo();}  

int n(){ super.foo()+1; }} 

Class D extends A{ } 

// n() returns 24 

PUM 

Class A{ int foo(){  return 43; }} 

Class B extends A{ int foo(){  return 23; 

}} 

Class C extends B{ int n(){ super.foo(); 

}} 

// n() returns 23 

class A{ int foo(){  return 43;  }} 

class B extends A{ int foo(){ return 23; }int 

n(){ super.foo();  }} 

class C extends B{} 

// n() returns 43 

PDM 

Class A{ int foo(){  return 43;  } } 

Class B extends A{ int foo(){  return 23;  

} 

int n(){ super.foo(); }} 

Class C extends B{} 

// n() returns 43 

Class A{ int foo(){ return 43;  }} 

Class B extends A{ int foo(){  return 23;  } 

} 

Class C extends B{ int n(){ super.foo(); }} 

// n() returns 23 

Also, if the calls to super are not replaced by 
appropriate method calls, the program shall not 
compile, specifically when the call to a non existing 
method is made using super object in the pulled up 
method. The refactoring support provided by 
commonly used tools including NetBeans [31] and 
Eclipse [14] do not take care of this aspect while 
refactoring. Similarly MM and PDM can also 
introduce semantic and syntactic errors if the 
preconditions related to presence of calls to Super 
object are not evaluated as shown in Table 3 above. 

 

3.2. False Overriding  

The code below highlights a problem of false 
overriding that can be caused if the inheritance 
hierarchy of the target class for candidate method is 
not completely analyzed for uniqueness. Generally, the 
tools check for the uniqueness of the method in the 
target class but, do not take into account its ancestor 
classes. The movement of the method may result in 
false overriding if any of the ancestors has a method 
with the same signature as that of the candidate 
method. The scenarios for three refactoring are given 
in Table 4. 
 
Table 4. Scenarios showing invalid overriding after refactoring. 

 Before Refactoring After Refactoring 

MM 

Class Calculator{ 

    int Add(int a,int b){ return a+b; } 

    int multiply(int a,int b){ return a*b; }} 

Class Pay { int multiply(int p,int s){  return 

2* p *s;}} 

Class Pay_Calc extends Calculator{ } 

Class Client{ 

   int  CalculatePay(){ 

          Calculator c= new Pay_Calc(); 

          return c.multiply(2000,5); 

   }} 

 //  CalculatePay() returns 10000 

Class Calculator{ 

    int Add(int a,int b){ return a+b; } 

    int multiply(int a,int b){ return a*b; }} 

Class Pay { } 

Class Pay_Calc extends Calculator{  

int multiply(int p,int s){  return 2* p *s;  }} 

Class Client{ 

   int  CalculatePay(){ 

          Calculator c= new Pay_Calc(); 

          return c.multiply(2000,5);   }} 

  //  CalculatePay() returns 20000 

PUM 

Class Employee{ int getPay(){ return 43;  

}} 

Class Regular extends Employee{ 

    int getPay(int grd){  return grd *23; } 

} 

Class Engineer extends Regular{  

    int getPay(){ return 60; }} 

Class Client{ 

    int CalculatePay(){ 

          Employee emp=new Regular(); 

          return emp.getPay(); 

    }}    //  CalculatePay() returns 43 

Class Employee{ int getPay(){ return 43;  } 

} 

Class Regular extends Employee{ 

    int getPay(int grd){  return grd *23;  } 

    int getPay(){  return 60;  } 

} 

Class Engineer extends Regular{  } 

Class Client{ 

    int CalculatePay(){ 

          Employee emp=new Regular(); 

          return emp.getPay(); 

    }}    //  CalculatePay() returns 60 

PDM 

Class Employee{ int getPay(){ return 

43;  } } 

Class Regular extends Employee{ 

    int getPay(int grd){  return grd 

*23;  } 

    int getPay(){  return 60;  }} 

Class Engineer extends Regular{  } 

Class Client{ 

    int CalculatePay(){ 

          Employee emp=new Regular(); 

          return emp.getPay(); 

    }}    //  CalculatePay() returns 60 

Class Employee{ int getPay(){ return 

43;  } } 

Class Regular extends Employee { 

    int getPay(int grd){  return grd 

*23;}} 

Class Engineer extends Regular{  

    int getPay(){  return 60;  }} 

Class Client{ 

    int CalculatePay(){ 

          Employee emp=new Regular(); 

          return emp.getPay(); 

    }}    //  CalculatePay() returns 43 

3.3. Invalid Access to a Duplicate Field  

Generally refactoring tools check for the uniqueness of 
the candidate method in the target class prior to 
refactoring. The fields from the source class are either 
accessed through source object in the target class or are 
moved to the target class after the method is moved. 
But, in case of duplicate fields both in the source and 
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target, developer may not get a compiler error, 
resulting in invalid software behaviour. In Table 5, 
before and after states of the refactored code have been 
demonstrated each showing different results after 
refactoring. 

Table 5. Scenarios showing invalid access to a duplicate field in the 
target class. 

 Before Refactoring After Refactoring 

MM 

Class Comparator{  

   int adjust=2; 

   int getMax(int a,int b){ return 

Math.max(a,b) + adjust ;}} 

Class Adder{ 

   int adjust=1; 

   int add(int a,int b){  return a+b + adjust;} 

   int getMin(int a,int b){ return 

Math.min(a,b)-adjust;} 

}    // getMin(2,4) returns 1 

Class Comparator{ 

   int adjust=2; 

   int getMax(int a,int b){ return 

Math.max(a,b) + adjust;   } 

  int getMin(int a,int b){ return 

Math.min(a,b)-adjust;}} 

Class Adder{ 

   int adjust=1; 

   int add(int a,int b){ return a+b + adjust; 

} 

}  // getMin(2,4) returns 0 

PUM 

Class Parent{ 

   int attribute=1; 

   int pmethod(){ return attribute; }} 

Class Child extends Parent{ 

   int attribute=2; 

  int cmethod(){ return attribute +1; } 

}   // cmethod() returns 3 

Class Parent{ 

   int attribute=1; 

   int pmethod(){ return attribute; } 

  int cmethod(){ return attribute +1;  }} 

Class Child extends Parent{ 

   int attribute=2; 

}   // cmethod() returns 2 

PDM 

Class Parent{ 

   int attribute=1; 

   int pmethod(){ return attribute; } 

  int cmethod(){ return attribute +1; }} 

Class Child extends Parent{ 

   int attribute=2;} 

   // cmethod() returns 2 

Class Parent{ 

   int attribute=1; 

   int pmethod(){ return attribute; }} 

Class Child extends Parent{ 

   int attribute=2; 

  int cmethod(){ return attribute +1; }} 

   // cmethod() returns 3 

3.4. Static Import 

Static import is a feature provided by Java 
Development Kit (JDK) which allows unqualified 
access to static members without inheriting from the 
type containing the static members. Refactoring can 
introduce semantic errors in the code if this feature has 
been used as demonstrated in the following examples 
in Table 6. Before PUM refactoring, the method 
getEmployeeNo returns “4”, whereas after valueOf 
method is pulled up to the Employee class the method 
returns ‘5’, clearly a semantic error. This happens 
because the getEmployeeNo method in the Employee 
class was making an unqualified access to valueOf 
method of Java.lang.String but after a method with the 
same name is pulled up to Employee class; 
getEmployeeNo method calls the local valueOf method 
which returns “5”. Similarly, MM and PDM 
refactoring in these scenarios alter the externally 
observable software behaviour.  

Table 6. Scenarios showing invalid use of function when using 

Static Import. 

 Before Refactoring After Refactoring 

MM 

class Employee{ 

static String getEmployeeNo(int  i) { 

return valueOf(i) ; }} 

class Pay {   static String valueOf( int  

pay) { return pay * 3;}} 

// getEmployeeNo(4) returns 4 

class Employee{ 

static String getEmployeeNo(int  i) { 

return valueOf(i) ;} 

static String valueOf( int  pay) {return pay 

* 3;}} 

class Pay {}    // getEmployeeNo(4) 

returns 12 

PUM 

class Employee{ 

static String getEmployeeNo(int  i) { 

return valueOf(i) ;}} 

class RegularEmployee extends 

Employee{ 

static String valueOf( int  i) { return i +1; 

} 

}  // getEmployeeNo(4) returns 4 

class Employee{ 

static String getEmployeeNo(int i) { return 

valueOf(i) ;} 

static String valueOf(int  i ) { return i 

+1;}} 

class RegularEmployee extends 

Employee{} 

// getEmployeeNo(4) returns 5 

PDM 

class Employee{ 

static String getEmployeeNo(int i) { 

return valueOf(i) ;   } 

static String valueOf(int  i ) { return i 

+1;}} 

class RegularEmployee extends 

Employee{ 

}  // getEmployeeNo(4) returns 5 

class Employee{ 

static String getEmployeeNo(int  i) { 

return valueOf(i) ; }} 

class RegularEmployee extends 

Employee{ 

static String valueOf( int  i) { return i +1; }

}  // getEmployeeNo(4) returns 4 

3.5. Main Method 

A method is generally moved to another class if it is 

the right home for it. For example, FixEngine() 

logically  belongs to the Engine class, if it is not there 

it should be moved. Whereas, a main method is an 

entry point to the software system, it does not exhibit 

the behaviour of its owner class. Moving a main 

method can lead to runtime exception where the IDE 

may not be able to detect the entry point unless altered 

by the developer. 

3.6. Constructor 

A constructor is a specialized method that initializes 
the data members of the class, creates an object and 
has the same name as that of the class. If a method is 
moved to any other class, it loses its meaning; it 
becomes an ordinary method that initializes a set of 
variables. It is not principally correct to move, pull up 
or push down a constructor. It can be seen in Table 2 
that a few tools allow such operations on constructor, 
resulting in invalid or broken clients or unit tests. 

                          

3.7. Incorrect Replacement of Calls  

JBuilder and IntelliJ IDEA [15, 19] in few cases 
syntactically adapt the clients and unit tests after 
refactoring, such that externally observable behaviour 
is preserved but, the overall quality of the system 
deteriorates. For instance, the purpose of MM is to 
decrease the coupling and increase cohesion of the 
overall system including source and target classes. But, 
these refactoring tools for Java instead of removing the 
association of source with client use the target class’s 
object in the source class to call the moved method. 
Which actually keep the clients coupled with the 
source, even after the refactoring. In this manner 
externally observable behaviour is preserved but this is 
definitely not improvement in the internal structure of 
the software system. In order to perform MM using 
these tools, the target object is either sent as a 
parameter of the candidate method or in the other case 
target class’s object is declared in the source class. 
Here, the consequences of the later scenario are 
discussed. 
Ideally, along the movement of method to the target, 

its corresponding test code should also be moved to the 
target’s test class, by doing so, the association between 
the target and test source can be removed. None of the 
tools including JBuilder, Eclipse and IntelliJ IDEA 
take care of these aspects of refactoring (NetBeans 
does not support MM). As a consequence the Coupling 
Between Objects (CBO) is increased. This observation 
can be proven through the use of CBO metric. 

                        
Numberoflinks

Numberofcla
CBO =

sses
                        

By putting values in Equation 1 from Figure 4, with N 
number of clients of source class and assuming one test 
class for source and target CBO becomes. 

(1) 
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(4 + 2 ) (4 + ) (3 + ) (3 + )

(4 + ) (4 + ) (4 + ) (4 + )

N N N N

N N
O

N
CB

N
= > > ≥  

By putting values in Equation 2 with N=2, number of 
clients for source class and assuming one test class for 
source and target each, Equation 2 takes form of 
Equation  3. 

                        

8 6 5 5
> >

6 6 6 6
CBO = ≥  

Looking at the Equation 3 it can be seen that 
refactoring tools lead to the worst CBO. Fowler’s 
approach is better but as it does not take into account 
the test code restructuring phenomenon, association 
between target and source test is created resulting in 
increased coupling. Last but not the least it is 
suggested that the code refactoring should be followed 
by test restructuring also. Here, it is important to note 
that the intent of MM refactoring is to reduce the CBO 
in the overall software system. On the contrary 
coupling is increased instead of decreasing or 
remaining stable if existing tools are used. Also, by 
using Fowler’s GL for MM the CBO metric value 
increases because it misses steps related to test code 
restructuring due to which the target is made wrongly 
associated to source test as shown in Figure 1. 
 
Before Existing Java Tools Fowler’s Ideal 

 

Figure 1. A comparative view of a subsystem after MM refactoring 

using different approaches. 

 

Additionally, in the case of PUM refactoring if the 
child objects are not replaced by the parent object in 
the clients, the violation of good design principles 
would occur resulting in unnecessary association and 
therefore high coupling. However, with PDM, 
incorrect replacement of parent object may end up in 
parent accessing the children in the client classes, 
which is not a valid relationship. 

 

3.8. Relocating Test Code 

Refactoring and unit tests go together. Whether, a 

refactoring was behaviour preserving is usually 

confirmed through the use of unit tests.  

However, in practice it is not always possible, 

because there are certain refactoring that change the 

software interface and therefore clients accessing this 

interface are affected including the unit tests [21, 22, 

30]. The existing literature and the refactoring support 

do not differentiate between an ordinary client and the 

unit tests.  
Consequently, the additional adaptations required 

by unit tests after refactoring are not supported by the 
refactoring tools.  As can be seen in Figure 2-b, after 
method m1 is pulled up to the parent class, the test 
methods for method m1 remains in the child classes 
resulting in duplicated test code. Similarly, when a 
method is moved from a source to target class, and the 
test code is not moved from source’s test to the 
target’s test, this leads to indirect testing. Also, in case 
of PDM, when the test code is not moved to its right 
home it leads to an invalid association between the 
child classes and the parent’s test class.  

 

a) Software system before PUM refactoring. 
 

b) Software system after PUM refactoring (Existing approaches). 
 

 

 
c) Software system after PUM refactoring (improved GL). 

Figure 2. comparison of refactoring approaches applied on m1(). 

 

Therefore, every step in refactoring should be 
succeeded by appropriate adaptation in the test code 
to avoid deterioration of test code quality resulting in 
test smells. 

4. Empirical Evaluation 

In this section, results from a controlled experiment 
involving 40 graduate students have been reported.  
This experiment was performed to judge the loop holes 
in Fowler’s refactoring GL. According to Fowler, 
refactoring are based on “human intuition” [16], but in 
reality every human is different and so is everyone’s 
intuition. Every phase of refactoring starting from 
detection of bad smells to actual refactoring process 
requires rigorous support and GL. As discussed in 
earlier sections, in spite of available automated support 
and an extensive catalog of refactoring, mistakes can 
still occur. 

(2) 

(3) 
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4.1. Experiment Settings 

In order to prove our claim and check the effectiveness 

of the extended GL, an experiment involving 40 

graduate students was conducted with a major in 

software engineering. It was a prerequisite to have 

adequate knowledge of Java language to participate in 

the exercise. 55% students had industrial experience 

above 3 years, 45% students had experience ranging 

from 0-2 years. 10 students were without any industrial 

development experience but they were included in our 

experiment because these students had done their 

graduate level final year projects using Java and they 

had the expertise required to perform this exercise.  

Prior to the experiment the students had attended 3 

lectures on refactoring as a part of their Advanced 

Software Engineering course. A four hours session was 

conducted to analyze the student’s capability to re-

factor using Fowler’s GL. The code for a Pay Roll 

System was used for refactoring experiment. There 

were 16 classes in total in this system, 8 classes in the 

production code and a parallel hierarchy of 8 test 

classes developed in JUnit. The size metrics are given 

in Table 7. 

Table 7. Size metrics for pay roll system. 

 
Lines of Code Methods Classes 

Production Code 402 19 8 

Test Code 241 12 8 

Complete Code 643 31 16 

 

The code was shared with the students two days 
prior to the experiment. The experiment was 
conducted in a four hours session. In the first hour, 
students were explained the domain and the task they 
had to perform. Each step of the GL was also 
explained to ensure that all students understand every 
step. The next three hours were divided into two equal 
halves. They were given two problems one by one.  
The problems were of average complexity that 
students could understand in the given amount of 

time. The defects had been distributed in different 
locations, so that the identification of one does not 
affect the other. Students were required to refer to 
every step of refactoring with the appropriate step 
number in the Fowler’s GL in their solutions. If they 
did any step without using the GL, they explicitly 
specified. They were provided with the unit tests 
along production code. 

4.2. Hypotheses 

In this paper results for MM, PUM and PDM 
refactoring have been shared. The hypotheses of this 
study are based on the following proposition:  

• P: There is no need to augment Fowler’s GL.  
• P´: Fowler’s GL should be extended. Find below the 
alternate hypotheses.  

• H01: Core refactoring cannot be performed 
successfully by most students with existing 
refactoring GL. 

• H11: Semantic errors shall be introduced by most 
students if the existing refactoring GL are used. 

• H21: Test code restructuring cannot be done 
successfully by most students using existing 
refactoring GL.  

• H31: Client adaptation cannot be done successfully 
by most students using existing refactoring GL. 

Alternate hypotheses for failure rate greater or equal to 
50% are accepted. It can be inferred from the results as 
shown in Table 8 that in most cases the developers 
were not able to detect the semantic errors introduced 
due to refactoring. In spite of the small sized project 
(only 402 lines of code) and limited time. All students 
performed the core refactoring steps correctly. But 
most of the subjects did not check the preconditions 
required for avoiding semantic defects and also did not 
properly adapted unit tests. The results show that, steps 
on prevention of semantic defects and test code 
restructuring should be added to existing refactoring 
GL. 

Table 8. Results from the refactoring experiment. 

 Tasks Success Failure Failure Rate (%age) Hypotheses 

  MM PUM PDM MM PUM PDM MM PUM PDM MM PUM PDM 

H01 Core  Refactoring (CR) 40 40 40 0 0 0 0 0 0 R R R 

H11 

Replaced Super Object with Appropriate Code (RSO) 18 15 10 22 25 30 55 52.5 75 A A A 

Overriding not Wrongly Enabled (OE) 1 3 7 39 37 33 97.5 92.5 82.5 A A A 

Did not Access the Duplicate Variable (DV) 25 10 15 15 30 25 37.5 75 62.5 R A A 

H21 
Relocating Test Code (RTC) 15 13 17 25 27 23 62.5 67.5 57.5 A A A 

Test Code Adaptation (TCA) 20 19 15 20 21 25 50 52.5 62.5 A A A 

H31 Appropriate Replacement of Method Calls in Clients (RC) 24 5 30 16 35 10 40 87.5 25 R A R 

4.3. Threats to Validity 

As in any empirical study, the external validity of this 

experiment is limited by the choice of study subject.   

Pay Roll System was used because it was a small sized 

system, its source and test code were available and it 

had quite a number of opportunities for refactoring.  

Similarly, the subjects of the case study are 

heterogeneous (students with no industrial experience  

 
and students with 3-6 years of professional 

experiment). 

This could confound the findings, as for example 

students with no experience may behave very different 

from industrial developers. As regarding to internal 

validity one has to be aware that with a single case 

study it is not possible to infer whether or not Fowler’s 

GL should be augmented. However, additional 
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research in larger and different contexts is needed to 

ensure that our results are indeed true. 

 

5. An Expert Survey on Practices 

Associated with Refactoring and Unit 

Testing 

In order to, get the expert opinions on our findings 

regarding refactoring tools a controlled survey was 

conducted. There were in total 28 questions, 

distributed into three categories: Demographics (6), 

refactoring (15) and unit testing (7). A final question 

asked for feedback on the survey. Before giving it to 

respondents, the questionnaire was validated by 4 

experts and a few amendments were made based on 

their suggestions. The survey was designed as a   

cross-sectional and controlled survey. To ensure the 

integrity of the results, participation tokens were 

created for selected individuals. They belonged to 

technologically advanced countries and their profiles 

showed that they had contributed in the research or 

development of refactoring and unit testing support.  
Respondents provided their opinion by selecting one 

of the options from 5-likert scale of answers against 
each question. The 5-scale options represent: Strongly 
agree, agree, neutral, disagree and strongly disagree. 
38 experts in refactoring domain were consulted. Most 
of the respondents used Java for development. 76% 
respondents used Eclipse, 39% respondents used other 
tools and 18% respondents performed refactoring 
manually. 42% respondents worked in software 
development organizations of all sizes, where as others 
were involved in research and development activities 
at universities. 74% participants had an advanced or 
expert level of refactoring knowledge. 58% 
respondents had above 5 years of IT experience. Unit 
testing was performed mostly by 66% and sometimes 
by 32% respondents. The data from the survey was 
analyzed to answer several research questions. The 
results are summarized in the Table 9. 

Table 9. Results from survey questions on performance of 
refactoring tools.  

Refactoring Tools 
Strongly 

Agree 
Agree Neutral Disagree 

Strongly 

Disagree 

No 

Response 

Introduce Syntactic 

Errors in the Unit Tests 
7.89% 26.32% 10.53% 23.68% 21.05% 10.53% 

Introduce Semantic 

Errors in the Unit Tests 
2.63% 39.47% 28.95% 10.53% 7.89% 10.53% 

Introduce Semantic 

Errors in the Clients 
10.53% 39.47% 18.42% 7.89% 10.53% 13.16% 

Introduce Semantic 

Errors in Refactored 

Code 

7.89% 21.05% 21.05% 21.05% 21.05% 7.89% 

Deteriorate the Software 

Quality 
0.00% 5.26% 18.4% 23.6% 42.11% 10.53% 

Introduce Test Smells in 

the Unit Tests 
5.26% 18.42% 21.05% 23.68% 10.53% 21.05% 

Do not Support Unit 

Tests  Reorganization 
26.32% 44.74% 10.53% 5.26% 0.00% 13.16% 

Do Not Fix Syntactic 

Errors  in the Unit Tests 
10.53% 18.42% 34.21% 10.53% 15.79% 10.53% 

The analysis shows that, in general, respondents 
agree to most of the issues identified in the survey and 
hence desire improvement. While confirming many 
unidentified issues with the experts, our findings also 
highlight gaps between required and existing tool 

characteristics. It can be seen from the results that there 
is more agreement from the respondents regarding 
issues related to unit test reorganization and adaptation. 
Very few participants agreed that the refactoring tools 
deteriorate quality, but it has been shown that this is 
indeed true. The figures indicate that there is need for 
extensive research in this area. Additionally, the results 
for research questions related to semantic defect 
introduction in clients, refactored code and unit tests 
also show that there is a huge room for improvement. 

 

6. Conclusions 

Refactoring is a structured and disciplined process of 

code transformation. Software maintenance, such as 

refactoring should ideally improve software quality 

[27]. But on the contrary the existing support for 

refactoring may introduce semantic errors as well as 

bad smells in the production and test code. In this 

paper, three refactoring including MM, PUM and PUM 

refactoring have been analyzed. Additional steps have 

been suggested that should be included in these 

refactoring. In order to, judge the effectiveness of these 

GL an experiment using 40 graduate students was 

setup. The results of the study are promising and have 

leaded us towards extension of other refactoring GL as 

well. The findings of this paper have been strengthened 

by conducting a controlled expert survey. Most of the 

respondents have appreciated the identified problems. 

The results from this analysis have been used to extend 

the Eclipse refactoring plug-in. Preliminary 

information about TAPEcan be found in [22]. 
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