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Abstract: Compression is one of the most important techniques in data management, which is usually used to improve the 

query efficiency in database. However, there are some restrictions on existing compression algorithms that have been applied 

to numeric data in column-oriented databases. First, a compression algorithm is suitable only for columns with certain data 

distributions not for all kinds of data columns; second, a data column with irregular distribution is hard to be compressed; 

third, the data column compressed by using heavyweight methods cannot be operated before decompression which leads to 

inefficient query. Based on the fact that it is more possible for a column to have sub-regularity than have global-regularity, we 

developed a compression scheme called Vertically Partitioning Compression (VParC). This method is suitable for columns 

with different data distributions, even for irregular columns in some cases. The more important thing is that data compressed 

by VParC can be operated directly without decompression in advance. Details of the compression and query evaluation ap-

proaches are presented in this paper and the results of our experiments demonstrate the promising features of VParC. 
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1. Introduction 

Column-oriented database systems (often refer to as 
column-stores) that store their content by columns 
(such as MonetDB, Sybase IQ and C-Store) have been 
shown to perform better than traditional row-oriented 
database management systems (refer to as row-stores, 
such as Oracle, IBM DB2 and SQL Service) on ana-
lytical workloads in data warehouses, decision support 
and business intelligence applications [2]. Compres-
sion is a technique known for improving system per-
formance for DBMSs and other applications [6, 9]. 
Column-stores are more suitable to compression 
schemes than row-stores [2] due to its storage mode. 
Compression techniques further improve the system 
performance of column-stores and gradually become 
one of the indispensable techniques. 

Recently, there are several studies reported on com-
pression algorithms for column-stores [1, 12]. Numeric 
type (including: Integer, float, decimal and date typed 
data) is a commonly used data type and is different 
from other data types (e.g., string type). However, 
there are some limitations in the existing compression 
methods for numeric data columns in column-stores: 

• A compression algorithm is suitable only for col-

umns with certain data distributions. The size of a 

data column compressed with unsuitable schemes 

could even become larger than that of the original.  

• A data column with irregular distribution is hard to 

be compressed by using any existing compression 

algorithms.  

• Without direct operations on compressed data, com-

pression becomes a trade off: Systems must pay the 

 
extra CPU cost to decompress in exchange for the I/ 

O savings of reading less data from storage [3, 8]. 

In order to, alleviate the limitations described above, 
we examined the issues related the regularities in 
data distributions and found a new regularity in data 
distribution called Sub-Regularity. Consequently, a 
compression scheme called Vertically Partitioned 
Compression (VParC) is proposed, in which        
sub-regularity are used to compress numeric data in 
column-oriented databases and the direct operations 
on compressed data columns are supported. In 
summary, the main contributions of this study are: 

• We introduced an approach to measure the        
regularities of data distribution through extracting 
three characteristic values for capturing the features 
of data distributions. 

• Base on the regularities of data distribution, we   
proposed and implemented a compression scheme 
for column-stores, called VParC. 

• We developed direct operations on compressed data.  
• Experimental studies have been performed. Our ex-

periments assessed the compression ratio, time re-
quired for compression and decompression, as well 
as issues related to direct operations.  

The rest of this paper is organized as follows: Section 2 
shows the related work. Definitions and analysis     
related to the regularity of data distribution are        
presented in section 3. In section 4, we give the intro-
duction about the new compression algorithm VParC 
and the direct searching on compressed data column. 
Section 5 shows the experiments results. Finally, sec-
tion 6 concludes the paper. 
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2. Related Works 

Loss and lossless compression techniques are widely 
used to save storage space and improve access speed  
[4, 10, 13, 16]. Lossless compression techniques,          
including lightweight and heavyweight compression 
techniques, had been applied to column-stores [1, 3]. 
However, there are some limitations or restrictions on 
applying these compression techniques directly to nu-
meric data columns. 

One kind of lightweight compression technique 
cannot be suitable for all kinds of data columns. Run-
Length Encoding (RLE) [17], where repeats of the 
same element are expressed as (value, run-length) 
pairs, is an attractive approach for compressing sorted 
data in a column-store. Nevertheless, it is only suited 
for columns that have reasonable-sized runs of the 
same value. Dictionary encoding and its improved al-
gorithms are perhaps the most prevalent compression 
scheme in use in data management today [5, 15]. In 
these schemes, frequent patterns are replaced with 
smaller codes. Bit packing is then used on top of dic-
tionaries to further compress the data [7]. However, 
this approach is only appreciated for columns that have 
a limited amount of different values. FOR compression 
scheme [20] uses a base value, a frame of reference 
and stores all values as offsets from the reference 
value. This method is useful when the values are not 
wide spread, since this will result in small offset values 
that can be represented by a small number of bits. Ad-
ditionally, it is not suitable for float data column. Bit-
map encoding is another widely used compression 
scheme [14]. It uses bit vectors to encode the values. 
One bit vector is required for each value, which makes 
it only useful when there is a limited amount of differ-
ent values. Thus, each method is suitable for only one 
case. And, if a column without any of the characteris-
tics described above, it cannot be compressed by any 
lightweight techniques. In order to address this prob-
lem, we proposed VParC to fit for all kinds of data 
columns. 

Ziv and Lempel [19] Encoding is the most widely 
used Heavyweight technique for lossless compression. 
The basic idea of this method is to parse the input se-
quence into non-overlapping blocks of different 
lengths. Then, a dictionary of blocks is constructed, 
which leads to the subsequent appearances of these 
blocks being replaced by a pointer to an earlier occur-
rence of the same block. However, recent researches 
[1] illustrated that the data columns compressed using 
heavyweight compression algorithms are difficult to be 
operated directly. That is, the data columns com-
pressed by using heavyweight algorithms should be 
decompressed before being     operated. This will de-
grade the performance in the case that the extra CPU 
cost of decompression is more than the saving I/O cost 
of reading less data from storage. Different from 
heavyweight techniques, VParC could support the di-
rectly operations on compressed data, thus, we propose 
the corresponding method of directly query for VParC. 

In C-Store [1, 3] each column is divided into blocks 

and each block is compressed using the decision tree 
compression scheme. This approach is used to aid the 
database designer to decide how to compress particular 
columns. However, this method also cannot support 
the direct operations on compressed data, just like 
heavyweight technique. And it costs much time on the 
decision of compression method. Our method is more 
efficient in compression than C-Store which can be 
illustrated in our experiment. 

3. Regularity of Data Distribution 

Compression algorithms are useful only when data dis-
tributions of a column contain certain regularities. 
Thus, issues related to data distribution regularities are 
important to compression.  

 

3.1. Vertically Partitioned 

Different types of data may be stored in different ways. 
For example, float data is stored using 4 bytes, double 
data is stored using 8bytes and integer data is stored 
using 4 or 8 bytes; decimal data and date data in differ-
ent system may be stored in different ways. However, 
data in different types can be vertically partitioned into 
several sub-columns. 

• Example 1: Figure 1 shows the vertical partitioning 
of an integer 32bit data column. This integer 32bit 
column is partitioned vertically into 4 sub-columns. 
Obviously, RLE is quite suitable for the first sub-
column. 

 

 

Figure 1. Vertical partition of an integer 32bit column. 

3.2. Characteristic Values 

Different compression schemes will be fit for different 
data columns. RLE is suitable for columns with few 
runs. The columns which have less number of different 
values prefer to dictionary and bitmap encoding. If the 
values of a column are not wide spread, FOR would be 
more appropriated. Thus, three key characteristic val-
ues of a column determine the compression effective-
ness of these algorithms. 

• Definition 1. Difference Degree: The number of     

different values in a column. 
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• Definition 2. Continuity Degree: The number of 

runs in a column. A run is a sequence in which the 

same data value occurs consecutively. 

• Definition 3. Max Distance: The difference between 

the maximal value and the minimal value in a col-

umn. 

• Example 2: Figure 2 shows a column with 15 val-
ues. Difference Degree of this column is 4, because 
there are 4 different values in this column. These 4 
different values are 0, 53, 52 and 175. Continuity 
Degree of this column is 7, since there are 7 runs in 
all (the first run is 0, its length is 3; the second run is 
53, its length is 1 and so on). The max distance is 
175.  Because the maximal value in this column is 
175 and the minimal value is 0, so the difference be-
tween them is 175. These characteristic values of a 
column can be obtained by traversing all the values 
in a column. 

0 0 0 53 52 175 175 175 52 53 53 53 53 53 53 

Figure 2. An instance of a column. 

 

3.3. Compression Ratios 

A compression algorithm is suitable for a column only 
when the compression ratio is smaller than 1. Clearly, 
the smaller the compression ratio is the more suitable 
the compression algorithm will be for a data column. 
Assumed that, the number of values in a data column t 
is n(t) and each value is assigned b(t) bits. 

RLE [17] compresses runs in a column to a compact 
singular representation. A run is replaced with a tuple 
(value, run-length), where each element of a tuple is 
given a fixed number of bits. When a data column t is 
compressed using RLE, the element value is given b(t) 
bits. The element run-length is assumed to be g bits. 
dgc(t) denotes the Continuity Degree of the column t. 
spacerle(t) denotes the data size of the column t com-
pressed by RLE and is defined as follows: 

               
(t) (t) ( (t))

rle c
space dg g b= × +                      

FOR [20] uses a base value, a frame of reference and 
stores all values as offsets from the base value. dism(t) 
denotes the max distance of a column t. Thus, when the 
minimum value in a column t is the base value, the 
offsets from the base value need log2 dism(t) bits. 
spacefor(t) denotes the data size of the column t com-
pressed by FOR and is defined as follows: 

2
(t) (t) log (t) (t)

for m
space n dis b= × +    

In bitmap encoding [14] a bit-string is associated with 

each value with a ‘1’ in the corresponding position if 

that value appeared at that position and a ‘0’ otherwise. 

dgd(t) denotes the difference degree of a column 

t.spacebit(t) denotes the data size of the column t being 

compressed using bitmap encoding and is defined as 

follows: 

               
(t) (t) (t) (t) (t)

bit d d
space n dg b dg= × + ×              

Dictionary compression schemes [7, 15] are perhaps 
the most prevalent compression schemes found in data 
management systems today. These schemes replace 
each value in a column t with a smaller dictionary 
code. Each code needslog2 dgd (t) bits. spacedict(t) 
denotes the data size of the column t compressed by 
dictionary (with the addition of bit packing) and is de-
fined as follows: 

         2
(t) (t) (t) (t) log (t)

dict d d
space b dg n dg= × + ×            

spaceno(t) denotes the data size of a column t without 
compression. It is equal to n(t)*b(t). rrle(t), rfor(t), rbit(t) 
and rdict(t) denote the compression ratio of RLE, FOR, 
Bitmap and Dictionary encoding for a column t and 
equal to spacerle(t), spacefor(t), spacebit(t) and 
spacedict(t) divided by spaceno(t) respectively. Thus, 
based on Equations 1, 2, 3 and 4, compression ratios of 
each algorithm are:  

( )( )
( ) 1

( ) ( ) ( )

rle

rle

no

dg tspace t gc
r t

space t n t b t
= = × +

 
 
 

               (5) 

2
log ( )( ) 1

( )
( ) ( ) ( )

mfor

for

no

dis tspace t
r t

space t b t n t
= = +

  
            (6) 

 

( ) ( ) ( )
( )

( ) ( ) ( )

bit d d

bit

no

space t dg t dg t
r t

space t b t n t
= = +                 (7) 

2
log ( )( ) ( )

( )
( ) ( ) ( )

ddict d

dict

no

dg tspace t dg t
r t

space t b t n t
= = +

  
          (8) 

3.4. Global-Regularity and Sub-Regularity 

Based on the compression ratios of these lightweight 

compression algorithms, we define the data distribu-

tion regularity of a data column is proposed. 

 

3.4.2. RLE-Regularity and Sub-RLE-Regularity 

• Definition 4. RLE-Regularity: Given a data column 

t, if rrle(t)<1, we call that the column t has the rrle(t)  

RLE-Regularity. 

• Definition 5. Sub-RLE-Regularity: A column t is 

vertically partitioned into s sub-columns, which are 

denoted as t(1), …, t(s). If existing i1, 2, ..., s}, the 

i
th
 sub-column t(i) has RLE-Regularity, t is consid-

ered to have Sub-RLE-Regularity. 

• Lemma 1. Given a data column t with n(t) elements, 
each element value is stored in b(t) bits and each run 
length is stored in g bits. The probability of the col-
umn t having RLE-Regularity is: 

                

( ) 1
1 ( ) ( )

( ) 1

1

2 2 1

( ) ( )
2

( ) ( )
where

( )

i
i b t b t

rle n t

rle
i

rle

C
p

b t n t

n t b t

b t g

β

β

−
−

−

=

× × −
∑= ×

×
=

+

 
  

                (9) 

(1) 

(2) 

(3) 

(4) 
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• Proof: According to Equation 5, RLE-Regularity 
implies that: 

( )
( ) 1 1

( ) ( )

c

rle

dg t g
r t

n t b t
= × + <

 
 
 

 

That is 
( ) ( )

( )
( )

c

n t b t
dg t

b t g

×
<

+
 

dgc(t) is an integer since it is the continuity degree of 
column t. We can obtain that: 

         

( ) ( )
( ) , where

( )
c rle rle

n t b t
dg t

b t g
β β

×
≤ =

+

 
  

   

There are 2
b(t)

 possible values for each element in col-
umn t since, each element is stored in b(t) bits. Thus, 
the number of possible outcomes of column t is 2

b(t)n(t)
.  

dgc(t)=i means that the number of runs in column t 
is i. Thus, the number of possible outcomes that dgc(t) 
equals to i is:  

( ) 1
1 ( ) ( )

( ) 1
C 2 2 1

i
i b t b t

n t

−
−

−
× × −  

Where 
m

nC denotes the number of combinations. Fur-

ther, the probability of dgc(t) equal to i is: 

( )
( ) 1

1 ( ) ( )

( )

( ) ( )

2 2 1
( )

2

i
i b t b t

n t

b t n t

C
p dg t ic

−
−

×

× × −
= =  

The probability of a column t having RLE-regularity is 

the probability of dgc(t) smaller and equal to βrle. That 

is: 

( ) ( )
1

( ) ( )
rle

rle c rle c
i

p p dg t p dg t i

β

β
=

∑= ≤ = =  

As a result, we can obtain the Equation 9. 

3.4.2. BM-Regularity and Sub-BM-Regularity 

• Definition 6. BM-Regularity: Given a data column 

t, if rbit(t)<1, the column t has the rbit(t) BM-

Regularity. 

• Definition 7. Sub-BM-Regularity: A column t is 

vertically partitioned into s sub-columns. If existing 

i, the i
th
 sub-column t(i) has BM-Regularity, the 

column t is considered to have Sub-BM-Regularity. 

• Lemma 2. Given a data column t with n(t) elements, 

each element value is stored in b(t) bits. The prob-

ability of the column t having BM-regularity is: 

                        

( ) ( )
2

( ) ( )
1 2

i i

bit b t n t

bit b t n t
i

P S

p

β

×
=

×
∑=

               

Where

(t) (t)

(t) (t)
bit

b n

b n
β

×
=

+

 
    

:m

nS Denotes a stirling number of the second kind, and 
:m

nP Denotes the number of m-permutations of n. 

• Proof: According to Equation 7, the situation in 

which column t has BM-Regularity implies that: 

( ) ( )
( ) 1

( ) ( )

d d

bit

dg t dg t
r t

n t b t
= + <  

That is 
( ) ( )

( )
( ) ( )

d

b t n t
dg t

b t n t

×
<

+
 

Where dgd(t) must be an integer since, it is the Differ-
ence Degree of column t. We can obtain that: 

( ) ( )
( ) ,

( ) ( )
d bit bit

b t n t
dg t where

b t n t
β β

×
< =

+

 
  

 

dgd(t)=i means that the number of different elements in 
column t is i. Thus, the number of possible outcomes 
that dgc(t) equals to i is: 

( ) ( )
2

i i

b t n t
P S×  

Because the number of possible outcomes of column t 
is 2

b(t)n(t)
, the probability of dgd(t) equal to i is: 

( ) ( )
2

( ) ( )
( ( ) )

2

i i

b t n t

d b t n t

P S

p dg t i
×

×
= =  

Probability of column t having BM-Regularity is the 
probability of dgd(t) smaller and equal to β bit. That is: 

( ) ( )
1

( ) ( )
bit

bit d bit d
i

p p dg t p dg t i

β
β

=
∑= ≤ = =  

As a result, we can obtain the Equation 10. 

 

3.4.3. DICT-Regularity and Sub-DICT-Regularity 

• Definition 8. DICT-Regularity: Given a data col-
umn t, if rdict(t)<1, the column t has the rdict(t) 
DICT-Regularity. 

• Definition 9. Sub-DICT-Regularity: A column t is 
vertically partitioned into s sub-columns. If existing 
i, the i

th
 sub-column t(i) has DICT-Regularity, the 

column t is considered to have Sub-DICT-
Regularity. 

• Lemma 3. Given a data column t with n(t) elements, 
and each element value is stored in b(t) bits. The 
probability of the column t having DICT-Regularity 
is: 

              

( ) ( )
2

( ) ( )
1 2

i i

dict b t n t

dict b t n t
i

P S

p

β

×
=

×
∑=          (11) 

Where 
dict
β β=    , and β : Is the approximate solution 

of the equation: 

n(t)×log2dgd(t)+b(t)×dgd(t)=n(t)×b(t) 

• Proof: According to Equation 8, the situation in 

which column t has DICT-Regularity implies that: 

2
log ( ) ( )

( ) 1
( ) ( )

d d

dict

dg t dg t
r t

b t n t
= + <
    

If rdict(t)=1, we can get an equation: 

n(t)×log2dgd(t)+b(t)×dgd(t)=n(t)×b(t) 

It is an non-linearequation about dgd(t) and we can ob-

tain the approximate solution β using the method of 

(10)
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Newton. There are three reasons for dgd(t) satisfying 

dgd(t) ≤  βdict, where βdict=β: dgd(t) is an integer; 

rdict(t)<1; rdict(t) is monotonically increasing at dgd(t). 

Because the probability of the column t having DICT-

Regularity is the probability of dgd(t) smaller and equal 

to βdict, we can get that: 

( ) ( )
1

( ) ( )
dict

dict d dict d
i

p p dg t p dg t i

β

β
=

∑= ≤ = =  

As a result, we can obtain the Equation 11. 

 

3.4.4. For-Regularity and Sub-for-Regularity 

• Definition 10. For-Regularity: Given a data column 
t, if rfor(t)<1, we call that the column t has the rfor(t)  
for-regularity. 

• Definition 11. Sub-For-Regularity: A column t is 
vertically partitioned into s sub-columns. If existing 
i, the i

th
 sub-column t(i) has For-Regularity, the col-

umn t is considered to have sub-for-regularity. 

 

3.5. Global-Regularity and Sub-Regularity 

For a data column t, it could have several kinds of 
regularities. For example, t has RLE-Regularity and 
BM-Regularity simultaneously. 

• Definition 12. Global-Regularity: If a data column t 

has one or more kinds of regularities, that is, 

λ(t)=min{rrle(t), rbit(t), rdict(t), rfor(t)}<1, the column t 

has λ(t) Global-Regularity. 

If a data column has Global-Regularity, it can be com-
pressed. It is clearly that the smaller the λ(t) of a col-
umn is the more regular the column is and the more 
effective that the column can be compressed. If λ(t)≥1, 
we say that the column t is irregular. 

• Definition 13. Sub-Regularity: If a data column t 
has Sub-RLE-Regularity, Sub-BM-Regularity, Sub-
DICT-regularity or sub-for-regularity, it is called to 
have sub-regularity. 

A column t with Sub-Regularity can be compressed 
after vertically partitioned into sub-columns. It is pos-
sible that column t has several kinds of sub-
regularities. For example, it could have sub-RLE-
regularity and sub-bm-regularity. 

The key issue to partition a column into sub-
columns is how many sub-columns a column should be 
vertically partitioned into. Too many sub-columns a 
column is vertically partitioned into would lead to 
more compression and decompression costs. On the 
other hand, if a column is vertically partitioned into too 
few sub-columns, there is no much help to compres-
sion. Byte is the basic unit of data processing. Thus, a 
column could be vertically partitioned by byte.  

Traditional compression methods take advantage of 
Global-Regularity to compress data columns. Obvi-
ously, if a column t has For-Regularity, it must have 
Sub-For-Regularity. Additionally, according to the 
lemmas 1, 2 and 3, a data column t is more likely to 
have Sub-RLE-Regularity, Sub-BM-Regularity and 

Sub-DICT-Regularity than to have RLE-Regularity, 
BM-Regularity and DICT-Regularity. That is, sub-
columns that are vertically partitioned from a column t 
are more regular than the column t itself. Thus, we util-
ize Sub-Regularity to compress. 

4. Compression and Direct Searching 

Based on the analysis and proof above, we propose a 
compression algorithm called VParC. A column that is 
compressed using VParC is partitioned into several 
sub-columns. The key issue of searching directly on 
the compressed column is how to obtain the results by 
means of the direct searching on the compressed      
sub-columns. 

 

4.1. Compression Procedures of VParC 

The procedure of compressing a data column t using 
VParC can be divided into 3 steps: 

1. Vertically partition the data column t into several 
sub-columns by byte, and each sub-column is a byte 
typed column. 

2. Obtain three characteristic values of each sub-
column. Three characteristic values of each sub-
column can be obtained by traversal of each sub-
column. 

3. Compress each sub-column using suitable light-
weight compression algorithms. 

Sub-columns with different regularities need to be 
compressed using different compression algorithms. A 
key issue is how to choose a suitable compression al-
gorithm for a sub-column t(i). Based on characteristic 
values of a sub-column t(i), rrle(t(i)), rfor(t(i)), rbit(t(i)) 
and rdict(t(i)) can be obtained and the compressed size 
of the sub-column t(i) can be obtain.  

The purpose of compression is to improve the per-
formance of searching [8, 11]. Thus, we choose the 
algorithm that is the most beneficial for searching. We 
assume that α is a constant factor regarding disk I/O 
capability. γrle, γfor, γdic and γbit denote the cost of re-
trieving on data compressed by RLE, dictionary, FOR 
and Bitmap encoding respectively. Thus, an approxi-
mation of the time for searching on the sub-column t(i) 
compressed by four kinds of compression methods can 
be obtained: 

                      
( ) ( )

X X
S X ratio n α γ= × × ×                      

Where X is RLE, FOR, dictionary or Bitmap encoding. 
Thus, we choose X to compress t(i) where X leads to 
the minimum S(X). 

 

4.2.  Equivalent Search and Rang Search 

There are two kinds of searching on numeric data in 
column-stores, which is different from string typed 
data: Equivalent search and range search. An equiva-
lent search means to find values in a column that are 
equal to a given value a. A range search means to find 
values in a column that are in a given interval. There 

(12)
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are several patterns of intervals. Because the process of 
range search is similar for different kinds of intervals, 
only open interval (a, b) is discussed in this paper. 

A column t is partitioned vertically into u(t) sub-
columns by byte. Accordingly, a value x in the column 
is partitioned into u(t) bytes (called sub-values) and it 
is represented as <x1, x2, …, xu(t)>. A given value a is 
partitioned into u(t) bytes as well, represented as <a1, 
a2, …, au(t)>. x is equal to a if and only if each sub-
value of x is equal to each corresponding sub-value of 
a, that is x1=a1, x2=a2, …, and xu(t)=au(t).  

In a rang search, the lower bound and upper bound 
of an interval (a, b) can be partitioned into u(t) sub-
values, which are denoted as <a1, a2, …, au(t)> and <b1, 
b2,…, bu(t)> separately. Result of range search can be 
obtained by means of comparing xi with ai and bi (i=1, 
2, …, u(t)). However, columns with different data 
types in different systems are stored in different ways. 
Thus, the methods of range search are varied depend-
ing on data types and storage formats. In this section, 
searching process is shown based on IEEE standard 
format. 

 

4.3. Storage Format of Data Columns 

An integer (32bits) 32 stored in IEEE standard format 
and in little-endian computer byte ordering is shown in 
Figure 3. It is stored in the form of complement. 

11111111 11111111 11111111 11100000 

Figure 3. An instance of storage format of integer data (32bits). 

A float (32bits) -0.125 (to present as binary number 
is -1.0*2

-11
) in IEEE standard format and in little-

endian computer byte ordering is shown in Figure 4. 
From left to right, the first bit is sign bit; the next eight 
bits represent the shift code of exponent (means adding 
127 to exponent) and the left bits represent mantissa. 

 
10111110 00000000 00000000 00000000 

Figure 4. An instance of storage format of float data (32 bits). 

4.4. Range Search 

In the implementation of range search, the relation-
ships among xi, ai and bi show whether the value x is in 
the interval (a, b). There are three cases which values 
of a and b can be in: The first case is a≥ 0 and b> 0, 
the second case is a< 0 and b≤ 0, the third case is a< 0 
and b> 0. However, there is only the first case for date 
data.  

• Case 1: a≥ 0 and b> 0.  

1. if a1≠b1, then: 

a. if x1<a1 or x1> b1, x is not in (a, b). 
b. if x1>a1 and x1< b1, x is in (a, b). 
c. if x1=a1, then it needs to compare x2 and a2. 

• if x2>a2, x is in the interval (a, b). 
• if x2<a2, x is not in the interval (a, b). 
• if x2=a2, then it needs to compare x3 and a3 

in same way as c. 

d. if x1=b1, then need to compare x2 and b2. 

• if x2>b2, x is not in the interval (a, b). 
• if x2<b2, x is in the interval (a, b). 
• if x2=b2, then it needs to compare x3 and b3 

in same way as d. 

2. if a1=b1, then: 

•  if x1≠a1, x is not in the interval (a, b). 
• if x1=a1, then it needs to compare x2, a2 

and b2 in accordance with the steps 1 and 2. 

In summary, there are three kinds of comparison re-
sults: ai=bi and xi=ai, ai≠bi and xi=ai, ai≠bi and xi=bi. If 
the comparison result of a sub-value xi is one of these 
three kinds, it needs to compare the next sub-value.  

• Case 2: a<0 and b≤0.   

1. if a1≠b1, then: 

a. if x1<a1 or x1>b1, x is not in (a, b). 
b. if x1>a1 and x1<b1, x is in the interval (a, b).  
c. if x1=a1, then it needs to compare x2 and a2. 

• if x2>a2, for integer number, x is in (a, b); 
for other data types, x is not in (a, b) 

• if x2<a2, for integer number, x is not in (a, 
b); for other data types, x is in (a, b) 

• if x2=a2, then it needs to compare x3 and a3 
in same way as c. 

d. if x1=b1, then need to compare x2 and b2. 

• if x2>b2, for integer number, x is not in (a, 
b); for other types, x is in (a, b). 

• if x2<b2, for integer number, x is in the in-
terval (a, b); for other types, x is not in the 
interval. 

• if x2=b2, then it needs to compare x3 and b3 
in same way as d. 

2. if a1=b1, then: 

a. if x1≠ a1, x is not in the interval (a, b). 
b. if x1=a1, then it needs to compare x2, a2 and b2 

in accordance with the steps 1 and 2. 

• Case 3: a< 0 and b> 0. 

1. if x= 0, x is in the interval (a, b). 
2. if x> 0. 

a. if x1<b1, x is in the interval (a, b). 
b. if x1>b1, x is not in the interval (a, b). 
c. if x1=b1, then it needs to compare x2 and b2 in 

the same way as 2. 

3. if x< 0.  

a. if x1<a1, for integer number x is not in (a, b); 
for other data types, x is in the interval. 

b. if x1>a1, for integer number x is in (a, b); for 
other data types, x is not in the interval. 

c. if x1=a1, then it needs to compare x2 and b2 in 
same way as a, b and c for x< 0. 

5. Experiments 

To assess the features of VParC, experimental studies 
have been performed. The experiments are conducted 
on 2.5GHz Pentium Daul-Core, running Windows XP, 
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with 3GB of main memory. For the experiments, a data 
generator called dbgen is used to generate an instance 
of the TPC-H data set at scale 1, which yields a total 
database size of approximately 1GB with 6 tables, 
named Supplier, Customer, Part, Partsupp, Orders and 
Lineitem respectively.  

We test two types of numeric columns: Integer and 

float columns. First, we compare the compression data 

size, the compression time and decompression time of 

VParC with otherfour compression schemes: RLE, dic-

tionary encoding (DICT for short), FOR, decision tree 

(DT for short). BITMAP is not presented because if a 

column t has BM-Regularity, it must has DICT-

Regularity (the reason is that rbit(t) is always larger 

than rdict(t), according to the Equations 7 and 8 pre-

sented in section 3.3). Second, we test the performance 

of search on these two types of columns, which are 

compressed by using different compression schemes. 
In VParC, each column is vertically partitioned into 

four sub-columns, since integer and float data are 
stored in four bytes. Then, characteristic values of each 
sub-column are evaluated, which are gained by scan-
ning sub-columns. The scanning processes are in-
cluded in the compression. The best algorithm is cho-
sen to compress the sub-column according to the char-
acteristic values. Apparently, sub-columns from the 
same column may be compressed by using different 
compression schemes. 

 

5.1. Compression Performance on Integer Data 

There are 13 integer columns in the instance of the 

TPC-H dataset. We use different compression schemes 

to compress these columns and compare their com-

pression ratio, time for compression and decompres-

sion. 

 

5.1.1. Compression Ratio on Integer Columns 

We list the size of data compressed by VParC and   

other four encoding schemes on each integer column in 

Table 1. NC denotes the original size of a data column 

without being compressed. 

Table 1. Compressed data sizes of integer columns (in KByte). 

 NC RLE FOR DICT DT VParC 

1 40 75 7 7 7 7 

2 40 79 18 57 18 11 

3 586 1123 92 92 92 92 

4 782 1532 147 147 147 147 

5 3126 6251 1368 1407 1368 1368 

6 3126 6250 1368 1407 1368 1368 

7 3126 1563 1758 2540 1563 981 

8 5860 11719 3296 3504 3296 3296 

9 23443 45212 2198 2198 2198 2198 

10 23443 45946 4396 4396 4396 4396 

11 23443 46880 10257 10296 10257 10257 

12 23443 46885 13187 13968 13187 13187 

13 23443 11719 16580 21244 11719 4511 

The size of a data column becomes larger than the 

original if the column is compressed by unsuitable 

compression algorithm. For example, the size of the 

first data column without compression is 40KB, but it 

increases to 75KB after being compressed by RLE. 

Thus, traditional compression scheme, such as RLE, 

FOR and DICT cannot be suitable for all kinds of col-

umns.  

In DT, the best algorithm is chosen for the column, 

thus, it achieves better compression results than RLE, 

FOR and DICT. However, for most columns VParC 

obtains the similar compression ratio as DT; and for 

other three columns, the columns 2, 7 and 13, VParC 

obtains better compression results than DT. Because of 

the storage structure of integer, the high bytes of the 

values in a column are the same. Some have Sub-RLE-

Regularity although the column itself has no RLE-

Regularity. Thus, these sub-columns can be   com-

pressed efficiently. For example, the column 2 has 0.45 

FOR-Regularity, while two sub-columns in it have 

0.0005 RLE-Regularity. Thus, for column 2, VParC is 

more efficient than DT. 

5.1.2. Time for Compression on Integer Columns 

Table 2 shows the compression time of each compres-

sion schemes. The time for compression is composed 

of the time to obtain the characteristic values and the 

time to compress data columns. In DT, most of the 

time is spent on the obtaining of the characteristic val-

ues. In VParC, although there are four sub-columns 

need to be processed, the required time is much less 

than DT due to the byte nature of sub-columns. Thus, 

the VParC cost less time to compress than DT. 

Table 2. Time for compression on integer columns (in ms). 

 RLE FOR DICT DT VParC  

1 0.2 4.3 4.9 5.6 1.8 1 

2 0.2 12.3 13.8 613.5 2.3 2 

3 3.1 66.1 74.4 82.4 28.9 3 

4 4.1 103.9 121.7 146.6 37.4 4 

5 17.9 998.8 1162.8 65447.4 153.1 5 

6 15.1 987.5 1234.4 34083.2 156.7 6 

7 10.4 1215.1 1435.1 8087.5 752.1 7 

8 33.2 2390.2 2837.4 127285.1 297.4 8 

9 121.5 1474.8 1812.6 1836.4 1157.9 9 

10 125.5 3207.5 3745.4 4296.5 1101.2 10 

11 121.1 7487.7 9172.3 255229.3 1096.4 11 

12 118.6 9527.8 11920.1 535771.9 1070.5 12 

13 96.7 11200.6 11844.8 61544.1 1746.6 13 

 

5.1.3. Time for Decompression on Integer Columns 

The time needed for decompression is shown in Table 

3. RLE needs less time for decompression than FOR 

and DICT due to the bit shift in the FOR and DICT 

algorithms.  
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Table 3. Time for decompression on integer columns (in ms). 

 RLE FOR DICT DT VParC 

1 0.3 1.4 1.4 1.4 0.7 

2 0.3 3.6 3.1 3.1 0.6 

3 3.9 21.5 21.5 21.3 12.6 

4 5.2 33.5 33.2 32.7 15.7 

5 21.3 277.1 285.9 279.1 66.5 

6 21.2 285.7 292.2 280.8 65.7 

7 12.3 308.4 311.2 201.1 58.0 

8 39.6 680.6 657.5 663.7 122.5 

9 164.6 541.2 529.8 509.5 519.9 

10 152.4 1061.7 1053.7 1025.6 456.3 

11 155.3 2188.6 2208.8 2122.1 461.4 

12 155.9 2719.2 2784.2 2687.2 463.9 

13 109.4 2840.2 2643.9 171.9 468.9 

In VParC, decompression is faster than DT except 
columns 9 and 13, because in these two columns, there 
is more than one sub-column compressed using FOR 
or DICT, which are more slower than RLE. For exam-
ple, the column 13 has RLE-Regularity while there are 
two sub-columns have Sub-RLE-Regularity and other 
two sub-columns have Sub-DICT-Regularity. There-
fore, in the columns with Sub-DICT-Regularity or 
Sub-DICT-Regularity, decompression time for VParC 
is more than DT. 

5.2. Compression Performance on Float Data 

There are 8 float columns in the instance of the TPC-H 
data in all Similar to the experiments for integer col-
umns, we compared the compression ratio, compres-
sion time and decompression time of each algorithm on 
each float columns. Notice that, FOR is not suitable for 
float columns, thus, it is not tested in this experiment.  

5.2.1. Compression Ratio on Float Columns 

The sizes of the data columns compressed using each 
algorithm on each float columns are illustrated in    
Figure 5. It can be seen that VParC leads to more size 
for the columns 4, 6, 7 and 8 than DT. Because of the 
storage structure of float data, the column without 
RLE-Regularity, it will not have Sub-RLE-Regularity. 
For example, the column 6 has 0.125 DICT-Regularity, 
while each sub-column in column 6 has 0.375 DICT-
Regularity. Thus, VParC is less efficient than DT for 
the columns with better global-regularity. 
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Figure 5. Data sizes of compressed float columns. 

 

However, VParC shows better compression ratio for 
columns 1, 2, 3 and 5, because they are not much regu-
lar columns. Especially for columns 1, 2 and 5, they 
are irregular and cannot be compressed by any light-

weight schemes. In general, although VParC has no 
advantage for float columns with good Global-
Regularity, it shows better compression ratio for ir-
regular columns. 
 

5.2.2. Time for Compression on Float Columns 

The time required for each compression scheme is 
shown in Figure 6. Just like integer columns, VParC 
requires less time to compress than DT because obtain-
ing characteristic values is time-consuming for DT. 
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Figure 6. Time for compression on float columns. 

 

5.2.3. Time for Decompression on Float Columns 

Figure 7 illustrates the decompression time for each 
algorithms. Because columns 1, 2 and 5are irregular 
columns, they cannot be compressed by any 
lightweight algorithms except VParC. Thus, VParC 
cost more time to decompress for these columns than 
DT.  

For columns 6 and 7, each sub-column in these two 
columns has DICT-Regularity. DICT and FOR is more 
time-consuming than RLE, which leads to more time 
for VParC to decompress than DT.  

However, for the columns that are not much regular, 
such as the columns 3, 4 and 8, VParC shows better 
decompression performance than DT. 
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Figure 7. Time for decompression on float columns. 

 

In conclusion, we compare the compression ratio, 
compression time and decompression time of four 
compression schemes for numeric data columns. Ob-
viously, RLE, DICT and FOR are not suitable for all 
columns. Thus, our experiments focus on the compari-
son between DT and VParC. 

The results of our experiments illustrated that 
VParC has advantages in the compression speed and 
VParC is not always superior to DT in the aspects of 
decompression speed and compression ratio. However, 
VParC is more universal than DT. That is, for columns 
with Global-Regularity that can be compressed by DT, 
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they can be compressed by VParC; for irregular col-
umns that cannot be compressed by DT, they also can 
be compressed by VParC. 

 
5.3. Time Required for Equivalent Searching 

In equivalent search, the search results needn’t to be 
decompressed. Thus, the time for equivalent search 
includes the time of loading compressed data from disk 
to memory and the time of searching on compressed 
data. In our experiment, random values are used as 
searching value and the time of searching is an average 
time of 100 times. Notice than, RLE, FOR and DICT 
are not suitable for all columns, we only evaluate the 
time for equivalent searching on columns compressed 
by using DT and VParC. 

 
5.3.1. Equivalent Search on Integer Columns 

Figure 8 shows that searching on data compressed by 
VParC needs less time than DT, there are two          
reasons: VParC is more efficient for integer column 
compression, which is shown in Table 1. Thus, it costs 
less time for loading data compressed by VParC than 
by DT. In VParC, for the values that are not equal to 
the searching value, there is no need to compare all of 
the sub-values. Thus, the time of searching on       
compressed data is less than in DT. 
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Figure 8. Time for equivalent search on integer column. 

 

5.3.2. Equivalent Search on Float Columns 

In Figure 9, the time of equivalent search on float col-
umns for VParC and DT are compared. Just like the 
equivalent searching on integer columns, searching on 
data compressed by VParC cost less time than com-
pressed by DT. 
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Figure 9. Time for equivalent search on float columns. 

 

5.4. Time Required for Range Searching 

For range search, the search time is composed of the 

time of loading, the time of searching and the time of 

decompression. Random range is used as searching 

range and the time of searching is an average time of 

100 times. 

5.4.1. Range Search on Integer Columns 

Figure 10 shows the time for range search on integer 

columns. Because of fewer disks I/Os and less decom-

pression time, range search on VParC is quick than DT 

for most integer columns except column 13. Because 

VParC need more decompression time for this column 

than DT, which is more than the time saving from 

compression. 
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Figure 10. Time for range search on integer column. 

5.4.2. Range Search on Float Columns 

The time for range search on float columns is showed 

in Figure 11. For the columns 6 and 7, although the 

size of data compressed by VParC is larger than DT, 

VParC requires more or less the same time as DT for 

range search on this two columns due to less time of 

decompression. For the columns 1, 2 and 5, VParC 

needs a little more time than DT, because the time 

saved by less I/O is more than the time of searching 

and search caused by compression. However, for col-

umns 3, 4 and 8, VParC required less time than DT, 

because of the less size of compressed data and less 

time for decompression. 
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Figure 11. The time of range search for float columns. 

 

We just list the experiment results of integer and 

float data columns. From the results, we conclude that 

for much regular data column, VParC is not better than 

DT; However, VParC is better than DT for not much 

regular columns and irregular columns. Date and de-

cimal data are not listed because they show the similar 

results to the integer and float data. 

6. Conclusions and Future Work 

Compression is one of the most important techniques 

for column-oriented data management. In this paper, 
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we prove that a column is more possible to have     

sub-regularity than to have global-regularity. Thus, a 

new compression scheme, called VParC, is proposed 

and related issues are examined. Furthermore, we        

implemented it and evaluation studies have been       

performed.  

In VParC, a data column is vertically partitioned         

into several sub-columns; each sub-column is             

compressed by suitable compression algorithms          

according to its regularity. Only lightweight          

compression algorithms are used to compress          

sub-columns. In this way, equivalent search and range 

search can be implemented directly on compressed 

data columns. A searching method to operate on       

compressed sub-columns directly is designed to      

directly operate the data compressed by VParC without     

decompression in advance. The experiment results illu-

strated that the VParC and the corresponding searching 

method are very promising. 

As a part of our future work, we plan to integrate 

more compression scheme in VParC for sub-columns 

and leads to improved compression ratio. Also, parallel 

processing and indexes on sub-columns are considered 

to improve searching performance. 
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