
The International Arab Journal of Information Technology 1

VParC: A Compression Scheme for Numeric Data

in Column-Oriented Databases

Ke Yan
1
, Hong Zhu

1
, and Kevin Lü

2

1
School of Computer Science and Technology, Huazhong University of Science and Technology, China

2
College of Business, Arts and Social Sciences, Brunel University, UK

Abstract: Compression is one of the most important techniques in data management, which is usually used to improve the

query efficiency in database. However, there are some restrictions on existing compression algorithms that have been applied

to numeric data in column-oriented databases. First, a compression algorithm is suitable only for columns with certain data

distributions not for all kinds of data columns; second, a data column with irregular distribution is hard to be compressed;

third, the data column compressed by using heavyweight methods cannot be operated before decompression which leads to

inefficient query. Based on the fact that it is more possible for a column to have sub-regularity than have global-regularity, we

developed a compression scheme called Vertically Partitioning Compression (VParC). This method is suitable for columns

with different data distributions, even for irregular columns in some cases. The more important thing is that data compressed

by VParC can be operated directly without decompression in advance. Details of the compression and query evaluation ap-

proaches are presented in this paper and the results of our experiments demonstrate the promising features of VParC.

Keywords: Column-stores, data management, compression, query processing, analytical workload.

Received August 28, 2013; accepted October 23, 2014; published online March 8, 2015

1. Introduction

Column-oriented database systems (often refer to as
column-stores) that store their content by columns
(such as MonetDB, Sybase IQ and C-Store) have been
shown to perform better than traditional row-oriented
database management systems (refer to as row-stores,
such as Oracle, IBM DB2 and SQL Service) on ana-
lytical workloads in data warehouses, decision support
and business intelligence applications [2]. Compres-
sion is a technique known for improving system per-
formance for DBMSs and other applications [6, 9].
Column-stores are more suitable to compression
schemes than row-stores [2] due to its storage mode.
Compression techniques further improve the system
performance of column-stores and gradually become
one of the indispensable techniques.

Recently, there are several studies reported on com-
pression algorithms for column-stores [1, 12]. Numeric
type (including: Integer, float, decimal and date typed
data) is a commonly used data type and is different
from other data types (e.g., string type). However,
there are some limitations in the existing compression
methods for numeric data columns in column-stores:

• A compression algorithm is suitable only for col-

umns with certain data distributions. The size of a

data column compressed with unsuitable schemes

could even become larger than that of the original.

• A data column with irregular distribution is hard to

be compressed by using any existing compression

algorithms.

• Without direct operations on compressed data, com-

pression becomes a trade off: Systems must pay the

extra CPU cost to decompress in exchange for the I/

O savings of reading less data from storage [3, 8].

In order to, alleviate the limitations described above,
we examined the issues related the regularities in
data distributions and found a new regularity in data
distribution called Sub-Regularity. Consequently, a
compression scheme called Vertically Partitioned
Compression (VParC) is proposed, in which
sub-regularity are used to compress numeric data in
column-oriented databases and the direct operations
on compressed data columns are supported. In
summary, the main contributions of this study are:

• We introduced an approach to measure the
regularities of data distribution through extracting
three characteristic values for capturing the features
of data distributions.

• Base on the regularities of data distribution, we
proposed and implemented a compression scheme
for column-stores, called VParC.

• We developed direct operations on compressed data.
• Experimental studies have been performed. Our ex-

periments assessed the compression ratio, time re-
quired for compression and decompression, as well
as issues related to direct operations.

The rest of this paper is organized as follows: Section 2
shows the related work. Definitions and analysis
related to the regularity of data distribution are
presented in section 3. In section 4, we give the intro-
duction about the new compression algorithm VParC
and the direct searching on compressed data column.
Section 5 shows the experiments results. Finally, sec-
tion 6 concludes the paper.

2 The International Arab Journal of Information Technology

2. Related Works

Loss and lossless compression techniques are widely
used to save storage space and improve access speed
[4, 10, 13, 16]. Lossless compression techniques,
including lightweight and heavyweight compression
techniques, had been applied to column-stores [1, 3].
However, there are some limitations or restrictions on
applying these compression techniques directly to nu-
meric data columns.

One kind of lightweight compression technique
cannot be suitable for all kinds of data columns. Run-
Length Encoding (RLE) [17], where repeats of the
same element are expressed as (value, run-length)
pairs, is an attractive approach for compressing sorted
data in a column-store. Nevertheless, it is only suited
for columns that have reasonable-sized runs of the
same value. Dictionary encoding and its improved al-
gorithms are perhaps the most prevalent compression
scheme in use in data management today [5, 15]. In
these schemes, frequent patterns are replaced with
smaller codes. Bit packing is then used on top of dic-
tionaries to further compress the data [7]. However,
this approach is only appreciated for columns that have
a limited amount of different values. FOR compression
scheme [20] uses a base value, a frame of reference
and stores all values as offsets from the reference
value. This method is useful when the values are not
wide spread, since this will result in small offset values
that can be represented by a small number of bits. Ad-
ditionally, it is not suitable for float data column. Bit-
map encoding is another widely used compression
scheme [14]. It uses bit vectors to encode the values.
One bit vector is required for each value, which makes
it only useful when there is a limited amount of differ-
ent values. Thus, each method is suitable for only one
case. And, if a column without any of the characteris-
tics described above, it cannot be compressed by any
lightweight techniques. In order to address this prob-
lem, we proposed VParC to fit for all kinds of data
columns.

Ziv and Lempel [19] Encoding is the most widely
used Heavyweight technique for lossless compression.
The basic idea of this method is to parse the input se-
quence into non-overlapping blocks of different
lengths. Then, a dictionary of blocks is constructed,
which leads to the subsequent appearances of these
blocks being replaced by a pointer to an earlier occur-
rence of the same block. However, recent researches
[1] illustrated that the data columns compressed using
heavyweight compression algorithms are difficult to be
operated directly. That is, the data columns com-
pressed by using heavyweight algorithms should be
decompressed before being operated. This will de-
grade the performance in the case that the extra CPU
cost of decompression is more than the saving I/O cost
of reading less data from storage. Different from
heavyweight techniques, VParC could support the di-
rectly operations on compressed data, thus, we propose
the corresponding method of directly query for VParC.

In C-Store [1, 3] each column is divided into blocks

and each block is compressed using the decision tree
compression scheme. This approach is used to aid the
database designer to decide how to compress particular
columns. However, this method also cannot support
the direct operations on compressed data, just like
heavyweight technique. And it costs much time on the
decision of compression method. Our method is more
efficient in compression than C-Store which can be
illustrated in our experiment.

3. Regularity of Data Distribution

Compression algorithms are useful only when data dis-
tributions of a column contain certain regularities.
Thus, issues related to data distribution regularities are
important to compression.

3.1. Vertically Partitioned

Different types of data may be stored in different ways.
For example, float data is stored using 4 bytes, double
data is stored using 8bytes and integer data is stored
using 4 or 8 bytes; decimal data and date data in differ-
ent system may be stored in different ways. However,
data in different types can be vertically partitioned into
several sub-columns.

• Example 1: Figure 1 shows the vertical partitioning
of an integer 32bit data column. This integer 32bit
column is partitioned vertically into 4 sub-columns.
Obviously, RLE is quite suitable for the first sub-
column.

Figure 1. Vertical partition of an integer 32bit column.

3.2. Characteristic Values

Different compression schemes will be fit for different
data columns. RLE is suitable for columns with few
runs. The columns which have less number of different
values prefer to dictionary and bitmap encoding. If the
values of a column are not wide spread, FOR would be
more appropriated. Thus, three key characteristic val-
ues of a column determine the compression effective-
ness of these algorithms.

• Definition 1. Difference Degree: The number of

different values in a column.

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases 3

• Definition 2. Continuity Degree: The number of

runs in a column. A run is a sequence in which the

same data value occurs consecutively.

• Definition 3. Max Distance: The difference between

the maximal value and the minimal value in a col-

umn.

• Example 2: Figure 2 shows a column with 15 val-
ues. Difference Degree of this column is 4, because
there are 4 different values in this column. These 4
different values are 0, 53, 52 and 175. Continuity
Degree of this column is 7, since there are 7 runs in
all (the first run is 0, its length is 3; the second run is
53, its length is 1 and so on). The max distance is
175. Because the maximal value in this column is
175 and the minimal value is 0, so the difference be-
tween them is 175. These characteristic values of a
column can be obtained by traversing all the values
in a column.

0 0 0 53 52 175 175 175 52 53 53 53 53 53 53

Figure 2. An instance of a column.

3.3. Compression Ratios

A compression algorithm is suitable for a column only
when the compression ratio is smaller than 1. Clearly,
the smaller the compression ratio is the more suitable
the compression algorithm will be for a data column.
Assumed that, the number of values in a data column t
is n(t) and each value is assigned b(t) bits.

RLE [17] compresses runs in a column to a compact
singular representation. A run is replaced with a tuple
(value, run-length), where each element of a tuple is
given a fixed number of bits. When a data column t is
compressed using RLE, the element value is given b(t)
bits. The element run-length is assumed to be g bits.
dgc(t) denotes the Continuity Degree of the column t.
spacerle(t) denotes the data size of the column t com-
pressed by RLE and is defined as follows:

(t) (t) ((t))

rle c
space dg g b= × +

FOR [20] uses a base value, a frame of reference and
stores all values as offsets from the base value. dism(t)
denotes the max distance of a column t. Thus, when the
minimum value in a column t is the base value, the
offsets from the base value need log2 dism(t) bits.
spacefor(t) denotes the data size of the column t com-
pressed by FOR and is defined as follows:

2
(t) (t) log (t) (t)

for m
space n dis b= × +  

In bitmap encoding [14] a bit-string is associated with

each value with a ‘1’ in the corresponding position if

that value appeared at that position and a ‘0’ otherwise.

dgd(t) denotes the difference degree of a column

t.spacebit(t) denotes the data size of the column t being

compressed using bitmap encoding and is defined as

follows:

(t) (t) (t) (t) (t)

bit d d
space n dg b dg= × + ×

Dictionary compression schemes [7, 15] are perhaps
the most prevalent compression schemes found in data
management systems today. These schemes replace
each value in a column t with a smaller dictionary
code. Each code needslog2 dgd (t) bits. spacedict(t)
denotes the data size of the column t compressed by
dictionary (with the addition of bit packing) and is de-
fined as follows:

 2
(t) (t) (t) (t) log (t)

dict d d
space b dg n dg= × + ×   

spaceno(t) denotes the data size of a column t without
compression. It is equal to n(t)*b(t). rrle(t), rfor(t), rbit(t)
and rdict(t) denote the compression ratio of RLE, FOR,
Bitmap and Dictionary encoding for a column t and
equal to spacerle(t), spacefor(t), spacebit(t) and
spacedict(t) divided by spaceno(t) respectively. Thus,
based on Equations 1, 2, 3 and 4, compression ratios of
each algorithm are:

()()
() 1

() () ()

rle

rle

no

dg tspace t gc
r t

space t n t b t
= = × +

 
 
 

 (5)

2
log ()() 1

()
() () ()

mfor

for

no

dis tspace t
r t

space t b t n t
= = +

  
 (6)

() () ()
()

() () ()

bit d d

bit

no

space t dg t dg t
r t

space t b t n t
= = + (7)

2
log ()() ()

()
() () ()

ddict d

dict

no

dg tspace t dg t
r t

space t b t n t
= = +

  
 (8)

3.4. Global-Regularity and Sub-Regularity

Based on the compression ratios of these lightweight

compression algorithms, we define the data distribu-

tion regularity of a data column is proposed.

3.4.2. RLE-Regularity and Sub-RLE-Regularity

• Definition 4. RLE-Regularity: Given a data column

t, if rrle(t)<1, we call that the column t has the rrle(t)

RLE-Regularity.

• Definition 5. Sub-RLE-Regularity: A column t is

vertically partitioned into s sub-columns, which are

denoted as t(1), …, t(s). If existing i1, 2, ..., s}, the

i
th
 sub-column t(i) has RLE-Regularity, t is consid-

ered to have Sub-RLE-Regularity.

• Lemma 1. Given a data column t with n(t) elements,
each element value is stored in b(t) bits and each run
length is stored in g bits. The probability of the col-
umn t having RLE-Regularity is:

() 1
1 () ()

() 1

1

2 2 1

() ()
2

() ()
where

()

i
i b t b t

rle n t

rle
i

rle

C
p

b t n t

n t b t

b t g

β

β

−
−

−

=

× × −
∑= ×

×
=

+

 
  

 (9)

(1)

(2)

(3)

(4)

4 The International Arab Journal of Information Technology

• Proof: According to Equation 5, RLE-Regularity
implies that:

()
() 1 1

() ()

c

rle

dg t g
r t

n t b t
= × + <

 
 
 

That is
() ()

()
()

c

n t b t
dg t

b t g

×
<

+

dgc(t) is an integer since it is the continuity degree of
column t. We can obtain that:

() ()
() , where

()
c rle rle

n t b t
dg t

b t g
β β

×
≤ =

+

 
  

There are 2
b(t)

 possible values for each element in col-
umn t since, each element is stored in b(t) bits. Thus,
the number of possible outcomes of column t is 2

b(t)n(t)
.

dgc(t)=i means that the number of runs in column t
is i. Thus, the number of possible outcomes that dgc(t)
equals to i is:

() 1
1 () ()

() 1
C 2 2 1

i
i b t b t

n t

−
−

−
× × −

Where
m

nC denotes the number of combinations. Fur-

ther, the probability of dgc(t) equal to i is:

()
() 1

1 () ()

()

() ()

2 2 1
()

2

i
i b t b t

n t

b t n t

C
p dg t ic

−
−

×

× × −
= =

The probability of a column t having RLE-regularity is

the probability of dgc(t) smaller and equal to βrle. That

is:

() ()
1

() ()
rle

rle c rle c
i

p p dg t p dg t i

β

β
=

∑= ≤ = =

As a result, we can obtain the Equation 9.

3.4.2. BM-Regularity and Sub-BM-Regularity

• Definition 6. BM-Regularity: Given a data column

t, if rbit(t)<1, the column t has the rbit(t) BM-

Regularity.

• Definition 7. Sub-BM-Regularity: A column t is

vertically partitioned into s sub-columns. If existing

i, the i
th
 sub-column t(i) has BM-Regularity, the

column t is considered to have Sub-BM-Regularity.

• Lemma 2. Given a data column t with n(t) elements,

each element value is stored in b(t) bits. The prob-

ability of the column t having BM-regularity is:

() ()
2

() ()
1 2

i i

bit b t n t

bit b t n t
i

P S

p

β

×
=

×
∑=

Where

(t) (t)

(t) (t)
bit

b n

b n
β

×
=

+

 
  

:m

nS Denotes a stirling number of the second kind, and
:m

nP Denotes the number of m-permutations of n.

• Proof: According to Equation 7, the situation in

which column t has BM-Regularity implies that:

() ()
() 1

() ()

d d

bit

dg t dg t
r t

n t b t
= + <

That is
() ()

()
() ()

d

b t n t
dg t

b t n t

×
<

+

Where dgd(t) must be an integer since, it is the Differ-
ence Degree of column t. We can obtain that:

() ()
() ,

() ()
d bit bit

b t n t
dg t where

b t n t
β β

×
< =

+

 
  

dgd(t)=i means that the number of different elements in
column t is i. Thus, the number of possible outcomes
that dgc(t) equals to i is:

() ()
2

i i

b t n t
P S×

Because the number of possible outcomes of column t
is 2

b(t)n(t)
, the probability of dgd(t) equal to i is:

() ()
2

() ()
(())

2

i i

b t n t

d b t n t

P S

p dg t i
×

×
= =

Probability of column t having BM-Regularity is the
probability of dgd(t) smaller and equal to β bit. That is:

() ()
1

() ()
bit

bit d bit d
i

p p dg t p dg t i

β
β

=
∑= ≤ = =

As a result, we can obtain the Equation 10.

3.4.3. DICT-Regularity and Sub-DICT-Regularity

• Definition 8. DICT-Regularity: Given a data col-
umn t, if rdict(t)<1, the column t has the rdict(t)
DICT-Regularity.

• Definition 9. Sub-DICT-Regularity: A column t is
vertically partitioned into s sub-columns. If existing
i, the i

th
 sub-column t(i) has DICT-Regularity, the

column t is considered to have Sub-DICT-
Regularity.

• Lemma 3. Given a data column t with n(t) elements,
and each element value is stored in b(t) bits. The
probability of the column t having DICT-Regularity
is:

() ()
2

() ()
1 2

i i

dict b t n t

dict b t n t
i

P S

p

β

×
=

×
∑= (11)

Where
dict
β β=    , and β : Is the approximate solution

of the equation:

n(t)×log2dgd(t)+b(t)×dgd(t)=n(t)×b(t)

• Proof: According to Equation 8, the situation in

which column t has DICT-Regularity implies that:

2
log () ()

() 1
() ()

d d

dict

dg t dg t
r t

b t n t
= + <
  

If rdict(t)=1, we can get an equation:

n(t)×log2dgd(t)+b(t)×dgd(t)=n(t)×b(t)

It is an non-linearequation about dgd(t) and we can ob-

tain the approximate solution β using the method of

(10)

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases 5

Newton. There are three reasons for dgd(t) satisfying

dgd(t) ≤ βdict, where βdict=β: dgd(t) is an integer;

rdict(t)<1; rdict(t) is monotonically increasing at dgd(t).

Because the probability of the column t having DICT-

Regularity is the probability of dgd(t) smaller and equal

to βdict, we can get that:

() ()
1

() ()
dict

dict d dict d
i

p p dg t p dg t i

β

β
=

∑= ≤ = =

As a result, we can obtain the Equation 11.

3.4.4. For-Regularity and Sub-for-Regularity

• Definition 10. For-Regularity: Given a data column
t, if rfor(t)<1, we call that the column t has the rfor(t)
for-regularity.

• Definition 11. Sub-For-Regularity: A column t is
vertically partitioned into s sub-columns. If existing
i, the i

th
 sub-column t(i) has For-Regularity, the col-

umn t is considered to have sub-for-regularity.

3.5. Global-Regularity and Sub-Regularity

For a data column t, it could have several kinds of
regularities. For example, t has RLE-Regularity and
BM-Regularity simultaneously.

• Definition 12. Global-Regularity: If a data column t

has one or more kinds of regularities, that is,

λ(t)=min{rrle(t), rbit(t), rdict(t), rfor(t)}<1, the column t

has λ(t) Global-Regularity.

If a data column has Global-Regularity, it can be com-
pressed. It is clearly that the smaller the λ(t) of a col-
umn is the more regular the column is and the more
effective that the column can be compressed. If λ(t)≥1,
we say that the column t is irregular.

• Definition 13. Sub-Regularity: If a data column t
has Sub-RLE-Regularity, Sub-BM-Regularity, Sub-
DICT-regularity or sub-for-regularity, it is called to
have sub-regularity.

A column t with Sub-Regularity can be compressed
after vertically partitioned into sub-columns. It is pos-
sible that column t has several kinds of sub-
regularities. For example, it could have sub-RLE-
regularity and sub-bm-regularity.

The key issue to partition a column into sub-
columns is how many sub-columns a column should be
vertically partitioned into. Too many sub-columns a
column is vertically partitioned into would lead to
more compression and decompression costs. On the
other hand, if a column is vertically partitioned into too
few sub-columns, there is no much help to compres-
sion. Byte is the basic unit of data processing. Thus, a
column could be vertically partitioned by byte.

Traditional compression methods take advantage of
Global-Regularity to compress data columns. Obvi-
ously, if a column t has For-Regularity, it must have
Sub-For-Regularity. Additionally, according to the
lemmas 1, 2 and 3, a data column t is more likely to
have Sub-RLE-Regularity, Sub-BM-Regularity and

Sub-DICT-Regularity than to have RLE-Regularity,
BM-Regularity and DICT-Regularity. That is, sub-
columns that are vertically partitioned from a column t
are more regular than the column t itself. Thus, we util-
ize Sub-Regularity to compress.

4. Compression and Direct Searching

Based on the analysis and proof above, we propose a
compression algorithm called VParC. A column that is
compressed using VParC is partitioned into several
sub-columns. The key issue of searching directly on
the compressed column is how to obtain the results by
means of the direct searching on the compressed
sub-columns.

4.1. Compression Procedures of VParC

The procedure of compressing a data column t using
VParC can be divided into 3 steps:

1. Vertically partition the data column t into several
sub-columns by byte, and each sub-column is a byte
typed column.

2. Obtain three characteristic values of each sub-
column. Three characteristic values of each sub-
column can be obtained by traversal of each sub-
column.

3. Compress each sub-column using suitable light-
weight compression algorithms.

Sub-columns with different regularities need to be
compressed using different compression algorithms. A
key issue is how to choose a suitable compression al-
gorithm for a sub-column t(i). Based on characteristic
values of a sub-column t(i), rrle(t(i)), rfor(t(i)), rbit(t(i))
and rdict(t(i)) can be obtained and the compressed size
of the sub-column t(i) can be obtain.

The purpose of compression is to improve the per-
formance of searching [8, 11]. Thus, we choose the
algorithm that is the most beneficial for searching. We
assume that α is a constant factor regarding disk I/O
capability. γrle, γfor, γdic and γbit denote the cost of re-
trieving on data compressed by RLE, dictionary, FOR
and Bitmap encoding respectively. Thus, an approxi-
mation of the time for searching on the sub-column t(i)
compressed by four kinds of compression methods can
be obtained:

() ()

X X
S X ratio n α γ= × × ×

Where X is RLE, FOR, dictionary or Bitmap encoding.
Thus, we choose X to compress t(i) where X leads to
the minimum S(X).

4.2. Equivalent Search and Rang Search

There are two kinds of searching on numeric data in
column-stores, which is different from string typed
data: Equivalent search and range search. An equiva-
lent search means to find values in a column that are
equal to a given value a. A range search means to find
values in a column that are in a given interval. There

(12)

6 The International Arab Journal of Information Technology

are several patterns of intervals. Because the process of
range search is similar for different kinds of intervals,
only open interval (a, b) is discussed in this paper.

A column t is partitioned vertically into u(t) sub-
columns by byte. Accordingly, a value x in the column
is partitioned into u(t) bytes (called sub-values) and it
is represented as <x1, x2, …, xu(t)>. A given value a is
partitioned into u(t) bytes as well, represented as <a1,
a2, …, au(t)>. x is equal to a if and only if each sub-
value of x is equal to each corresponding sub-value of
a, that is x1=a1, x2=a2, …, and xu(t)=au(t).

In a rang search, the lower bound and upper bound
of an interval (a, b) can be partitioned into u(t) sub-
values, which are denoted as <a1, a2, …, au(t)> and <b1,
b2,…, bu(t)> separately. Result of range search can be
obtained by means of comparing xi with ai and bi (i=1,
2, …, u(t)). However, columns with different data
types in different systems are stored in different ways.
Thus, the methods of range search are varied depend-
ing on data types and storage formats. In this section,
searching process is shown based on IEEE standard
format.

4.3. Storage Format of Data Columns

An integer (32bits) 32 stored in IEEE standard format
and in little-endian computer byte ordering is shown in
Figure 3. It is stored in the form of complement.

11111111 11111111 11111111 11100000

Figure 3. An instance of storage format of integer data (32bits).

A float (32bits) -0.125 (to present as binary number
is -1.0*2

-11
) in IEEE standard format and in little-

endian computer byte ordering is shown in Figure 4.
From left to right, the first bit is sign bit; the next eight
bits represent the shift code of exponent (means adding
127 to exponent) and the left bits represent mantissa.

10111110 00000000 00000000 00000000

Figure 4. An instance of storage format of float data (32 bits).

4.4. Range Search

In the implementation of range search, the relation-
ships among xi, ai and bi show whether the value x is in
the interval (a, b). There are three cases which values
of a and b can be in: The first case is a≥ 0 and b> 0,
the second case is a< 0 and b≤ 0, the third case is a< 0
and b> 0. However, there is only the first case for date
data.

• Case 1: a≥ 0 and b> 0.

1. if a1≠b1, then:

a. if x1<a1 or x1> b1, x is not in (a, b).
b. if x1>a1 and x1< b1, x is in (a, b).
c. if x1=a1, then it needs to compare x2 and a2.

• if x2>a2, x is in the interval (a, b).
• if x2<a2, x is not in the interval (a, b).
• if x2=a2, then it needs to compare x3 and a3

in same way as c.

d. if x1=b1, then need to compare x2 and b2.

• if x2>b2, x is not in the interval (a, b).
• if x2<b2, x is in the interval (a, b).
• if x2=b2, then it needs to compare x3 and b3

in same way as d.

2. if a1=b1, then:

• if x1≠a1, x is not in the interval (a, b).
• if x1=a1, then it needs to compare x2, a2

and b2 in accordance with the steps 1 and 2.

In summary, there are three kinds of comparison re-
sults: ai=bi and xi=ai, ai≠bi and xi=ai, ai≠bi and xi=bi. If
the comparison result of a sub-value xi is one of these
three kinds, it needs to compare the next sub-value.

• Case 2: a<0 and b≤0.

1. if a1≠b1, then:

a. if x1<a1 or x1>b1, x is not in (a, b).
b. if x1>a1 and x1<b1, x is in the interval (a, b).
c. if x1=a1, then it needs to compare x2 and a2.

• if x2>a2, for integer number, x is in (a, b);
for other data types, x is not in (a, b)

• if x2<a2, for integer number, x is not in (a,
b); for other data types, x is in (a, b)

• if x2=a2, then it needs to compare x3 and a3
in same way as c.

d. if x1=b1, then need to compare x2 and b2.

• if x2>b2, for integer number, x is not in (a,
b); for other types, x is in (a, b).

• if x2<b2, for integer number, x is in the in-
terval (a, b); for other types, x is not in the
interval.

• if x2=b2, then it needs to compare x3 and b3
in same way as d.

2. if a1=b1, then:

a. if x1≠ a1, x is not in the interval (a, b).
b. if x1=a1, then it needs to compare x2, a2 and b2

in accordance with the steps 1 and 2.

• Case 3: a< 0 and b> 0.

1. if x= 0, x is in the interval (a, b).
2. if x> 0.

a. if x1<b1, x is in the interval (a, b).
b. if x1>b1, x is not in the interval (a, b).
c. if x1=b1, then it needs to compare x2 and b2 in

the same way as 2.

3. if x< 0.

a. if x1<a1, for integer number x is not in (a, b);
for other data types, x is in the interval.

b. if x1>a1, for integer number x is in (a, b); for
other data types, x is not in the interval.

c. if x1=a1, then it needs to compare x2 and b2 in
same way as a, b and c for x< 0.

5. Experiments

To assess the features of VParC, experimental studies
have been performed. The experiments are conducted
on 2.5GHz Pentium Daul-Core, running Windows XP,

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases 7

with 3GB of main memory. For the experiments, a data
generator called dbgen is used to generate an instance
of the TPC-H data set at scale 1, which yields a total
database size of approximately 1GB with 6 tables,
named Supplier, Customer, Part, Partsupp, Orders and
Lineitem respectively.

We test two types of numeric columns: Integer and

float columns. First, we compare the compression data

size, the compression time and decompression time of

VParC with otherfour compression schemes: RLE, dic-

tionary encoding (DICT for short), FOR, decision tree

(DT for short). BITMAP is not presented because if a

column t has BM-Regularity, it must has DICT-

Regularity (the reason is that rbit(t) is always larger

than rdict(t), according to the Equations 7 and 8 pre-

sented in section 3.3). Second, we test the performance

of search on these two types of columns, which are

compressed by using different compression schemes.
In VParC, each column is vertically partitioned into

four sub-columns, since integer and float data are
stored in four bytes. Then, characteristic values of each
sub-column are evaluated, which are gained by scan-
ning sub-columns. The scanning processes are in-
cluded in the compression. The best algorithm is cho-
sen to compress the sub-column according to the char-
acteristic values. Apparently, sub-columns from the
same column may be compressed by using different
compression schemes.

5.1. Compression Performance on Integer Data

There are 13 integer columns in the instance of the

TPC-H dataset. We use different compression schemes

to compress these columns and compare their com-

pression ratio, time for compression and decompres-

sion.

5.1.1. Compression Ratio on Integer Columns

We list the size of data compressed by VParC and

other four encoding schemes on each integer column in

Table 1. NC denotes the original size of a data column

without being compressed.

Table 1. Compressed data sizes of integer columns (in KByte).

 NC RLE FOR DICT DT VParC

1 40 75 7 7 7 7

2 40 79 18 57 18 11

3 586 1123 92 92 92 92

4 782 1532 147 147 147 147

5 3126 6251 1368 1407 1368 1368

6 3126 6250 1368 1407 1368 1368

7 3126 1563 1758 2540 1563 981

8 5860 11719 3296 3504 3296 3296

9 23443 45212 2198 2198 2198 2198

10 23443 45946 4396 4396 4396 4396

11 23443 46880 10257 10296 10257 10257

12 23443 46885 13187 13968 13187 13187

13 23443 11719 16580 21244 11719 4511

The size of a data column becomes larger than the

original if the column is compressed by unsuitable

compression algorithm. For example, the size of the

first data column without compression is 40KB, but it

increases to 75KB after being compressed by RLE.

Thus, traditional compression scheme, such as RLE,

FOR and DICT cannot be suitable for all kinds of col-

umns.

In DT, the best algorithm is chosen for the column,

thus, it achieves better compression results than RLE,

FOR and DICT. However, for most columns VParC

obtains the similar compression ratio as DT; and for

other three columns, the columns 2, 7 and 13, VParC

obtains better compression results than DT. Because of

the storage structure of integer, the high bytes of the

values in a column are the same. Some have Sub-RLE-

Regularity although the column itself has no RLE-

Regularity. Thus, these sub-columns can be com-

pressed efficiently. For example, the column 2 has 0.45

FOR-Regularity, while two sub-columns in it have

0.0005 RLE-Regularity. Thus, for column 2, VParC is

more efficient than DT.

5.1.2. Time for Compression on Integer Columns

Table 2 shows the compression time of each compres-

sion schemes. The time for compression is composed

of the time to obtain the characteristic values and the

time to compress data columns. In DT, most of the

time is spent on the obtaining of the characteristic val-

ues. In VParC, although there are four sub-columns

need to be processed, the required time is much less

than DT due to the byte nature of sub-columns. Thus,

the VParC cost less time to compress than DT.

Table 2. Time for compression on integer columns (in ms).

 RLE FOR DICT DT VParC

1 0.2 4.3 4.9 5.6 1.8 1

2 0.2 12.3 13.8 613.5 2.3 2

3 3.1 66.1 74.4 82.4 28.9 3

4 4.1 103.9 121.7 146.6 37.4 4

5 17.9 998.8 1162.8 65447.4 153.1 5

6 15.1 987.5 1234.4 34083.2 156.7 6

7 10.4 1215.1 1435.1 8087.5 752.1 7

8 33.2 2390.2 2837.4 127285.1 297.4 8

9 121.5 1474.8 1812.6 1836.4 1157.9 9

10 125.5 3207.5 3745.4 4296.5 1101.2 10

11 121.1 7487.7 9172.3 255229.3 1096.4 11

12 118.6 9527.8 11920.1 535771.9 1070.5 12

13 96.7 11200.6 11844.8 61544.1 1746.6 13

5.1.3. Time for Decompression on Integer Columns

The time needed for decompression is shown in Table

3. RLE needs less time for decompression than FOR

and DICT due to the bit shift in the FOR and DICT

algorithms.

8 The International Arab Journal of Information Technology

Table 3. Time for decompression on integer columns (in ms).

 RLE FOR DICT DT VParC

1 0.3 1.4 1.4 1.4 0.7

2 0.3 3.6 3.1 3.1 0.6

3 3.9 21.5 21.5 21.3 12.6

4 5.2 33.5 33.2 32.7 15.7

5 21.3 277.1 285.9 279.1 66.5

6 21.2 285.7 292.2 280.8 65.7

7 12.3 308.4 311.2 201.1 58.0

8 39.6 680.6 657.5 663.7 122.5

9 164.6 541.2 529.8 509.5 519.9

10 152.4 1061.7 1053.7 1025.6 456.3

11 155.3 2188.6 2208.8 2122.1 461.4

12 155.9 2719.2 2784.2 2687.2 463.9

13 109.4 2840.2 2643.9 171.9 468.9

In VParC, decompression is faster than DT except
columns 9 and 13, because in these two columns, there
is more than one sub-column compressed using FOR
or DICT, which are more slower than RLE. For exam-
ple, the column 13 has RLE-Regularity while there are
two sub-columns have Sub-RLE-Regularity and other
two sub-columns have Sub-DICT-Regularity. There-
fore, in the columns with Sub-DICT-Regularity or
Sub-DICT-Regularity, decompression time for VParC
is more than DT.

5.2. Compression Performance on Float Data

There are 8 float columns in the instance of the TPC-H
data in all Similar to the experiments for integer col-
umns, we compared the compression ratio, compres-
sion time and decompression time of each algorithm on
each float columns. Notice that, FOR is not suitable for
float columns, thus, it is not tested in this experiment.

5.2.1. Compression Ratio on Float Columns

The sizes of the data columns compressed using each
algorithm on each float columns are illustrated in
Figure 5. It can be seen that VParC leads to more size
for the columns 4, 6, 7 and 8 than DT. Because of the
storage structure of float data, the column without
RLE-Regularity, it will not have Sub-RLE-Regularity.
For example, the column 6 has 0.125 DICT-Regularity,
while each sub-column in column 6 has 0.375 DICT-
Regularity. Thus, VParC is less efficient than DT for
the columns with better global-regularity.

S
iz

es
 o

f
C

o
m

p
re

ss
ed

D

at
a

(i
n
:m

s)

 Column Identifier

Figure 5. Data sizes of compressed float columns.

However, VParC shows better compression ratio for
columns 1, 2, 3 and 5, because they are not much regu-
lar columns. Especially for columns 1, 2 and 5, they
are irregular and cannot be compressed by any light-

weight schemes. In general, although VParC has no
advantage for float columns with good Global-
Regularity, it shows better compression ratio for ir-
regular columns.

5.2.2. Time for Compression on Float Columns

The time required for each compression scheme is
shown in Figure 6. Just like integer columns, VParC
requires less time to compress than DT because obtain-
ing characteristic values is time-consuming for DT.

C
o
m

p
re

ss
io

n
 T

im
e

(i
n
:m

s)

 Column Identifier

Figure 6. Time for compression on float columns.

5.2.3. Time for Decompression on Float Columns

Figure 7 illustrates the decompression time for each
algorithms. Because columns 1, 2 and 5are irregular
columns, they cannot be compressed by any
lightweight algorithms except VParC. Thus, VParC
cost more time to decompress for these columns than
DT.

For columns 6 and 7, each sub-column in these two
columns has DICT-Regularity. DICT and FOR is more
time-consuming than RLE, which leads to more time
for VParC to decompress than DT.

However, for the columns that are not much regular,
such as the columns 3, 4 and 8, VParC shows better
decompression performance than DT.

d
ec

o
m

p
re

ss
io

n
 T

im
e

(i
n
:m

s)

 Column Identifier

Figure 7. Time for decompression on float columns.

In conclusion, we compare the compression ratio,
compression time and decompression time of four
compression schemes for numeric data columns. Ob-
viously, RLE, DICT and FOR are not suitable for all
columns. Thus, our experiments focus on the compari-
son between DT and VParC.

The results of our experiments illustrated that
VParC has advantages in the compression speed and
VParC is not always superior to DT in the aspects of
decompression speed and compression ratio. However,
VParC is more universal than DT. That is, for columns
with Global-Regularity that can be compressed by DT,

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases 9

they can be compressed by VParC; for irregular col-
umns that cannot be compressed by DT, they also can
be compressed by VParC.

5.3. Time Required for Equivalent Searching

In equivalent search, the search results needn’t to be
decompressed. Thus, the time for equivalent search
includes the time of loading compressed data from disk
to memory and the time of searching on compressed
data. In our experiment, random values are used as
searching value and the time of searching is an average
time of 100 times. Notice than, RLE, FOR and DICT
are not suitable for all columns, we only evaluate the
time for equivalent searching on columns compressed
by using DT and VParC.

5.3.1. Equivalent Search on Integer Columns

Figure 8 shows that searching on data compressed by
VParC needs less time than DT, there are two
reasons: VParC is more efficient for integer column
compression, which is shown in Table 1. Thus, it costs
less time for loading data compressed by VParC than
by DT. In VParC, for the values that are not equal to
the searching value, there is no need to compare all of
the sub-values. Thus, the time of searching on
compressed data is less than in DT.

se

ar
ch

 T
im

e
(i

n
:m

s)

 Column Identifier

Figure 8. Time for equivalent search on integer column.

5.3.2. Equivalent Search on Float Columns

In Figure 9, the time of equivalent search on float col-
umns for VParC and DT are compared. Just like the
equivalent searching on integer columns, searching on
data compressed by VParC cost less time than com-
pressed by DT.

se

ar
ch

 T
im

e
(i

n
:m

s)

 Column Identifier

Figure 9. Time for equivalent search on float columns.

5.4. Time Required for Range Searching

For range search, the search time is composed of the

time of loading, the time of searching and the time of

decompression. Random range is used as searching

range and the time of searching is an average time of

100 times.

5.4.1. Range Search on Integer Columns

Figure 10 shows the time for range search on integer

columns. Because of fewer disks I/Os and less decom-

pression time, range search on VParC is quick than DT

for most integer columns except column 13. Because

VParC need more decompression time for this column

than DT, which is more than the time saving from

compression.

se

ar
ch

 T
im

e
(i

n
:m

s)

 Column Identifier

Figure 10. Time for range search on integer column.

5.4.2. Range Search on Float Columns

The time for range search on float columns is showed

in Figure 11. For the columns 6 and 7, although the

size of data compressed by VParC is larger than DT,

VParC requires more or less the same time as DT for

range search on this two columns due to less time of

decompression. For the columns 1, 2 and 5, VParC

needs a little more time than DT, because the time

saved by less I/O is more than the time of searching

and search caused by compression. However, for col-

umns 3, 4 and 8, VParC required less time than DT,

because of the less size of compressed data and less

time for decompression.

se

ar
ch

 T
im

e
(i

n
:m

s)

 Column Identifier

Figure 11. The time of range search for float columns.

We just list the experiment results of integer and

float data columns. From the results, we conclude that

for much regular data column, VParC is not better than

DT; However, VParC is better than DT for not much

regular columns and irregular columns. Date and de-

cimal data are not listed because they show the similar

results to the integer and float data.

6. Conclusions and Future Work

Compression is one of the most important techniques

for column-oriented data management. In this paper,

10 The International Arab Journal of Information Technol-

ogy

we prove that a column is more possible to have

sub-regularity than to have global-regularity. Thus, a

new compression scheme, called VParC, is proposed

and related issues are examined. Furthermore, we

implemented it and evaluation studies have been

performed.

In VParC, a data column is vertically partitioned

into several sub-columns; each sub-column is

compressed by suitable compression algorithms

according to its regularity. Only lightweight

compression algorithms are used to compress

sub-columns. In this way, equivalent search and range

search can be implemented directly on compressed

data columns. A searching method to operate on

compressed sub-columns directly is designed to

directly operate the data compressed by VParC without

decompression in advance. The experiment results illu-

strated that the VParC and the corresponding searching

method are very promising.

As a part of our future work, we plan to integrate

more compression scheme in VParC for sub-columns

and leads to improved compression ratio. Also, parallel

processing and indexes on sub-columns are considered

to improve searching performance.

References

[1] Abadi J., Madden R., and Ferreira M., “Integrat-

ing Compression and Execution in Column Ori-

ented Database Systems,” in Proceedings of SIG-

MOD International Conference on Management

of Data, Chicago, USA, pp. 671-682, 2006.

[2] Abadi J., Madden R., and Hachem N., “Column-

Stores vs. Row-Stores: How Different are They

Really,” in Proceedings SIGMOD International

Conference on Management of Data, Vancouver,

Canada, pp. 967-980, 2008.

[3] Abadi J., “Query Execution in Column-Oriented

Database Systems,” MIT PhD thesis, 2008.

[4] Akman I., Bayindir H., Ozleme S., Akin Z., and

Misra S., “Lossless Text Compression Technique

using Syllable Based Morphology,” the Interna-

tional Arab Journal of Information Technology,

vol. 8, no. 1, pp. 66-74, 2011.

[5] Binnig C., Hildenbrand S., and Faerber F., “Dic-

tionary-based Order-Preserving String Compres-

sion for Main Memory Column-Stores,” in

Proceedings of the SIGMOD International Con-

ference on Management of Data, pp. 283-296,

2009.

[6] Chen Y., Johannes G., and Flip K., “Query

Optimization in Compressed Database Systems,”

in Proceedings of the SIGMOD International

Conference on Management of Data, California,

pp.271-282, 2001.

[7] Graefe G., “Efficient Columnar Storage in B-

trees,” ACM SIGMOD Record, vol. 36, no. 1, pp.

3-6, 2007.

[8] Harizopoulos S., Liang L., Abadi J., and Madden

S., “Performance Tradeoffs in Read-Optimized

Databases,” in Proceedings of the 32
nd

 Interna-

tional Conference on Very Large Data Bases,

Seoul, pp. 487-498, 2006.

[9] Holloway L. and DeWitt J., “Read-Optimized

Databases: In Depth,” VLDB Endowment, vol. 1,

no. 1, pp. 502-513, 2008.

[10] Hsiao-Ping T., De-Nian Y., and Ming-Syan C.,

“Exploring Application-Level Semantics for Data

Compression,” IEEE Transaction Knowledge

and Data Engineering, vol. 23, no. 1, pp. 95-109,

2011.

[11] Larson A., Clinciu C., Hanson N., Oks A., Price

L., Rangarajan S., Surna A., and Zhou Q., “SQL

Server Column Store Indexes,” in Proceedings of

the 31
st
 SIGMOD, pp. 1177-1184, 2011.

[12] Lemke C., Sattler U., Faerber F., and Zeier A.,

“Speeding up queries in Column Stores: A Case

for Compression,” Data Warehousing and

Knowledge Discovery of Lecture Notes in Com-

puter Science, pp. 117-129, 2010.

[13] Ningde X., Guiqiang D., and Tong Z., “Using

lossless Data Compression in Data Storage Sys-

tems: Not for Saving Space,” IEEE Transaction

Computers, vol. 60, no. 3, pp. 335-345, 2011.

[14] O'Neil P. and Quass D., “Improved Query Per-

formance with Variant Indexes,” in Proceedings

of SIGMOD International Conference on Man-

agement of Data, Tucson, USA, pp. 38-49, 1997.

[15] Roth A. and VanHorn J., “Database

Compression,” ACM SIGMOD Record, vol. 22,

no. 3, pp. 31-39, 1993.

[16] Shah D. and Vithlani C., “VLSI-Oriented

Lossyimage Compression Approach using DA-

Based 2D-Discrete Wavelet,” the International

Arab Journal of Information Technology, vol. 11,

no. 1, pp. 59-68, 2014

[17] Tanaka H. and Garcia L., “Efficient Run-Length

Encodings,” IEEE Transaction Information The-

ory, vol. 6, no. 28, pp. 880-890, 1982.

[18] Tsirogiannis D., Harizopoulos S., Shah A.,

Wiener L., and Graefe G., “Query Processing

Techniques for Solid State Drives,” in

Proceedings of SIGMOD International Confer-

ence on Management of Data, Rhode Island, pp.

59-72, 2009.

[19] Ziv J. and Lempel A., “Compression of

Individual Sequences via Variable-Rate Coding,”

IEEE Transaction Information Theory, vol. 24,

no. 5, pp. 530-536, 1978.

[20] Zukowski M., Héman S., Nes N. and Boncz A.,

“Super-Scalar RAM-CPU Cache Compression,”

in Proceedings of the 22
nd

 International Confer-

ence on Data Engineering, pp. 59, 2006.

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases 11

Ke Yan received her BE and MS

degrees from HuNan University in

China in 2003 and 2006 respec-

tively. Currently, she is a PhD

candidate in School of Computer

Science and Technology, Huazhong

University of Science and Technol-

ogy in China. Her research topic includes cloud data

management and column-oriented database.

Hong Zhu received her BE, MS and

PhD degrees from Huazhong Uni-

versity of Science and Technology

in 1987, 1990 and 2001 respectively.

Currently, she is a professor and a

PhD supervisor in School of Com-

puter Science and Technology,

Huazhong University of Science and Technology in

China. Her main research areas are database and secu-

rity.

Kevin Lu is a lecturer in Brunel

University in United Kingdom. He

supervised six PhD student projects

to completion. He obtained grants

from EU, KTP program, ORS and

other organizations. His main re-

search areas are information

management and business analytics.

