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Abstract: Principal Component Analysis (PCA) is one of the feature extraction techniques, commonly used in human facial 
recognition systems. PCA yields high accuracy rates when requiring lower dimensional vectors; however, the computation 
during covariance matrix and Eigenvalue Decomposition (EVD) stages leads to a high degree of complexity that corresponds 
to the increase of datasets. Thus, this research proposes an enhancement to PCA that lowers the complexity by utilizing a 
Fixed Point (FP) algorithm during the EVD stage. To mitigate the effect of image projection variability, an adaptive weight 
was also employed added to FP-PCA called wFP-PCA. To further improve the system, the advance in technology of multi-
core architectures allows for a degree of parallelism to be investigated in order to utilize the benefits of matrix computation 
parallelization on both feature extraction and classification with weighted Euclidian Distance (ED) optimization. These stages 
include parallel pre-processor and their combinations, called weighed Parallel FP-PCA wPFP-PCA. When compared to a 
traditional PCA and its derivatives which includes our first enhancement wFP-PCA, the performance of wPFP-PCA is very 
positive, especially in higher degree of recognition precisions, i.e., 100% accuracy over the other systems as well as the 
increase of computational speed-ups. 
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1. Introduction 

Facial recognition systems are currently used in a wide 
variety of applications including biometrics, pattern 
recognition and analysis, image processing and 
computer vision which in turn have led to various real 
world applications, e.g., robotics, crowd surveillances, 
access controls and criminal forensics [18]. 

Facial recognition is the process used to 
automatically identify and/ or verify a face from an 
image. The image is usually an unanimated image of a 
human (person) face in a digital picture snapshot or a 
video frame [7, 26]. There are several techniques used 
to achieve the recognition, one of which is to compare 
selected facial features, i.e., feature based extraction. 

Overall, face recognition systems usually consist of 
two components: Face detection and face recognition 
[7, 26]. The first component identifies the position of 
the face before the face identification process can begin 
in the recognition stage. There has been a number of 
research projects carried out to achieve higher precision 
results for the first component [12, 15]. However, 
although some approaches have been introduced to 
improve the second one, several issues still remain in 
the research community interests. Thus, this research 
focuses on the second component or face recognition. 

There are several approaches used to enhance 
recognition precision and to reduce the computational 
complexity [24, 29, 35]. Most common image-based 
face recognition methods with feature-based extraction 
can be divided into two categories: The appearance-
based approach and the model-based approach [32].  

 
Each of which has its own distinctive 

characteristics. For instance, the first scheme is 
designed to support images with low resolution and/or 
poor quality but the second approach considers each 
standing point of the actual face structure including 
face variation before forming a face feature model. 
This approach normally requires human-interaction. 
Apart from a specific face model, i.e., the expression 
and position of a human image, the first approach 
yields a high degree of accuracy and is widely 
employed in traditional image-based face recognition.  

Hence, numerous proposals have adopted the 
appearance-based approach such as Principal 
Component Analysis (PCA), Independent Component 
Analysis (ICA), Linear Discriminant Analysis (LDA), 
Fisher Analysis (FA), Kernel PCA (KPCA) and  
Isometric Feature Mapping (ISOMAP) [15, 24]. 

PCA and its derivatives have been used due to 
several features. For example, PCA is an optimal 
linear scheme in terms of mean squared error for 
compressing a set of high dimensional vectors into a 
set of lower dimensional vectors. The model 
parameters in PCA can be directly computed from the 
data without additional processing steps. This means 
that PCA only requires matrix manipulation. PCA 
requires less numbers of features to maintain precision 
quality. Collectively, these advantages result in high 
recognition accuracy, even with a small data set [32]. 

Despite these advantages, one of the drawbacks of 
PCA is the high degree of complexity due to large 
matrix manipulation operations. A large amount of 
memory is also required because the memory 
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requirement increases with image quality and resolution 
and the number of training images used for image 
matching or classification [9, 32]. 

A number of researchers have attempted to improve 
the efficiency of PCA, i.e., symmetrical PCA and two-
dimensional PCA [32]. Some proposed an alternative 
approach to lessen the computational complexity of 
PCA, i.e., applying QR decomposition instead of 
Singular Value Decomposition (SVD) [9].  

Moreover, one possible approach for dealing with 
high computational tasks is to lessen the serial 
limitation by using the parallelism concept; therefore, 
with recent rapid advances in computer chip and 
integrated circuit technology, multi-cores and their 
parallelization techniques have become accessible and 
affordable, which may provide a practical solution to 
some of the limitations of PCA. 

As a result, this research focuses on the feasibility to 
enhance the performance of a traditional PCA face 
recognition system in both accuracy and computational 
complexity. Our proposed enhancements are three-
folds: First, to seek for alternate approach for 
integrating the Fixed Point (FP) algorithm; second, to 
optimize the first improvement to eliminate the random 
side-effect and projection variability; and finally, to 
employ a degree of parallelism over multi-cores 
including classification optimization, all enhancements 
are weighted Parallel FP-PCA (wPFP-PCA). 

This article is organized as follows: Section 2 briefly 
discusses the background of face recognition systems. 
Then, a comparative study of a traditional PCA, PCA 
derivation’s optimizations and a parallel PCA face 
recognition are covered in section 3. Next, section 4 
presents our proposal with two PCA enhancements 
using FPs or wFP-PCA and parallelism of wFP-PCA or 
wPFP-PCA. The comparative performance of our 
proposal was discussed in section 5. Finally, section 6 
contains the conclusions and possible future work. 

 
2. Face Recognition Systems 

Typically, there are four main modules in a traditional 
facial recognition system: Acquisition, pre-processor, 
feature extraction and classification [1, 17]. To fully 
support the recognition system, there are two main 
processes: Training and testing. Training involves the 
use of images acquired from various inputs, e.g., 
captured photos and scanned images (Acquisition); face 
images are fed as inputs into the pre-processing stage, 
e.g., image sizing, greyscale transformation and 
background removal including various normalization 
techniques (pre-processor). Then, the system extracts 
the main features of the images (feature extraction). 

The testing process is quite similar to that of the 
training but it requires a few more steps. After the test 
image has passed through the training process to 
produce a proper normalized face image, the image will 
be fed into a face image classifier to figure out the least 
feature matching distance between testing and trained 
features (Classification). 

The last two modules are the key components for 
the recognition system in both accuracy and 
computational complexity. Recently, several 
techniques have been proposed to enhance both of 
these aspects. PCA, which primarily uses as a feature 
extraction [34] is one of the better-known approaches 
for facial recognition systems. PCA applies a line 
transformation technique over a sample image to 
reduce the set of large image variances and then 
projects their variances into a coordinate axis in order 
to decrease a dimensional image data space [22]. 

Figure 1 shows an overview of a typical PCA face 
recognition system. There are two main components 
to the system i.e., PCA feature extraction and PCA 
image classification. Before the PCA face recognition 
processing stage, the system normally requires a pre-
processing step. One of the requirements is to load the 
input images into an initial matrix, each of which will 
be converted from RGB to a greyscale model and then 
rescaled into a common size [17]. 

 

 
         a) PCA feature extraction.     b) PCA image classification. 

Figure 1. PCA face recognition systems. 

Consider the first component, Figure 1-a. There are 
six sub-components as follows: Estimating the mean 
vector of trained images, centering the input data 
around the mean vector by finding the difference 
between the input image and image’s mean value, 
performing the covariance matrix calculation, 
applying Eigenvalue Decomposition (EVD) on the 
covariance matrix to obtain the eigenvectors/ 
eigenvalues, sorting the eigenvectors in descending 
order and then selecting non-zero eigenvalues; and 
finally projecting training images by calculating the 
dot-product between the trained images and the 
ordered eigenvectors. 

Consider the second component, Figure 1-b. There 
are three sub-components as follows: Subtracting the 
testing image by mean vector, projecting Eigen space 
by calculating the dot-product on test images and 
making a comparison between training and testing 
images. In general, PCA does not specifically identify 
the classifier scheme and there are several techniques 
available that can perform this operation, e.g., 

Eigen Projection

 

Trained 
Image 

 

Mean Estimation 

 

Mean Subtraction 

 

Training Image Projection 

 

Eigen Selection 

 

Mean Subtraction 

 

Image Identification 

 

Testing Image Projection  

Covariance Calculation 
 

 

EigenValue Decomposition (EVD) 



wPFP-PCA: Weighted Parallel Fixed Point PCA Face Recognition                                                                                            61 
 

 

 

Euclidian Distance (ED), Support Vector Machine 
(SVM) and K-nearest neighbour. 

As discussed previously, applying PCA for face 
recognition has several distinctive features; however, 
there are some limitations. For example, PCA involves 
a complex mathematical procedure due to a 
transformation from a large number of correlated 
variables to a smaller number of uncorrelated variables. 
This situation occurs when processing a high resolution 
image, a large number of images or a combination of 
both, which will result in a high computational intensity 
during matrix manipulation [8].  
 
3. Related Works 

Recently, several approaches have been proposed to 
optimize both recognition precision and computational 
complexity including PCA derivations such as the 
research carried out by Zhao et al. [37] who reported 
that most of surveyed proposals used PCA for different 
purposes and then obtained several distinctive features. 
The results of the survey brought about various PCA 
derivations including optimizations to increase 
recognition precision rates. 

Previously, Gumus et al. [10] applied a hybrid 
approach of PCA and wavelets to extract face features 
resulting in higher recognition rates. The recognition 
rates were further improved by Bansal and Chawla [2] 
who proposed Normalized-PCA (N-PCA), which 
normalized the face images to remove the lighting 
variations and background effects by applying SVD. 

Moreover, Yue [36] exploited a radial basis function 
to construct a kernel matrix by computing the distance 
of two different vectors generated by the parameter of a 
two-norm exponential and then applying a cosine 
distance to calculate the matching distance leading to a 
higher recognition rate. 

With regards to computational complexity, Chen et 
al. [5] proposed a local facial feature framework for 
still images and video-based face recognition using 
feature averaging, mutual subspace, manifold to 
manifold distance and affine hull, which resulted in 
high speed processing for video surveillance but with 
low recognition rate as a key limitation. 

To reduce computational complexity, Bingham and 
Hyvarinen [3] carried out research into ICA, a 
competitive approach of PCA, which mathematically 
analyzed and discussed the effectiveness of FP for ICA 
in complex valued signals. Sharma and Paliwal [30] 
discussed a concept of using FP instead of EVD for 
uniform random vector data, which is a time-
consuming stage of PCA, leading to high accuracy but 
with lower computational complexity. It is worth noting 
that these researches discussed the effective of FP as a 
general optimized scheme.  

Recently, in order to overcome the major limitations 
of single-core processing, one of the most promising 
approaches is multi-core parallel computing, 

parallelism. Several parallel architectures including 
parallel algorithms and machines have been explored 
[25]. Most parallel face recognition systems only 
applied computer hardware architectures; for example, 
Wang et al. [33] introduced a parallel face analysis 
platform that used a two-level parallel computing 
architecture: The first level assigned each individual 
core for recognition purposes by dividing testing and 
training images in parallel and the second level was 
used to only make final decisions based on the results 
of the recognition process. 

Previously, Liu and Su [6] modified a distributed 
system to support parallel retrieval virtual machines 
by allowing multi-virtual machines for each slave to 
run individual face recognition algorithms, the so-
called Parallel PCA or P-PCA. To improve 
recognition accuracy, Meng et al. [20] applied a 
parallel matching algorithm with a multimodal part 
face technique. This technique uses five main face 
parts on each face that is bare face based on PCA and 
then used for recognition process in each individual 
computer hardware system to enhance the speed-up of 
the matching process called Multimodel Part PCA 
(MMP-PCA). 

Some proposals focused on applying each 
individual computer system to run an individual image 
or a subset of face images; for instance, Cavalcanti et 
al. [4] proposed a recent novel method called 
weighted Modular Image PCA (wMIMPCA) by 
dividing a single image into different modules to 
individually recognize human faces for the purpose of 
complexity reduction of a traditional PCA. 

Most approaches discussed previously can achieve 
some degrees of parallelism by only performing an 
individual face recognition algorithm either in multi-
virtual machines or multi-core processing, but with 
key limitations on the number of cores. In general, 
these approaches do not fully utilize parallelism in 
each recognition stage; and this is one of the focuses 
of this research - to propose a parallel system that 
fully utilizes parallelism during face recognition stage. 

Apart from the recognition stage, the other two 
stages; namely, the pre-processor and classification 
phases are also crucial. For instance, some researches 
in the first phase were carried out by Haiyang [11] 
who introduced wavelet transform, discrete cosine 
transform and colour normalization, as pre-processors 
in face recognition to achieve better recognition 
precision. Kavitha et al. [16] introduced colour 
transformation with fractional fourier transform that 
included local binary pattern to increase recognition 
rate. However, both of these reports did not fully 
cover stage’s parallelisms. 

Several approaches have been also reported on the 
comparative performance of classification stages, e.g., 
ED, Manhattan distance, Mahalanobis distance, 
nearest neighbour and SVM [13]. For example, 
Melnykov and Melnykov [19] employed Mahalanobis 
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Distance for the K-mean algorithm to improve the 
performance when covariance matrices are not properly 
initialized resulting in an increase in computational 
complexity. In addition, several techniques based on 
soft computing-based approaches, i.e., neural networks, 
are used to compute the matching distance [36, 38].  

For instance, Yue [36] used a nearest neighbour 
method to compute the matching distance to improve 
classification precision. Zhou et al. [38] also 
investigated a combination of PCA and LDA for image 
reconstruction which was then classified by SVM.  

Most facial recognition systems have applied ED for 
face classification to simplify the process thus yielding 
acceptable classification precision. To emphasize the 
feasibility of this technique, Draper [8] compared 
Manhattan distance, ED and Mahalanobis distance over 
PCA. They reported that ED has the highest accuracy 
rate. Recently, Moon and Pan have [23] also compared 
Manhattan distance, ED, cosine similarity and 
Mahalanobis distance over LDA leading to a positive 
performance results for ED.  

In summation, PCA yields high face recognition 
precision but with very high complex mathematical 
procedures leading to the optimization of several PCAs. 
Here, our proposal is to investigate the inclusion of FP 
into PCA to reduce the computational complexity. To 
mitigate the effect of random process and projection 
variability, an adaptive weight was added including the 
use of covariance matrices to increase the precision. 

To further enhance the speed-up, although several 
approaches have focused on parallel architectures, our 
proposal deals with each individual stage parallelism 
during the matrix manipulation of our first 
enhancement by rearranging the matrix manipulation, 
including the orthogonalization process. The 
optimization over parallel classification technique was 
also investigated in this research. All combined, again, 
this leads to wPFP-PCA. 

 
4. wPFP-PCA Face Recognition Systems  

Figure 2 shows an overall of wPFP-PCA, as in Figure 1 
but in parallel stages consisting of training/ testing 
processes as follows: Pre-processor and feature 
extraction; and pre-processor, Eigen projection and 
image identification using weighted ED, respectively. 

In this system, both training and testing processes 
will be performed in parallel (wPFP-PCA). Initially, an 
input image will be divided into pixels and then be 
parallelly executed. During a high matrix computation 
complexity, a manipulation process is also performed in 
parallel by computing one element of a result matrix 
per thread. Generally, the parallel efficiency depends 
upon a number of cores and the relationships between 
thread and core use. For example, in a case where there 
are sixteen processes on eight cores, the system 
performs the first eight processes followed by 
remaining eight processes, completed iteratively. 

 
 
 

 
 
 
 
 
 
 

Figure 2. Weighted Parallel Fixed Point PCA Systems: Feature 
Extraction (wFP-PCA) and Image Identification (weighted ED) 
 

4.1. Parallel Face Pre-Processor 

One of the first key stages, used to adjust/ normalize 
an input image for further steps, especially for noise 
reduction, is pre-processing. This leads to 
computational complexity reduction and increases 
recognition precision, stated in related work section.  

However, parallelism can be considered to further 
speed-up this process. There are several methods to 
aid algorithm efficiency, e.g., image scaling, gray 
scale conversion and histogram equalization. With 
regards to our previous experiment [28] the 
recognition precision between colours vs. gray scale 
images was not significantly different. There was, 
however, a marked increase in computational 
complexity and so our focus is to parallelly perform 
gray scale conversion once the input images are scaled 
into the same size in both training and testing 
processes [27]. 
 
4.2. Parallel Face Feature Extraction 

As discussed in the related work section, PCA and its 
derivatives have been proposed to enhance their 
efficiencies in terms of the increase of face recognition 
precision and computational time reduction; however, 
each criterion always comes with a trade-off over one 
or the other. To mitigate this effect, one of the main 
contributions of this research is to employ FP-PCA 
into a traditional PCA during the EVD stage. Another 
optimization is to explore a degree of parallelism over 
fixed point PFP-PCA together with employing an 
adaptive weight as one of the criteria for image 
matching (weighted or wPFP-PCA). 

4.2.1. FP-PCA 

The EVD stage of a traditional PCA incurs high 
computational complexity since eigenvectors and 
eigenvalues are generated according to the number of 
images. Thus, our first enhancement is to employ FP 
[23] in this stage as shown in Figure 1 (4th step or 3rd 
step in Figure 3 excluding mean estimation). The 
covariance matrix calculation was performed first and 
then FP calculation was applied, instead of EVD, to 
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obtain only eigenvectors based on a number of pre-
defined prospective vectors. Figure 3 illustrates the 
comparative details of PCA vs. FP-PCA. 

a) Traditional PCA. b) FP-PCA. c) wFP-PCA. 

Figure 3. Feature extraction stages (excluding mean estimation): 
Mean subtraction, covariance calculation, EVD or FP, eigen 
selection, image projection: PCA, FP-PCA and wFP-PCA. 

 Algorithm 1 shows the detail as follows (1st to 4th 
steps in Figure 3): 

• Mean Subtraction (line 1): Similar to traditional 
PCA, this process is to find the difference between 
the input image and images’ mean estimation value. 

• Covariance Matrix Computation (line 2): This 
process is used to perform the arithmetic subtraction 
of image matrix with its mean. Then, the covariance 
computation performs the multiplication by image 
matrix and its matrix transpose; its result will be 
divided by trained images in the dataset. 

• Eigenvector Computation using FP (line 3-9). The 
eigenvectors will be derived at this stage as follows: 
Define the expected eigenvectors (c); randomly 
select one dimensional initial eigenvectors; multiply 
its eigenvector to a covariance matrix; perform the 
Gram-Schmidt orthogonalization process; normalize 
the eigenvector; update a new random eigenvector if 
the normalized eigenvector is not converged within  
e else re-apply Gram-Schmidt and loop (L) through 
the entire process until the pre-defined counter (p) 
reaches the expected number of eigenvectors. 

Algorithm 1: FP algorithm: eigenvector generation. 

Input: Matrix x 
Output: φp (Eigenvector Matrix) 

Subtract x by its mean 
Compute covariance of ∑x  
Choose c, the number of principal axes or  
eigenvectors required to estimate and set p ⃪ 1 
Initialize eigenvector φp of size d×1 randomly 
Update φp as φp ⃪∑x φp 
Do the Gram–Schmidt orthogonalization process 

φp ⃪φp - ∑j=1 (φp φj) φj 

Normalize φp by dividing it by its norm:  
φp ⃪ φp ÷ ║φp║T 

If φp is not converged (within ε=|φp φp-1|), go to step 4 
Increment counter p ⃪ p+1 and go to step 3  
         until p equals c 

In addition to these three states, instead of 
generating image projections by trained images and 
ordered eigenvector multiplication operations, FP-
PCA projection is generated with (un-ordered) 
original eigenvectors. Following these stages, for 
testing purposes, the normal PCA facial recognition 
will be followed (image classification as shown in 
Figure 1-b).  

Algorithm 1 shows FP-PCA’s complexity in the 
order of O(d2c+d2n) [28] vs. O(d3+d2n) for the EVD 
stage, traditionally used in PCA face recognition such 
that d and n are the number of dimensions of trained 
and training images, respectively. The accuracy of FP 
will be based on the selection process of initial 
eigenvectors and Epsilon with a time complexity 
trade-off. 

4.2.2. wFP-PCA 

Without an eigenvalue generation process similar to 
PCA with EVD, the recognition precision may be 
underestimated due to probable outliers of zero 
eigenvalues. FP-PCA precision may also be affected 
by the random process. Thus, the optimization over 
two issues is also one of our main contributions. 
Figure 3-c illustrates detailed description of wFP-
PCA. Algorithm 1 also shows overall structure with 
the modifications stated below: 

• Mean Subtraction and Covariance Matrix 
Computation (line 1-2): wFP-PCA combines these 
two steps to reduce the computation complexity 
with detailed discussion stated in section 4.2.3.2.  

• Eigenvector Initialization Selection (line 4): Instead 
of randomly selecting initial eigenvectors in one 
dimension which may be the side-effect of random 
process leading to lower accuracy, our proposal is 
to select the initial values from covariance matrix.  

• Weight Derivation (before line 5): This extra step is 
to adjust the ordering of eigenvectors to mitigate 
the image projection variability using an adaptive 
weight derived from the convergence values of 
Epsilon stated in FP-PCA as shown in Equation 1.  

1
T

p p
Weight = φ φ -  

• Ordered Eigenvector Generation (after line 8): 
Once p equals to c, an additional process sorts the 
eigenvectors in descending order of their weights 
and eliminates the vectors by their zero weights. 

Instead of the unordered eigenvectors 
multiplication, used in FP-PCA, image projection was 
performed by trained images and ordered eigenvectors 
multiplication operations according to their weights. 
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Once again, after following these stages, for testing 
purposes, the normal PCA processes will continue. 
Looking at this algorithm’s complexity compared to 
FP-PCA, instead of O(d2c+d2n), wFP-PCA leads to 
additional steps but with an insignificantly different 
degree of complexity, i.e., O(d2c+d2n+c). 

 
4.2.3. wPFP-PCA 

To further speed-up of wFP-PCA with its limitation of 
serial computation on single core architecture, a 
parallelism was investigated for a weighted FP-PCA 
algorithm consisting of two main stages: Parallel matrix 
computation and parallel mean subtraction and 
covariance computation. All combined is wPFP-PCA. 
 
4.2.3.1. Parallel Matrix Computation 

Based on analysis and experimental observation, there 
are five matrix operations that occur during wFP-PCA: 
Matrix multiplication and division with constant values, 
matrix subtraction and transpose, matrix multiplication 
with matrix and matrix multiplication with its 
transpose. Each of these operations can utilize 
parallelism depending on its distinctive characteristics. 
In addition, an extra process, Orthogonalization, can be 
performed in parallel.  

1. Parallel Matrix Multiplication and Division with 
Constant Values: This method involves multiplying 
or dividing every element of the input matrix by a 
constant number. The result at one position can be 
retrieved by multiplying or dividing the same 
position of an input matrix by the constant, which 
leads to an equalized dimensional matrix. It should 
be noted that each element value in the result matrix 
can be individually computed. These calculations are 
independent; therefore, the fine-grained parallelism 
can be achieved as shown in Algorithm 2 leading 
O(mn) complexity where m and n are the number of 
row and column matrices. 

Algorithm 2: Parallel matrix manipulation with constant 
values. 

Input: Matrix input, String operation, Double constant_values 
Output: Matrix result 

 // Matrix Multiplication and Matrix Division 
 parallel for i from 0 to rows 
  for j from 0 to cols 
   if (operation == "Multiplication") 
    Multiplication:  
    result[i, j]=input[i, j]×constant_values 
   else if (operation == "Division") 
    Division:  
    result[i , j]=input[i , j]÷constant_values 
      endif 
      endfor 
 endfor 
         return result 

2. Parallel Matrix Subtraction and Transpose: To 
calculate the difference of each element at the same 

position, the subtraction and transpose of 
dimensional matrices can be also performed in 
parallel similar to Algorithm 2 with modifications. 
Either line (6 or 9) will be changed to these 
operations as shown in Equation 2 or 3. Since, each 
individual element of subtracted matrix is 
independent and the transformation from row to 
column is not dependent on each other, some 
degrees of parallelism can be utilized.  

 result[i, j] =left[i, j]-right[i, j]                         (2) 
 

result[j, i]=input[i, j]                                                                                                                                                                                                                                                                                    (3) 
 

3. Parallel Matrix Multiplication with Matrix: With 
multiplying with matrix, each operation can be 
performed in parallel as shown in Algorithm 3 [27] 
leading to O(qrp) complexity where q and r are the 
number of left matrix rows and columns, and the 
right one for p. The row dimensions of the right 
matrix or the multiplier is equal to the column 
dimension of the left one. The row dimension of the 
result matrix is equal to the left row dimension 
while the column dimension of the result matrix is 
equal to the multiplier column dimension. 

Algorithm 3: Parallel matrix multiplication with matrix 
computation [27]. 

Input: Matrix left, matrix right, matrix input, string operation 
Output: Matrix result 

 // Matrix multiplication 
 for i from 0 to leftRows 
  parallel for j from 0 to rightColumns 
   for k from 0 to leftColumns 
    Calculate sum:  
    sum+=left[i, k]×right[k, j] 
   endfor 
   result[i, j]=sum 
  endfor 
    endfor 
    return result 

4. Parallel Matrix Multiplication with its Transpose: 
Looking specifically at matrices with symmetrical 
and square properties, the multiplication of this 
matrix with its transpose can be performed in 
parallel. By the nature of the computational matrix 
in FP-PCA, the square matrix, one of which is the 
matrix multiplication with its transpose, A×AT, 
could be optimized as stated in Algorithm 4 leading 
to O(mn) complexity. 

Algorithm 4: Parallel matrix multiplication with its 
transpose.  

Input: Matrix input 
Output: Matrix result 

 //(1)Diagonal Calculation 
  for i from 0 to Rows 
  for j from 0 to Columns 
   result[i, i]+=input[i, j]2 
  endfor 
 endfor 
 //(2)Lower and Upper Diagonal Calculations 
 b=0, c=0 
 for i from 1 to Rows 
     repeat 
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    result[i, c]+=input[i, b]×input[c, b] 
       b=b+1 
           if (b>=Columns) 
        c=c+1 
         b=0 
         //Copy lower to upper-diagonal 
        result[c-1, i]=result[i, c-1] 
       endif 
      until ( !((c<i) and (b<Columns))) 
     endfor  
     c=0 
     b=0 
     return result 

First, the diagonal computational elements can be 
further derived as stated in Equation 4. The original 
matrix could be reused as shown in Figure 4 by 
removing the transpose process, i.e., accessing and 
reserving memory, but performing the summation of 
square of the original matrix in diagonal positions 
instead. Here, c is the number of columns. 

a[0,0] a[0,1] a[0,2] a[0,0] a[1,0] a[2,0] 
a[1,0] a[1,1] a[1,2] a[0,1] a[1,1] a[2,1] 
a[2,0] a[2,1] a[2,2] a[0,2] a[1,2] a[2,2] 

 

Figure 4. Examples reused matrix transpose. 

                         2
[ , ] [ , ]

c

j = 0
Dia i j =Σ a i j  

Second, to figure out non-diagonal values, since the 
matrix is symmetry, each element in the upper-triangle 
is the same as that in the lower-triangle (Figure 5), 
which would half the computational complexity 
(Equation 5). This calculation is also used in both FP-
PCA and wFP-PCA for convergence evaluation 
process. 

 

a[0, 0]2+a[0, 1]2+a[0, 2]2 
 

A 
 

C 
 

 

A a[1, 0]2+a[1, 1]2 B 
C 

 

B 
 

a[2, 0]2+a[2,1]2 
+a[2, 2]2 

 

Figure 5. Optimized matrix multiplication with its transpose. 

                     [ ]
n n
i=0 i=0Upper=Lower=Σ Σ a i, j                (5) 

 

5. Parallel Orthogonalization: Gram-Schmidt is an 
orthogonalization process used to convert a set of 
vectors into orthonormal vectors. The process starts 
by normalizing the first vector and iteratively 
calculating a weight vector of the remaining vectors, 
then normalizing them. The matrix is normalized as 
follows: Powering every matrix component by two, 
summarizing the result in each column and dividing 
each matrix component in each column by the 
square root of the summary.  

The orthogonalization process proposed in most of the 
previous works generally performed modified Gram- 
Schmidt including our preliminary work with FP [28]. 
However, in this research, a traditional algorithm, 
Classical Gram Schmidt, was selected in order to gain a 
higher degree of parallelism as shown in Figure 6. 
Algorithm 5, O(n2) complexity, especially shows an 
additional step to support the epsilon convergence 
(lines 3 and 10).  

 
Figure 6. Examples weight calculation of the 4th vectors. 

Algorithm 5: Parallel matrix orthogonalization computation.  

Input: Matrix a 
Output: Matrix q 

1. for j from 1 to n 
2.  vj = aj 
3.  repeat  
4.           parallel for i from 1 to (j-1)  
5.     rij = qi×vj 
6.    Rewrite Vectors: vj = vj - rij qi 
7.   endfor 
8.   Normalize vector: rjj = ║vj║2 
9.   Rewrite Remaining Vectors: qj = vj ÷ rjj 
10.  until |(v·q)-1|<ε 
11. endfor 

4.2.3.2. Parallel Mean Subtraction and Covariance 

Computation 

From Figure 3-c, wPFP-PCA first merges two steps to 
reduce the computational complexity, i.e., mean 
subtraction and covariance computation by the input 
matrix from mean estimation stages.  

Traditionally, given matrix T[i, j] as the training 
images and m[j] as the image mean in each column, 
the result of mean subtraction, a[i, j], is stated in 
Equation 6. In addition, the covariance computation 
stage process (Cov) is the matrix multiplication with 
its transpose for matrix size N×N then divided by 
number of trained images (n) as shown in Equation 7. 

a[i, j]=T[i, j]-m[j]                               (6) 
 

Cov=(a×aT)÷n                                 (7) 
 

This covariance calculation is similar to that of 
parallel matrix multiplication with its Transpose 
(Algorithm 4 and Equations 4 to 5) but additionally 
dividing by n (lines 4 and 12) and again, the original 
matrix could be reused by removing the transpose 
process, i.e., accessing and reserving memory, but 
performing the square of the original matrix instead. 
To combine these two steps, Equations 6 and 7 are 
merged into 4 and 5 to reduce the complexity from 
O(n2) to O(n) as shown in Equations 8 and 9. 

Diag[i, i]=(∑j=0 to N (T[i, j]-a[j])2)÷n                     (8) 
 

Upper=Lower=(∑i=0 to N ∑j=0 to N (T[i, j]-a[j])2)÷n         (9) 

4.3. Parallel Face Classification 

Following the face feature extraction process, the face 
classification stage will be performed. The first two 
components function in the same way as those of PCA 
for both FP-PCA and wFP-PCA. However, for the 
third component, PCA and FP-PCA employ ED, 
which is a commonly used classification technique. It 

normalize w4 

u1·v4×u1 
1 

u2·v4×u2 
2 

u3·v4×u3 
3 

w4=v4 -      -      -       1 2 3 

× 

(4) 
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is worth noting that the main reason using ED, 
Equation 10, is because of several distinctive 
characteristics and results in an identified image with 
the least distance. Here, m is the projection matrix of a 
one dimensional image matrix (trained and testing). 

distance=∑(mtrain - mtest)
2                        (10) 

 

In a similar way to PCA and FP-PCA, the third 
component is modified [27, 28] by ED integrating the 
derived weighted matrices (w[i]), wFP-PCA, as stated 
in Equation 11. Once again, C denotes as the expected 
number of eigenvectors. 

    distance=∑i=0 to C w[i]×(mtrain - mtest)
 2                  (11) 

 

To further enhance wFP-PCA, for testing purposes, our 
parallel classification is based on ED being used to 
parallelly figure out the closest distance of face images 
due to the algorithm simplicity while retaining high 
recognition precision. By employing the parallelism of 
optimized ED, our enhancement utilizes the input 
matrix characteristic (one dimensional scale) during the 
classification stage leading to reduction in complexity 
of O(n3) to O(n2) as shown in Algorithm 6. 

Figure 7 also shows the feasibility of utilizing the 
degree of parallelism over our optimized ED in each of 
ED’s matrices. The matrices are simultaneously 
computed in parallel, e.g., with four processes, the 
computation at d11, d12, d13 and d21 will be performed in 
parallel. Also, Algorithm 6 and Figure 7 show the wFP-
PCA embedded parallelism (line 4), but for FP-PCA 
and P-PCA, the algorithms exclude the weights. 

Algorithm 6: Weighted parallel Euclidean distance computation. 

Input: Array weight; Matrix A, B 
Output: Matrix result 

1. parallel for row from 1 to A_Rows 
2.  sum = 0.0; 
3.  for col from 1 to A_Cols 
4.   sum+=weight[col]×(A[row, col]-B[col])2 
5.  endfor 
6.  result[row]=sum 
7. endfor 
8. return result 

Weighted Euclidean of A and B 
 

b1 b2 b3 
 

a11 a12 a13 
a21 a22 a23 
a31 a32 a33 
a41 a42 a43 

 

Figure 7. Parallel matrix operation computation for weighted. 

5. Performance Evaluation 

To evaluate the feasibility of wPFP-PCA, a 
comparative performance was carried out using two 
different scenarios: wFP-PCA and its degree of 
parallelism or wPFP-PCA.  

5.1. Experimental Configuration 

The evaluation testbed was a standard configuration 
on Windows 7 operating systems (64bits): CPU 
Intel(R) Core (TM) i-3770K 8-Cores 3.50 GHz (8MB 
L3 Cache), 8192×2MB DDR3-SDRAM, and 500GB 
5400 RPM Disk with .NET C# environments [21]. 

A public face database from FACE94 and FACE95 
[31] was used for testing purposes. A set of colours 
was selected as 24 bits RGB, PNG images, ranging 
from 100 to 500 images of 180×200 pixels. In all 
evaluations, there were two main metrics: Average 
(computational time and recognition precision) and 
standard deviation for varied random loads (a number 
of trained images) over five trails [14].  

In each evaluation, a classic statistical method was 
selected, i.e., simple random selection, by randomly 
selecting nine testing images. Four images were 
chosen from within the training image dataset and five 
from the outside [27]. Computational time will be 
measured during EVD stages, including covariance 
computation. 

The two testing scenarios are described as follows: 
First, to demonstrate the performance of the first two 
enhancements with integrated FP-PCA and its added 
wFP-PCA. These were then compared to a traditional 
PCA by ranging a number of images for scalability 
purposes. The number of eigenvectors in FP-PCA may 
result in a computational time trade-off with accuracy. 
This stage first used 10% of the total images followed 
by testing with 20% to 90%, but the improvement was 
not significant, and so 10% was selected for testing 
purposes. 

The accuracy of FP-PCA may be affected by 
Epsilons so various numbers of Epsilons were also 
investigated, i.e., 10-k, where k is in the range of 1, 3, 
5, 7 and 12, respectively. To maintain recognition 
accuracy, k=12 was selected based on the observation 
that the accuracy is not significantly improved. 

The second scenario investigated the degree of 
parallelism. The evaluation process was based on a 
variation of the number of cores that were given a set 
of numbers of trained images, i.e., 100 images, in the 
range of 1, 2, 4 and 8 cores, respectively.  

The performance of wPFP-PCA was evaluated 
using two main metrics and then comparing the results 
over the other three parallel face recognition systems: 
The optimization of PCA integrating its parallelism or 
Parallel-PCA (P-PCA) [6], MMP-PCA [20] and our 
first improvement with parallelism integration, i.e., 
PFP-PCA [28].  

5.2. Experimental Results and Discussions 

Figure 8 illustrates the computational speed of FP-
PCA and wFP-PCA in that at 500 images, FP-PCA 
and wFP-PCA outperform a traditional PCA by a 
factor of two. In addition, by ranging the number of 
training images, the computational speed increases. 

D d11 d12 d13 
d21 d22 d23 
d31 d32 d33 
d41 d42 d43 

 

d11=w1×√(a11-b1)
2 d12=w2×√(a12-b2)

2 d43=w3×√(a43-b3)
2 
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Figure 8. Computational time over number of trained images (PCA, 
FP-PCA and wFP-PCA). 

For example, with 100, 200, 300 and 400 images, the 
speed-up of the first two enhancements is in order of 
1.7, 1.7, 1.8 and 1.9, respectively. The mean standard 
deviation for all cases was within 3 and the 
computational complexity of our two mechanisms is 
insignificantly different, leading to similar 
computational speeds. 

In terms of recognition precision, Figure 9 shows 
that all three systems produced high percentages of 
accuracy, but FP-PCA had a fluctuation in precision 
due to the random characteristic. Using weights to 
absorb this variation, wFP-PCA produces excellent 
performance results, i.e., 100% in accuracy, when 
compared to PCA and FP-PCA in all cases.  
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Figure 9. Percentage of recognition precision over number of 
trained images (PCA, FP-PCA and wFP-PCA). 

In addition, FP-PCA precision can fluctuate due to 
the random process, i.e., 98% to 100%, on average, 
including non-zero standard deviation, but zero for the 
others. With traditional PCA, the accuracy is in 
ascending order according to the number of trained 
images, i.e., 80% to 90%. In addition, the parallelism 
integration experiment showed that increasing the 
number of cores, Figures 10 and 11, the parallel face 
recognition systems produced in-significantly different 
results with regards to recognition precision. 

   
   

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
) 

1 2 4 8
0

5

10

15

20

25

30
P-PCA

MMP-PCA

PFP-PCA

wPFP-PCA

 
 

number of Cores 

Figure 10. Computational time over number of cores (P-PCA, 
MMP-PCA, PFP-PCA and wPFP-PCA). 
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Figure 11. Percentage of recognition precision over number of 
cores (P-PCA, MMP-PCA, PFP-PCA and wPFP-PCA). 

Figure 10 also shows that wPFP-PCA speed-up is 
not significantly affected by the additional weights. 
Also, whenever the number of cores is increased, 
although P-PCA performance shows a degree of 
parallelism effect, both PFP-PCA and wPFP-PCA still 
produce excellent performance results, averaging 
about 15, 15, 11 and 10 seconds; with P-PCA around 
14, 14, 12 and 12 seconds; and with MMP-PCA about 
28, 26, 21 and 20 (time consuming due to recognition 
multiplication processes) for 1, 2, 4 and 8 cores, 
respectively. All of these come with the standard 
deviation within 1.  

Consider recognition precision. wPFP-PCA, Figure 
11, again, provides the excellent performance results, 
i.e., 100% in accuracy. PFP-PCA, P-PCA and MMP-
PCA were 97%, 90% and 60%, respectively. The 
standard deviation of P-PCA, MMP-PCA and wPFP-
PCA are 0s but 5 for PFP-PCA. 

6. Conclusions and Future Work 

The investigation carried out in this research is 
primarily on facial recognition systems based on PCA. 
Although, PCA can improve recognition precision 
rates, a limitation still exists, especially in terms of 
computational complexity due to large matrix 
manipulation. Thus, this research proposes an 
alternative approach by integrating FP into PCA 
during the EVD stage to produce a high-speed 
recognition system. To further improve the accuracy, 
to mitigate the random effect and image projection 
variability, the concept of adaptive weights was also 
embedded into FP-PCA yielding wFP-PCA.  

Due to the advances in parallel computing using 
multi-cores, there is an opportunity to eliminate the 
limitations of single-process computation. A novel 
methodology for face recognition was proposed by 
applying parallelism into our wFP-PCA for large 
matrix manipulation. This included pre-processor, 
recognition, and classification in parallels, all of which 
refer to wPFP-PCA. 

Based on our parallel algorithm implementations, 
the parallel system outperforms serial computations, 
i.e., by a factor of more than 1.7, with in-different in 
accuracy but considering a variation of parallelism, 
wPFP-PCA and PFP-PCA outperformed parallel PCA 
derivatives, P-PCA and especially MMP-PCA. These 
two optimization’s yields were insignificantly 
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different for speed-ups but wPFP-PCA produced 
outstanding performance results, i.e., 100%. 

Even though wPFP-PCA can achieve a high degree 
of speed-up, more investigation could be performed, 
e.g., improving pre-processing stages, enhancing the 
degree of parallelism, not only in parallel matrix 
manipulation, reducing sensitivity outliers and testing 
heterogeneous number of various images including 
scalability concerns. To show the efficient use of 
parallelism, autonomously separating recognition tasks 
can be performed over message passing interfaces or 
specific processing units. Finally, the face detection can 
be also investigated in future work.  
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