
The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005 199

Using Maximality-Based Labeled Transition
System Model for Concurrency Logic Verification

Djamel Eddine Saidouni and Nabil Belala
Computer Vision Group, LIRE Laboratory, University of Mentouri, Algeria

Abstract: In this paper, we show the interest of the maximality-based semantics for the check of concurrent system properties.
For this purpose, we use the Maximality-based Labeled Transition System (MLTS) as a behavior model. From this point of
view, we can omit action temporal and structural atomicity hypotheses; consequently, we can inherit result of combinatorial
state space explosion problem solution based on the use of true concurrency semantics. Properties to be verified are expressed
using the Computation Tree Logic (CTL). The main contribution of the paper is to show that model checking algorithms
proposed in the literature, which are based on interleaving semantics, may be adapted easily to true concurrency semantics for
the verification of new properties classes related to simultaneous progress of actions at different states.

Keywords: Concurrent system, maximality-based semantics, process algebra, model checking, CTL.

Received March 18, 2004; accepted July 8, 2004

1. Introduction
Distributed applications, such as communication
protocols, are characterized by their big complexity.
The development of these applications requires the
consideration of inter-processes cooperation taking in
account the indeterminism and synchronization
induced by their behavior as well as qualitative
properties like the absence of deadlock and starvation.
Because of their critical character, these applications
are often subjected to austere requirements of
reliability, aiming “zero error” quality.
In general, users and environment requirements of a

system may not be completely formalized because they
make part of real world, and bound to customs or
opinions that are sometimes badly conceptualized and
often subjective (but which must be taken into a
count). Even though we suppose that user requirements
were analyzed and understood in a satisfactory way,
the activity that consists in establishing a specification
of the future system keeps an empirical character, it is
a question of building a description of certain real
world aspects, which necessarily implies simplification
[18]. So, it is necessary to have in mind that formal
specification may contain mistakes. These mistakes
can result from a bad understanding of user
requirements or during the formalization of these
requirements. So, the need of formal verification
approaches.
Formal methods are used for software packages

occurring in critical systems for which certain failings
can be catastrophic. These methods are based on the
use of formal specification models endowed of
rigorous semantics.

The formal verification approach concerned by our
study is based on models. In this approach, the
application to be verified firstly specified by means of
the formal description technique LOTOS [5, 15]. This
specification will be translated in an operational way
towards an underlying model represented by a graph
called Maximality-based Labeled Transition System
(MLTS) [9, 21]. The expected properties of the system
are written in Computation Tree Logic (CTL) and they
are verified by means of the model checking approach
(see Figure 3).
In spite of temporal logics facilitation of the

specification of systems to be verified [16], model
checking approach is limited by the state graph
combinatorial explosion problem, particularly when
the specification model underlying semantics is the
interleaving one. Such semantic is characterized, on
one hand by the action temporal and structural
atomicity hypothesis and on the other hand by the
interpretation of parallel execution of two actions as
their interleaving executions in time.
To escape the action atomicity hypothesis imposed

by interleaving semantics, new semantics, said true
concurrency semantics, were defined in the literature
[8, 9, 10, 12, 17, 21]. Among these semantics, we can
quote a variant of the maximality semantics [9, 21]; its
principle consists in using the dependence relations
between actions occurrences and by associating to
every state of the system the actions, which are
potentially in execution. To make an idea, let us
consider the example of the behavior expression E = a;
stop | | | b; stop. Figure 1-a shows the transition system
obtained by the interleaving semantics. However, the

200 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

application of the maximality-based semantics
generates the transition system of Figure 1-b.
A priori this transition relation is more complicated

than that of Figure 1-a, because supplementary
information is associated to states and to transitions.
However, this information can allow more reductions
without loss of information. A possible reduction of
Figure 1-b consists in eliminating one of the branches
of the graph. It is clear that from Figures 1-c and 1-d
we can deduct that actions (a and b) are concurrent,
what implies that this reduction did not provoke loss of
information of the behavior of E.
To benefit from the expression power of the

Maximality-based Labeled Transition System model
(MLTS) and model checking approaches, in this paper,
we have developed a model checker based on the
MLTS model. This study is given concrete by the
realization of the tool for Maximality-based Model
Checking (MMC). This tool is integrated in v.2
environment for FOrmal COncurrency Verification
Environment (FOCOVE) that we developed in our
laboratory. Among others, FOCOVE allows the edition
of specifications written in CCS or LOTOS, the
compilation of these specifications given are results
LTS or MLTS according to the semantic choice.
Finally, it allows the formal verification of these
specifications.
Along this paper, we assume that the reader is

familiar with Labeled Transition System (LTS), model
checking and the formal description technique LOTOS
[1, 5, 7, 13, 14, 15]. In addition, we show that some
fairness and liveness properties may be expressed more
easily by means of the MLTS model.

2. Maximality-Based Semantics
A detailed presentation of the maximality semantics
can be found in [9, 21]. In this section, we content with
a reminding of the definition of the MLTS structures
and illustrating the concept by simple examples. An
MLTS can be defined as follows:

Definition 1:M being a countable set of event names, a
maximality- based transition system of support M is a
quintuplet (Ω, A, µ, ζ , ψ) with:
• Ω = 〈 S, T, α, β 〉 is a transition system such as:

- S is the countable set of states in which the
system can be.

- T is the countable set of transitions indicating
the change of system states.
- α, β are two functions from t ∈ T: α (t) is the
origin of the transition and β (t) is its goal.

• (Ω, A) a transition system labeled by an alphabet A.
• ψ.S→ 2Mfn is a function which associates to every
state a finite set of maximal event names present at
this state.

• µ: T → 2Mfn is a function which associates to every
transition a finite set of event names corresponding

to actions that have started their execution so that
their terminations allow the start of this transition.
This set corresponds to the direct causes of this
transition.

• ζ: T → M is a function that associates to its
transition an event name identifying its occurrence.
Such that for any transition t ∈ T,

µ (t) ⊆ ψ (α (t)), ξ (t) ∉ ψ (α (t)) − µ (t) and
 µ (β (t)) = (ψ (α (t)) − µ (t)) ∪ {ξ (t)}.

Among others, an MLTS allows to express the
behavior of concurrent systems by the determination of
the set of actions that are potentially in execution in
every state (see Figure 2).

Figure 1. Maximality-based semantics.

Figure 2. H expression MLTS.

Let H = a; b; stop | | | (c; stop [] a; stop) be a
behavior expression. Intuitively, we can notice that

∅

{x}bx

∅cy

{y}by {y}by

{x, y} {x, y} {x, y} {x, y} {x, y} {x, y}

∅ay

10
{x, y} {x} {x, y}

{x}bx ∅cy

∅ay ∅ay ∅ay

{x, y}

{x}bx

∅cx
{x}

∅ax

{x} {x}

∅ax

{x, y}

0

1
12 9

2 4

3 5 7 8

6
13

14 11

{x}

(c)

∅

{x}

{x, y} {x, y}

{x}

∅ay

∅bx

∅by

∅ax

{x, y}

ab

a

∅ay∅by

{x}

∅

∅bx∅ax
b

(a) (b)

(d)

∅

Using Maximality-Based Labeled Transition System Model for Concurrency Logic Verification 201

during the behavior of such a specification, with the
hypothesis that actions are not atomic, in certain states
actions (a and c), (a and a), (b and c) as well as b and a
can comply in parallel. It is clear that interleaving
semantics does not allow seeing such situations.
However, the application of the maximality-based
operational semantics of basic LOTOS [9, 21] allows
the generation of the MLTS shown in Figure 2. One
can notice that states 2, 3, 4, 5, 7, 8, 10, 11, 13, and 14
represent such case of concurrent action executions.

3. MLTS Model Based Logic Verification
CTL is a branching time temporal propositional logic
frequently used in the logic verification techniques
(model checking) [2, 3, 6, 7, 13]. CTL contains the
usual temporal operators: X (the next time), F
(possible), G (always), and U (until) whom have to be
at once preceded by one of the path quantifiers A (for
all paths) and E (there exists a path). For example, AGp
is satisfied in a state if for all paths from this state, p is
always true.
CTL temporal logic allows expression formulae on

states, noted ‘φ’ and formulae on paths, noted ‘ω’.
Their syntax is as follows:

φ ::= p |true| ¬φ | φ ∧ φ| A ω |E ω
 ω ::= F φ |G φ |X φ| φU φ

where p ∈ AP is an atomic proposition.
We can distinguish eight basic operators in the CTL

logic: AX, EX, AG, EG, AF, EF, AU, and EU defined
as follows:

• AXf is satisfied in a state if the formula f is satisfied
in all its successors.

• EXf is satisfied in a state if at least one of its
successors satisfies the formula f.

• A state satisfies AFf if on every path stemming from
this state, there is at least a state that satisfies f.

• A state satisfies EFf if there is a path stemming from
this state containing at least a state that satisfies f.

• A state satisfies AGf if on all the paths from this
state, f is always satisfied.

• A state satisfies EGf if there is a path stemming
from this state where f is always satisfied.

• A[fUf'] is satisfied in a given state if on all paths
stemming from this state f is always verified until a
state which verifies f'.

• E[fUf'] is satisfied in a given state if there is a path
from this state where f is always verified until a
state which verifies f'.

4. Maximality-Based Semantics and Model
Checking

4.1. Kind of Properties to be Verified
In the previous section, it has been showed that
properties could be expressed using the CTL temporal
logic. Reasoning concerned logical propositions
belonging to the system states. The properties subjects
of verification are generally divided into two classes,
which are the liveness and fairness classes [16].
Obviously, several model checkers, based on
interleaving semantics, were developed in the
literature. For our part, the use of maximality-based
labeled transition system; the information included in
the states of the model represents the actions that are
potentially in execution. For this fact, one can express
belonging properties such as mutual exclusion in a
more natural way, as well as from new properties that
concern actions and their parallel execution. The
expression of these properties does not require the use
of a new logic or the introduction of new operators
since one can use CTL temporal logic and consider
actions in states as being atomic formulae. However,
what changes is the intuition behind formulae. For
example, the formula EF (p ∧ q) where p and q are
names of actions means that there is at least a path
which leads to a state where parallel execution of p and
q can take place. In a similar way, one can explain
intuitively all the formulae of the CTL logic that may
be checked using MLTS model as follows:
• p ∧ q in a state S means that p and q can be executed
in parallel in the state S.

• ¬p in a state S means that the execution of p in the
state S cannot take place.

• EXp in a state S0 means that there is at least a path
(S0, S1,…) where p will be able to comply in the
state S1.

• AXp in a state S0 means that for any path (S0, S1, …)
starting from state S0, p may be executed at state S1.

• E[pUq] in a state S0 means that there is a path (S0,
S1, …, Sk, …) where q will be able to comply in the
Sk state and p will be able to comply in every state
of this path that precedes the state Sk.

• A[pUq] in a state S0 means that for any path starting
from the state S0, there is a state in this path where q
may be comply and p may be comply in every
preceding state.

Therefore, to express fairness or liveness properties, it
is not necessary to use logical formulae indicating the
state of evolution of a process, we only would reason
directly about actions. By proceeding so, properties
will be easier to express and their meaning seems more
natural. If one takes as example for the mutual
exclusion the classical problem of readers and writers,
we suppose that there is one reader and one writer who
chair one variable. The accesses to this variable must
be exclusive, so instead of expressing mutual exclusion

202 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

by AG¬ (atC1 ∧ atC2), one can express it simply by
AG¬(writer_write∧ reader_read). Where: writer_write
is the action of writing on the variable by the writer
process; reader_read is the action of reading the
variable by the reader process. atC1 is a logical formula
that is true if the writer process is in its critical section
and atC2 is a logical formula that is true if the reader
process is in its critical section.

Figure 3. Outside sight of the MMC procedure.

In section 5, more elaborated examples will be
presented by a detailed study of philosophers dinner
paradigm.

Remark1: It may be seen in the MLTS structure that
every action is associated with an event name that
allows distinguishing between several parallel
executions of the same action at any state (auto-
concurrency). Considering this point will allow us to
reason about the number of parallel execution of an
action at any state, in other words, we may verify the
degree of the auto-concurrency in a system.
For instance p: 5 expresses the fact that there is five

parallel execution of the action p. p: 5 will be so
considered as being an atomic proposition; what will
avoid the introduction of a new operator in the
considered logic. One will have then two forms of
atomic propositions, the form p or some p: n where n is
a positive natural number.
Considering these intuitive aspects and previous

notations, one can express new properties such as:

• Specifying actions incompatibility: We may express
that a and b are incompatible by AG¬ (a ∧ b) which
means that they will never be able to be executed
concurrently. In a similar way, to verify that actions
can be executed concurrently may be expresses by
EF¬ (a ∧ b ∧ …∧ z), where a, b, …, and z are action
names.

• Specifying auto-concurrency level: For instance EF
(a: n) is true if there is a state in which n actions of
name a may be in execution simultaneously. It is
obvious that such properties cannot be expressed
using interleaving models.

4.2. Model Checking Algorithm
Having seen the kind of properties which one could
express by means of the MLTS model for possible
behavior representation and the temporal logic CTL as
specification language of properties, in what follows
we illustrate the evaluation method of CTL formulae
on the MLTS model through the adaptation of model

checking algorthim presented in [7]. The choice of this
algorithm is made just as an illustration, it is clear that
more impressive model checking algorithms can be
adapted to MLTS model in a similar way.

4.2.1. Algorithm Behavior
Let us suppose that one has a finite structure (model)
M = (S, R, L) and a CTL formula p0. The purpose is to
determine states s of M where M, s |= p0.
This algorithm is conceived to be executed in different
steps:

• First step deals with all p0 sub-formulae of length 1.
• Second step deals with all p0 sub-formulae of length
2 and so on.

At the end of the ith step, every state will be labeled by
the set of all true sub-formulae of length i at this state.
To elaborate labeling in step i, one needs collected
information in previous steps. For example, the state s
must be labeled with sub-formula (q ∧ r) exactly if the
state s is labeled by q and r.
For the sub-formula A[qUr], one will need

information about successor states of s as well as on
the state s itself, because A[qUr] = r ∨ (q ∧
AXA[qUr]). Initially, A[qUr] is added to all the
already labeled states by r. Then, A[qUr] will be
propagated and added to any state labeled by q having
all successor labeled by A[qUr].
In the same way one may argues for E[qUr].

It may be noted that the other model operators are
implicit and defined as much as the following
abbreviations:

q ∨ r ≡ ¬(¬q ∧ ¬r)
q⇒ r ≡ ¬q ∨ r
q⇔ r ≡ (q⇒ r) ∧ (r⇒ q)
AXq ≡ ¬EX¬q
EFq ≡ E[trueUq]
AGq ≡ ¬EF¬q
AFq ≡ A[trueUq]
EGq ≡ ¬AF¬q

Algorithm

Input: A temporal structure M = (S, R, L) as semantic
model and a formula p0 written in CTL.
Output: Set of states of M satisfying p0 Formula.

begin
for i = 1 to length (p0) do
for all sub-formula p of p0 of length i do
case form of p do
 p = P: atomic proposition:
 /* nothing to do */
 p = q ∧ r:
 for all s ∈ S do
 if q ∈ L (s) and r ∈ L (s) then
 add (q ∧ r) to L (s);

MMC
The formula is not satisfied?

The formula is satisfied?

CTL formula

MLTS
Or

Using Maximality-Based Labeled Transition System Model for Concurrency Logic Verification 203

 end if
 p = ¬q:
 for all s ∈ S do

 if q ∉ L (s) then
 add ¬q to L (s);
 end if
 p = EXq:
 for all s ∈ S do
 if ∃ successor s’ of s / q ∈ L (s’) then
 add EXq to L (s);
 end if
 p = A[qUr]:
 for all s ∈ S do

 if r ∈ L (s) then
 add A[qUr] to L (s);
 end if
 end for
 for j = 1 to Card (S) do
 for all s ∈ S do
 if q ∈ L (s) and if ∀ successor s’ of s /
 A[qUr] ∈ L (s’) then
 add A[qUr] to L (s);
 end if
 end for
 end for
 p = E[qUr]:
 for all s ∈ S do
 if r ∈ L (s) then
 add E[qUr] to L (s);
 end if
 end for
 for j = 1 to Card (S) do
 for all s ∈ S do
 if q ∈ L (s) and if ∃ successor s’ of s /
 E[qUr] ∈ L (s’) then
 add E[qUr] to L (s);
 end if
 end for
 end for
end case
end for
end for
end

This algorithm version has a linear temporal
complexity according to the length of formula to be
verified and quadratic complexity according to the size
of M structure [13].
Choosing CTL logic as properties specification

language, the fact that the interesting information in
MLTS structure is encapsulated into state leads us to
adapt this algorithm to our study for properties
verification on MLTS model by considering actions at
MLTS states as atomic propositions and taking into
account the case where p has the form q: n as follows:

case p = q:n,
for all s ∈ S do

 if ∃ x1, x2, …, xn / x1, x2, …, xn ∈ L (s)
 and act (x1, s) = q, act (x2,s) = q, …, act (xn, s) = q
 and card ({x1, x2, …, xn}) = n then
 add q:n to L (s);
 end if
end for

Where:

x1, x2, xn: are event names.
q: is an action.
act: is a function that has in input an event name and a
state, it returns the name of action associated to the
event given as parameter in this state.

5. Examples
In this section, we present the study of philosophers’
dinner problem. The formal LOTOS specification of
this problem can be found in [22].

5.1. Mutual Exclusive
Mutual exclusion concerns the use of every fork (not
shared resource). For two philosophers, property is
expressed by:

AG (not (Philo1TakeF1 and Philo2TakeF1) and
not (Philo1TakeF2 and Philo2TakeF2)).

We have verified the case of two, three and four
philosophers by using our tool, and we had as result
the property satisfaction on all case studies.

5.2. Deadlock Free
Deadlock situation in our example occurs when each
philosopher (a process) have a fork and asks for
another fork already allocated to another philosopher.
This situation leads to a circular waiting situation.
Deadlock free situation means that the system may
always progress in the future at each state. This
property is expressed by: AG ((EX true) or delta).
This CTL expression means that every state of the

system will have at least a successor state. Should the
opposite occur, it is necessary that the last action which
is potentially in execution in this state, according to the
maximality-based semantics, is the action ‘δ’ (delta)
which means successful process ending. Obtained
results are:

• At first, we wrote specifications satisfying the
hypothesis that forks are taken in the same order
(elimination of one of deadlock necessary
conditions). This result is confirmed with the tool by
the satisfaction verification of the previous formula.

• Secondly, we specified the resources request in any
order. In that case, the formula is not verified, and
deadlock states were detected [22].

204 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

5.3. Starvation Free
Starvation free is expressed by the fact that at each
time when a philosopher wants to eat then he will be
able to do it in the future. For a philosopher i,
starvation free is expressed by a CTL formula AG
(Philo_i_WantEating⇒ AF Philo_i_Eat).

6. Conclusion
In this paper, we discussed the interest of maximality-
based labeled transition system model for the
verification of concurrency properties. This
contribution was mainly led by the presence of
maximality information in states and transitions. In
particular, we showed how this information makes
easy writing atomic propositions expressing properties
to be verified. A particular attention was payed to the
natural and intuitive reading of these properties. As an
example, we underlined the verification of the
concurrency level in system behavior. With the aim of
giving concrete expression to this study, we showed
how a classic model checking algorithm [7, 13], can be
adapted easily to the maximality-based labeled
transition system model. Concerning this study, we
adopted a global evaluation approach.
To clarify ideas, we applied our results on the

philosophers’ dinner problem. Outside this work, it is
to note that we applied our approach for the study of
concrete applications of communication protocols
domain, as example we resumed the study of the
transport service presented in [5]. The validation of
results was realized by the use of the FOrmal
COncurrency Verification Environment (FOCOVE).
As perspective of this work, we can intend to spread

our approach to local evaluation methods (one-the-fly)
and the complexity study of model checking
algorithms being able to be developed. Because the
maximality-based labeled transition system model is a
true concurrency model, we can inherit results of
works aiming to resolve the state-graph combinatorial
explosion problem by the use of such semantics [4, 11,
25, 26, 19, 20]. Finally, it is to note that interesting
results have been developed for the definition of
symbolic verification methods based on the MLTS
model [24] that we are hoped to be applicable on real-
time models [23].

References
[1] Arnold A., Systèmes de Transitions Finis et

Sémantique des Processus Communicants,
Masson, Paris, 1992.

[2] Ben-Ari M., Manna Z., and Pnueli A., “The
Temporal Logic of Branching Time,” Acta
Informatica, vol. 20, pp. 207-226, 1983.

[3] Bernard B., Schnoebelen Ph., Bidoit M.,
Laroussinie F., and Petit A., Vérification de

Logiciels: Techniques et Outils du Model
Checking, Vuibert Editions, Paris, 1999.

[4] Berthomieu B. and Vernadat F., “State Class
Constructions for Branching Analysis of Time
Petri Nets,” Technical Report 02130, LAAS-
CNRS, 7 Avenue du colonel Roche, 31077,
Toulouse Cedex, France, 2002.

[5] Bolognesi T. and Brinksma E., “Introduction to
the ISO Specification Language LOTOS,”
Computer Networks and ISDN Systems, vol. 14,
pp. 25-59, 1987.

[6] Clarke E. M. and Emerson E. A., “Design and
Synthesis of Synchronization Skeletons Using
Branching Time Temporal Logic,” in
Proceedings of IBM Workshop on Logics of
Programs, vol. 131, pp. 52 -71, Springer-Verlag,
1981.

[7] Clarke E. M., Emerson E. A., and Sistla A. P.,
“Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic
Specifications,” ACM Transactions on
Programming Languages and Systems, vol. 8, no.
2, pp. 244-263, April 1986.

[8] Coelho da Costa R. J. and Courtiat J. P., “A True
Concurrency Semantics for LOTOS,” in
Proceedings of Formal Description Techniques
(FORTE’92), North-Holland, 1993.

[9] Courtiat J. P. and Saidouni D. E., “Relating
Maximality-Based Semantics to Action
Refinement in Process Algebras,” in Proceedings
of the 7th International Conference on Formal
Description Techniques (FORTE’94), in Hogrefe
D. and Leue S. (Eds), pp. 293-308, Chapman &
Hall, 1995.

[10] Darondeau P. and Degano P., “Causal Trees,” in
Proceedings of ICALPS’89, vol. 372, pp. 234-
248, Springer-Verlag, 1989.

[11] De Souza M. L., “Application des Méthodes
d’ordre Partiel aux équivalences
Comportementales des Systèmes Concurrents,”
PhD Thesis, INRIA Sophia-Antipolis, France,
December 1995.

[12] Devillers R., “Maximality Preservation and ST-
idea for Action Refinement,” in Rozenberg G.
(Ed), Advances in Petri Nets, vol. 609, pp. 108-
151, Springer-Verlag, 1992.

[13] Emerson E. A., Temporal and Modal Logic, in
van Leeuwen J. (Ed), Handbook of Theoretical
Computer Science: Formal Models and
Semantics, Ch. 16, vol. B, pp. 995-1072,
Elsevier, 1990.

[14] Emerson E. A. and Lei C. L., “Efficient model
Checking in Fragments of the Propositional Mu-
Calculus,” in proceedings of the 1st LICS, pp.
267-278, 1986.

[15] ISO/IEC, LOTOS, A Formal Description
Technique Based on the Temporal Ordering of
Observational Behaviour, International Standard

Using Maximality-Based Labeled Transition System Model for Concurrency Logic Verification 205

8807, International Organization of
Standardization, Information Processing
Systems, Open Systems Interconnection, Geneva,
September 1988.

[16] Lamport L., “What Good in Temporal Logic?,”
Information Processing Letters, vol. 83, pp. 657-
668, 1983.

[17] Langerak R., “Bundle Event Structures: A Non-
Interleaving Semantics for LOTOS,” in Diaz M.
and Groz R. (Eds), in proceedings of FORTE’92,
pp. 331-346, North-Holland, 1993.

[18] McDermid J., “Formal Methods: Use and
Relevance for the Development of Safety Critical
Systems,” in Bernet P. (Ed), Safety Aspects of
Computer Control, Butterworth/Heineman, 1991.

[19] Peled D., “Combining Partial Order Reductions
with on-The-Fly Model Checking,” in
Proceedings of CAV’92, vol. 818, Springer-
Verlag, 1994.

[20] Ribet P., Vernadat F., and Berthomieu B., “On
Combining the Persistent Sets Method with the
Covering Steps Graph Method,” Technical
Report 02388, LAAS-CNRS, 7 Avenue du
colonel Roche, 31077, Toulouse Cedex, France,
2002.

[21] Saïdouni D. E., “Sémantique de maximalité:
Application au Raffinement d’actions en
LOTOS,” PhD Thesis, LAAS-CNRS, 7 Avenue
du colonel Roche, 31077, Toulouse Cedex,
France, 1996.

[22] Saïdouni D. E. and Belala N., “Vérification de
Propriétés Exprimées en CTL sur le Modèle des
Systèmes de Transitions étiquetées Maximales,”
Research Report, Laboratoire LIRE, Université
Mentouri, 25000 Constantine, Algérie, 2003.

[23] Saïdouni D. E. and Courtiat J. P., “Prise en
Compte des Durées d'action Dans les Algèbres de
Processus par l'utilisation de la Sémantique de
Maximalité,” in Proceeding of Colloque
Francophone sur l’Ingénierie des Protocoles
(CFIP’2003), Hermes, Paris, 2003.

[24] Saïdouni D. E. and Labbani O., “Maximality-
Based Symbolic Model Checking,” in
Proceedings of ACS/IEEE International
Conference on Computer Systems and
Applications, Tunisia, July 2003.

[25] Valmari A., “A Stubborn Attack on State
Explosion,” in Proceedings of CAV’90,
DIMACS, ACM, 1990.

[26] Wolper P. and Godefroid M. P., “Partial-order
Methods for Temporal Verification,” in
Proceedings of CONCUR’93, vol. 715, Springer-
Verlag, 1993.

Djamel Eddine Saidouni obtained
his BEng degree from University of
Mentouri Constantine, Algeria, in
1990. After that, he joined the
LAAS/CNRS Laboratory, Toulouse,
France where he prepared his DEA
in communicating systems. He

obtained his PhD in theoretical computer science and
concurrency from the University of Paul Sabatier,
Toulouse, France in 1996. Currently, he is a permanent
researcher in computer science at the LIRE Laboratory.
His main research interest is formal specification and
verification of complex distributed and real time
systems.

Nabil Belala obtained his BEng
degree from University of Mentouri
Constantine, Algeria, in June 2002.
Currently, he prepares his MSc
degree in computer science at the
LIRE Laboratory of the University
of Mentouri Constantine. His

research interest is formal specification and
verification of real-time systems.

