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Abstract: In this paper, we show the interest of the maximality-based semantics for the check of concurrent system properties. 
For this purpose, we use the Maximality-based Labeled Transition System (MLTS) as a behavior model. From this point of 
view, we can omit action temporal and structural atomicity hypotheses; consequently, we can inherit result of combinatorial 
state space explosion problem solution based on the use of true concurrency semantics. Properties to be verified are expressed 
using the Computation Tree Logic (CTL). The main contribution of the paper is to show that model checking algorithms 
proposed in the literature, which are based on interleaving semantics, may be adapted easily to true concurrency semantics for 
the verification of new properties classes related to simultaneous progress of actions at different states.
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1. Introduction
Distributed applications, such as communication 
protocols, are characterized by their big complexity. 
The development of these applications requires the 
consideration of inter-processes cooperation taking in
account the indeterminism and synchronization 
induced by their behavior as well as qualitative 
properties like the absence of deadlock and starvation. 
Because of their critical character, these applications 
are often subjected to austere requirements of 
reliability, aiming “zero error” quality.
In general, users and environment requirements of a 

system may not be completely formalized because they 
make part of real world, and bound to customs or 
opinions that are sometimes badly conceptualized and 
often subjective (but which must be taken into a 
count). Even though we suppose that user requirements 
were analyzed and understood in a satisfactory way, 
the activity that consists in establishing a specification 
of the future system keeps an empirical character, it is 
a question of building a description of certain real 
world aspects, which necessarily implies simplification 
[18]. So, it is necessary to have in mind that formal 
specification may contain mistakes. These mistakes 
can result from a bad understanding of user 
requirements or during the formalization of these 
requirements. So, the need of formal verification 
approaches.
Formal methods are used for software packages 

occurring in critical systems for which certain failings 
can be catastrophic. These methods are based on the 
use of formal specification models endowed of 
rigorous semantics.

The formal verification approach concerned by our 
study is based on models. In this approach, the 
application to be verified firstly specified by means of 
the formal description technique LOTOS [5, 15]. This 
specification will be translated in an operational way 
towards an underlying model represented by a graph 
called Maximality-based Labeled Transition System 
(MLTS) [9, 21]. The expected properties of the system 
are written in Computation Tree Logic (CTL) and they 
are verified by means of the model checking approach 
(see Figure 3).
In spite of temporal logics facilitation of the 

specification of systems to be verified [16], model 
checking approach is limited by the state graph 
combinatorial explosion problem, particularly when 
the specification model underlying semantics is the 
interleaving one. Such semantic is characterized, on 
one hand by the action temporal and structural 
atomicity hypothesis and on the other hand by the 
interpretation of parallel execution of two actions as 
their interleaving executions in time.
To escape the action atomicity hypothesis imposed 

by interleaving semantics, new semantics, said true 
concurrency semantics, were defined in the literature 
[8, 9, 10, 12, 17, 21]. Among these semantics, we can 
quote a variant of the maximality semantics [9, 21]; its 
principle consists in using the dependence relations 
between actions occurrences and by associating to 
every state of the system the actions, which are 
potentially in execution. To make an idea, let us 
consider the example of the behavior expression E = a;
stop | | | b; stop. Figure 1-a shows the transition system 
obtained by the interleaving semantics. However, the 
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application of the maximality-based semantics 
generates the transition system of Figure 1-b.
A priori this transition relation is more complicated 

than that of Figure 1-a, because supplementary 
information is associated to states and to transitions. 
However, this information can allow more reductions 
without loss of information. A possible reduction of 
Figure 1-b consists in eliminating one of the branches 
of the graph. It is clear that from Figures 1-c and 1-d 
we can deduct that actions (a and b) are concurrent, 
what implies that this reduction did not provoke loss of 
information of the behavior of E.
To benefit from the expression power of the 

Maximality-based Labeled Transition System model 
(MLTS) and model checking approaches, in this paper, 
we have developed a model checker based on the 
MLTS model. This study is given concrete by the 
realization of the tool for Maximality-based Model 
Checking (MMC). This tool is integrated in v.2 
environment for FOrmal COncurrency Verification 
Environment (FOCOVE) that we developed in our 
laboratory. Among others, FOCOVE allows the edition 
of specifications written in CCS or LOTOS, the 
compilation of these specifications given are results 
LTS or MLTS according to the semantic choice. 
Finally, it allows the formal verification of these 
specifications.
Along this paper, we assume that the reader is 

familiar with Labeled Transition System (LTS), model 
checking and the formal description technique LOTOS 
[1, 5, 7, 13, 14, 15]. In addition, we show that some 
fairness and liveness properties may be expressed more 
easily by means of the MLTS model.

2. Maximality-Based Semantics
A detailed presentation of the maximality semantics 
can be found in [9, 21]. In this section, we content with 
a reminding of the definition of the MLTS structures 
and illustrating the concept by simple examples. An 
MLTS can be defined as follows:

Definition 1:M being a countable set of event names, a 
maximality- based transition system of support M is a 
quintuplet (Ω, A, µ, ζ , ψ) with:
• Ω = 〈 S, T, α, β 〉  is a transition system such as:

- S is the countable set of states in which the 
system can be.

- T is the countable set of transitions indicating 
the change of system states.
- α, β are two functions from t ∈ T: α (t) is the 
origin of the transition and β (t) is its goal.

• (Ω, A) a transition system labeled by an alphabet A. 
• ψ.S→ 2Mfn is a function which associates to every 
state a finite set of maximal event names present at 
this state.

• µ: T → 2Mfn is a function which associates to every 
transition a finite set of event names corresponding 

to actions that have started their execution so that 
their terminations allow the start of this transition. 
This set corresponds to the direct causes of this 
transition.

• ζ: T → M is a function that associates to its 
transition an event name identifying its occurrence. 
Such that for any transition t ∈ T, 

µ (t) ⊆ ψ (α (t)), ξ (t) ∉ ψ (α (t)) −  µ (t) and
 µ (β (t)) = (ψ (α (t)) − µ (t)) ∪ {ξ (t)}.

Among others, an MLTS allows to express the 
behavior of concurrent systems by the determination of 
the set of actions that are potentially in execution in 
every state (see Figure 2).

Figure 1. Maximality-based semantics.

Figure 2. H expression MLTS.

Let H = a; b; stop | | | (c; stop [] a; stop) be a 
behavior expression. Intuitively, we can notice that 
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during the behavior of such a specification, with the 
hypothesis that actions are not atomic, in certain states 
actions (a and c), (a and a), (b and c) as well as b and a
can comply in parallel. It is clear that interleaving 
semantics does not allow seeing such situations. 
However, the application of the maximality-based 
operational semantics of basic LOTOS [9, 21] allows 
the generation of the MLTS shown in Figure 2. One 
can notice that states 2, 3, 4, 5, 7, 8, 10, 11, 13, and 14 
represent such case of concurrent action executions.

3. MLTS Model Based Logic Verification
CTL is a branching time temporal propositional logic 
frequently used in the logic verification techniques 
(model checking) [2, 3, 6, 7, 13]. CTL contains the 
usual temporal operators: X (the next time), F 
(possible), G (always), and U (until) whom have to be 
at once preceded by one of the path quantifiers A (for 
all paths) and E (there exists a path). For example, AGp
is satisfied in a state if for all paths from this state, p is 
always true.
CTL temporal logic allows expression formulae on 

states, noted ‘φ’ and formulae on paths, noted ‘ω’.
Their syntax is as follows:

φ ::= p |true| ¬φ | φ ∧ φ| A ω |E ω
         ω ::= F φ |G φ |X φ|  φU φ

where p ∈ AP is an atomic proposition.
We can distinguish eight basic operators in the CTL 

logic: AX, EX, AG, EG, AF, EF, AU, and EU defined 
as follows:

• AXf is satisfied in a state if the formula f is satisfied 
in all its successors.

• EXf is satisfied in a state if at least one of its 
successors satisfies the formula f.

• A state satisfies AFf if on every path stemming from
this state, there is at least a state that satisfies f.

• A state satisfies EFf if there is a path stemming from 
this state containing at least a state that satisfies f.

• A state satisfies AGf if on all the paths from this 
state, f is always satisfied.

• A state satisfies EGf if there is a path stemming 
from this state where f is always satisfied.

• A[fUf'] is satisfied in a given state if on all paths
stemming from this state f is always verified until a 
state which verifies f'.

• E[fUf'] is satisfied in a given state if there is a path 
from this state where f is always verified until a 
state which verifies f'.

4. Maximality-Based Semantics and Model 
Checking

4.1. Kind of Properties to be Verified 
In the previous section, it has been showed that 
properties could be expressed using the CTL temporal 
logic. Reasoning concerned logical propositions 
belonging to the system states. The properties subjects 
of verification are generally divided into two classes, 
which are the liveness and fairness classes [16]. 
Obviously, several model checkers, based on 
interleaving semantics, were developed in the 
literature. For our part, the use of maximality-based 
labeled transition system; the information included in 
the states of the model represents the actions that are 
potentially in execution. For this fact, one can express 
belonging properties such as mutual exclusion in a 
more natural way, as well as from new properties that 
concern actions and their parallel execution. The 
expression of these properties does not require the use 
of a new logic or the introduction of new operators
since one can use CTL temporal logic and consider 
actions in states as being atomic formulae. However, 
what changes is the intuition behind formulae. For 
example, the formula EF (p ∧ q) where p and q are 
names of actions means that there is at least a path 
which leads to a state where parallel execution of p and 
q can take place. In a similar way, one can explain 
intuitively all the formulae of the CTL logic that may 
be checked using MLTS model as follows:
• p ∧ q in a state S means that p and q can be executed 
in parallel in the state S.

• ¬p in a state S means that the execution of p in the 
state S cannot take place.

• EXp in a state S0 means that there is at least a path
(S0, S1,…) where p will be able to comply in the 
state S1.

• AXp in a state S0 means that for any path (S0, S1, …)
starting from state S0, p may be executed at state S1.

• E[pUq] in a state S0 means that there is a path (S0, 
S1, …, Sk, …) where q will be able to comply in the 
Sk state and p will be able to comply in every state 
of this path that precedes the state Sk.

• A[pUq] in a state S0 means that for any path starting 
from the state S0, there is a state in this path where q
may be comply and p may be comply in every 
preceding state.

Therefore, to express fairness or liveness properties, it 
is not necessary to use logical formulae indicating the 
state of evolution of a process, we only would reason
directly about actions. By proceeding so, properties 
will be easier to express and their meaning seems more 
natural. If one takes as example for the mutual 
exclusion the classical problem of readers and writers, 
we suppose that there is one reader and one writer who 
chair one variable. The accesses to this variable must 
be exclusive, so instead of expressing mutual exclusion 
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by AG¬ (atC1 ∧ atC2), one can express it simply by 
AG¬(writer_write∧ reader_read). Where: writer_write 
is the action of writing on the variable by the writer 
process; reader_read is the action of reading the 
variable by the reader process. atC1 is a logical formula 
that is true if the writer process is in its critical section 
and atC2 is a logical formula that is true if the reader 
process is in its critical section.

Figure 3. Outside sight of the MMC procedure.

In section 5, more elaborated examples will be 
presented by a detailed study of philosophers dinner 
paradigm.

Remark1: It may be seen in the MLTS structure that 
every action is associated with an event name that 
allows distinguishing between several parallel 
executions of the same action at any state (auto-
concurrency). Considering this point will allow us to 
reason about the number of parallel execution of an 
action at any state, in other words, we may verify the 
degree of the auto-concurrency in a system.
For instance p: 5 expresses the fact that there is five 

parallel execution of the action p. p: 5 will be so 
considered as being an atomic proposition; what will 
avoid the introduction of a new operator in the 
considered logic. One will have then two forms of 
atomic propositions, the form p or some p: n where n is 
a positive natural number.
Considering these intuitive aspects and previous 

notations, one can express new properties such as:

• Specifying actions incompatibility: We may express 
that a and b are incompatible by AG¬ (a ∧ b) which 
means that they will never be able to be executed 
concurrently. In a similar way, to verify that actions 
can be executed concurrently may be expresses by 
EF¬ (a ∧ b ∧ …∧ z), where a, b, …, and z are action 
names.

• Specifying auto-concurrency level: For instance EF
(a: n) is true if there is a state in which n actions of 
name a may be in execution simultaneously. It is 
obvious that such properties cannot be expressed 
using interleaving models.

4.2. Model Checking Algorithm
Having seen the kind of properties which one could 
express by means of the MLTS model for possible 
behavior representation and the temporal logic CTL as 
specification language of properties, in what follows 
we illustrate the evaluation method of CTL formulae 
on the MLTS model through the adaptation of model 

checking algorthim presented in [7]. The choice of this 
algorithm is made just as an illustration, it is clear that 
more impressive model checking algorithms can be 
adapted to MLTS model in a similar way.

4.2.1. Algorithm Behavior  
Let us suppose that one has a finite structure (model) 
M = (S, R, L) and a CTL formula p0. The purpose is to 
determine states s of M where M, s |= p0.
This algorithm is conceived to be executed in different 
steps: 

• First step deals with all p0 sub-formulae of length 1.
• Second step deals with all p0 sub-formulae of length 
2 and so on.

At the end of the ith step, every state will be labeled by 
the set of all true sub-formulae of length i at this state. 
To elaborate labeling in step i, one needs collected 
information in previous steps. For example, the state s
must be labeled with sub-formula (q ∧ r) exactly if the 
state s is labeled by q and r.
For the sub-formula A[qUr], one will need 

information about successor states of s as well as on 
the state s itself, because A[qUr] = r ∨  (q ∧
AXA[qUr]). Initially, A[qUr] is added to all the 
already labeled states by r. Then, A[qUr] will be 
propagated and added to any state labeled by q having 
all successor labeled by A[qUr].
In the same way one may argues for E[qUr].

It may be noted that the other model operators are 
implicit and defined as much as the following 
abbreviations:

q ∨ r ≡ ¬(¬q ∧ ¬r)
q⇒ r ≡ ¬q ∨ r
q⇔ r ≡ (q⇒ r) ∧ (r⇒ q)
AXq ≡ ¬EX¬q
EFq ≡ E[trueUq]
AGq ≡ ¬EF¬q
AFq ≡ A[trueUq]
EGq ≡ ¬AF¬q

Algorithm

Input: A temporal structure M = (S, R, L) as semantic 
model and a formula p0 written in CTL.
Output: Set of states of M satisfying p0 Formula.

begin
for i = 1 to length (p0) do
for all sub-formula p of p0 of length i do
case form of p do
    p = P: atomic proposition:
        /* nothing to do */
    p = q ∧ r:
        for all s ∈ S do
            if q ∈ L (s) and r ∈ L (s) then
                add (q ∧ r) to L (s);

MMC
The formula is not satisfied?

The formula is satisfied?

CTL formula

MLTS
Or
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            end if
    p = ¬q:
        for all s ∈ S do

 if q ∉ L (s) then
            add ¬q to L (s);
        end if
    p = EXq:
        for all s ∈ S do
            if ∃ successor s’ of s / q ∈ L (s’) then
                add EXq to L (s);
            end if
    p = A[qUr]:
        for all s ∈ S do

    if r ∈ L (s) then
                add A[qUr] to L (s);
            end if
        end for
        for j = 1 to Card (S) do
            for all s ∈ S do
                if q ∈ L (s) and if ∀ successor s’ of s /
                    A[qUr] ∈ L (s’) then
                   add A[qUr] to L (s);
                end if
            end for
        end for
    p = E[qUr]:
        for all s ∈ S do
            if r ∈ L (s) then
                add E[qUr] to L (s);
            end if
        end for
        for j = 1 to Card (S) do
            for all s ∈ S do
                if q ∈ L (s) and if ∃ successor s’ of s /
                    E[qUr] ∈ L (s’) then
                    add E[qUr] to L (s);
                end if
            end for
        end for
end case
end for
end for
end

This algorithm version has a linear temporal 
complexity according to the length of formula to be 
verified and quadratic complexity according to the size 
of M structure [13].
Choosing CTL logic as properties specification 

language, the fact that the interesting information in 
MLTS structure is encapsulated into state leads us to 
adapt this algorithm to our study for properties 
verification on MLTS model by considering actions at 
MLTS states as atomic propositions and taking into 
account the case where p has the form q: n as follows:

case p = q:n,
for all s ∈ S do

   if ∃ x1, x2, …, xn / x1, x2, …, xn ∈ L (s)
       and act (x1, s) = q, act (x2,s) = q, …, act (xn, s) = q
       and card ({x1, x2, …, xn}) = n then
           add q:n to L (s);
   end if
end for

Where:

x1, x2, xn: are event names.
q: is an action.
act: is a function that has in input an event name and a 
state, it returns the name of action associated to the 
event given as parameter in this state.

5. Examples
In this section, we present the study of philosophers’ 
dinner problem. The formal LOTOS specification of 
this problem can be found in [22].

5.1. Mutual Exclusive
Mutual exclusion concerns the use of every fork (not 
shared resource). For two philosophers, property is 
expressed by:

AG (not (Philo1TakeF1 and Philo2TakeF1) and 
not (Philo1TakeF2 and Philo2TakeF2)).

We have verified the case of two, three and four 
philosophers by using our tool, and we had as result 
the property satisfaction on all case studies.

5.2. Deadlock Free
Deadlock situation in our example occurs when each 
philosopher (a process) have a fork and asks for 
another fork already allocated to another philosopher. 
This situation leads to a circular waiting situation. 
Deadlock free situation means that the system may 
always progress in the future at each state. This 
property is expressed by: AG ((EX true) or delta).
This CTL expression means that every state of the 

system will have at least a successor state. Should the 
opposite occur, it is necessary that the last action which 
is potentially in execution in this state, according to the 
maximality-based semantics, is the action ‘δ’ (delta) 
which means successful process ending. Obtained 
results are:

• At first, we wrote specifications satisfying the 
hypothesis that forks are taken in the same order 
(elimination of one of deadlock necessary 
conditions). This result is confirmed with the tool by 
the satisfaction verification of the previous formula.

• Secondly, we specified the resources request in any 
order. In that case, the formula is not verified, and 
deadlock states were detected [22].
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5.3. Starvation Free
Starvation free is expressed by the fact that at each 
time when a philosopher wants to eat then he will be 
able to do it in the future. For a philosopher i, 
starvation free is expressed by a CTL formula AG 
(Philo_i_WantEating⇒ AF Philo_i_Eat).

6. Conclusion
In this paper, we discussed the interest of maximality-
based labeled transition system model for the 
verification of concurrency properties. This 
contribution was mainly led by the presence of 
maximality information in states and transitions. In 
particular, we showed how this information makes 
easy writing atomic propositions expressing properties 
to be verified. A particular attention was payed to the 
natural and intuitive reading of these properties. As an 
example, we underlined the verification of the 
concurrency level in system behavior. With the aim of 
giving concrete expression to this study, we showed 
how a classic model checking algorithm [7, 13], can be 
adapted easily to the maximality-based labeled 
transition system model. Concerning this study, we 
adopted a global evaluation approach.
To clarify ideas, we applied our results on the 

philosophers’ dinner problem. Outside this work, it is 
to note that we applied our approach for the study of 
concrete applications of communication protocols 
domain, as example we resumed the study of the 
transport service presented in [5]. The validation of 
results was realized by the use of the FOrmal 
COncurrency Verification Environment (FOCOVE).
As perspective of this work, we can intend to spread 

our approach to local evaluation methods (one-the-fly) 
and the complexity study of model checking 
algorithms being able to be developed. Because the 
maximality-based labeled transition system model is a 
true concurrency model, we can inherit results of 
works aiming to resolve the state-graph combinatorial 
explosion problem by the use of such semantics [4, 11, 
25, 26, 19, 20]. Finally, it is to note that interesting 
results have been developed for the definition of 
symbolic verification methods based on the MLTS 
model [24] that we are hoped to be applicable on real-
time models [23].
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