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Implementing Temporal Radial Basis Function
for Reactive Navigation of Mobile Robot
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Abstract: We present in this article, the realisation of reactive navigation module based on neural networks Like Temporal 
Radial Basis Functions (TRBF), with respect of security constraints and inherent robustness while using an Orthogonal 
Least Square algorithm (OLS). Applied to a structured type like interior of building, the mobile robot must assure its task of 
navigation mildly all while avoiding obstacles without wandering, with the possibility to take into account the taken decisions 
in its past lasting trajectory. 
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1. Introduction
Problems concerning traffic mobility, safety, and 
energy consumption have become more serious in 
most developed countries in recent years [2]. Add to 
that the increased need of human to machine which 
helps him in most delicate cases like nuclear site, 
submarine depth, and helps to handicaps with a 
minimum of extern intervention [4].

In this sense different command architectures 
proposed for mobile robot, meeting in literature can be 
separated into three classes:

• Deliberative approach: Uses the environment 
representation to plan in advance the commands e.
g., Shakey robot and Stanford Cart architecture.

• Reactive approach: Rests on close coupling between 
captors and actors, e. g., Brooks’s architecture and 
Rosenblatt propositions.

• Hybrid approach: Combines the above two
approaches to take part of their advantages and uses 
different techniques like (Modules, Supervisor, 
Scheduler..), e. g., we find different architectures 
like (Payton, TCA “Task control architecture”, SSS 
“Symbolic Subsumption Servo”, Atlantis and Sharp 
project)[4].

Our navigation type is localised in second approach, it 
is considered like a basis function of complete system 
for mobile robot while basing on information nature of 
the environment. 

The general idea consists in associating an 
elementary displacement of the robot to information of 
situation. This information is the same type used in 
environment recognition phase. It is a vector of inputs 
of distances robot- measures counter environment 
among the 1024 possible [1]. To this inputs, the 

network should associate an elementary displacement 
like: Advance, turn on right or on left [9]. 

For the phase of recognition, the robot must have a 
panoramic vision on 360 degrees, independent of its 
movement [5]. Here in opposite, the taken sense of 
displacement of the mobile seems indispensable. In 
addition, it is necessary to recall that  achieving neural 
module is foreseen to function in link with the system 
of perception and the system of actioneers commands, 
while following the decision chain [1] (see Figure1).

Figure1. Module of navigation.

We are not evidently here in case of generation and 
follow-up of an optimal trajectory; we ask nevertheless 
for the chain of navigation to be globally surest 
possible [11]. We have opts for a neuronal module 
based on temporal radial basis functions using 
Orthogonal Least Square contexts, because we think 
that it adjusts good with this type of problem 
(overlapping or oscillations owing a confused 
situation), in this case the taken decision inserted in the 
past becomes important and useful. So that we can 
integrate the temporal notion, we needed to play on 
optimisation of all parameters, in object: 

• To have an integral solution in a reliable hardware 
carried easily   and fast. 

• To use less expensive sensors. 
• Hardiness towards noises and the unforeseen 

shortcomings. 
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After this introduction we pass in section 2 to define 
the application about the navigation of mobile robot. In 
section 3 we see how to use a network which uses 
temporal RBF in chain decision, based on OLS 
algorithm. Results and simulation are presented in the 
section 4. We finish with conclusion concerning the 
application while proposing some perspectives. 

2. Application
2.1. Problem Definition 
We consider eleven elementary situations that a robot 
can frequently meet inside a building: Passage, 
impasse, corner, piece, wall, left angle, input, right 
angle, crossing, T-crossing, and output (see Figure 2).

Figure 2. Elementary situations.

In this environment, mobile robot must assure its 
stain of navigation mildly all while choosing an 
optimal course: To this effect we can introduce the 
probabilistic notion in action with hold in amount of 
the temporal aspect. 

We must recall here that the sense of displacement 
of the robot has an influence on the creation of the 
training basis and in this goal we must consider the 
half-plan like source of information for actions of robot 
( turn to right or  turn to left or Advancing). 

2.2. Preparing of Learning Basis 
For many situations of environment, the mobile is 
placed in uncertain way in Np different positions, with 
an uncertain initial orientation. Then R rotations of a 
step θ given are done there, creating Ri “examples” for 
every Npi position. We have thus: ( ∑

=1i
Npi* (Ri + 1)) 

examples with i: 1.. s; s being the number of chosen 
situations for the navigation. 

For every example, the vector of information 
containing N distances is recorded and a decision of 
elementary order of movement is chosen (see Figure 3, 
it shows the taken decisions according to the main 
direction of the axis of the robot in an environment like 
passage). 

Figure 3. Decisions of displacement according to robot orientation 
in passage. 

At the time of the creation of the basis, we chose 
decisions in order to direct the mobile toward a 
trajectory situated toward the middle of the 
environment (for reason of displacement security). 

Figure 4 shows how to take the different orders in 
particular environment. We distributed this 
environment in 4 zones: Z1, Z2, Z3, and Z4. 

• If the robot is in the zone (Z1), from its position and 
its initial direction, we will create R (examples) by 
P rotation of 10°. For every case, the chosen order 
will be compliant, according to the direction of the 
main axis, to the Figure 3. 

• Suppose now that the robot is in a zone (Z2), with 
an initial orientation in direction of the left wall. We 
create as much then of “examples” by rotations of 
10° toward the right that it is necessary so that the 
axis of the robot rejoins the axis of the passage. For 
every case an order “Turn to Right” will be 
associated. 

If the initial orientation moves away the mobile of the 
wall, we will associate an order “Advance” and none 
example won't be creates. By duality, the same 
procedure has been used for the zone (Z3). If the robot 
is in the zone (Z4), we will make it turns until it is in a 
compatible direction with the trajectory indicated on 
the face.

Figure 4. Decisions of displacement in function of position of the 
robot in angle. 

Therefore, we get an organized basis of a stationary 
number of examples; every example understands 9 
measures on the ahead half-plan (180°), knowing that 
we used situations like (passage, crossing, T-crossing, 
wall, impasse , corner, angle, door, and piece). 
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2.3. Advantages of Temporal Approach 
This approach permits us to associate to resource our 
network a certain degree of confidence under a certain 
probabilistic angle, while basing on neural 
approximation to take the optimal decision, in order to 
avoid to knock itself to the wall or to ride. 

Another problem concerning the oscillation of the 
robot especially in the impasse, in this case one of 
solutions is to introduce the vector of examples 
composed of measures  sequence holds in stationary 
time delay, as we choose a number of units known in 
the training for all actions to undertake. 

3. Temporal RBF Approach
The capability of multilayer feedforward networks has 
been theoretically studied. In previous work,
Funahashi, Hornik have concluded that “standard 
multilayer feedforward networks with as few as one 
hidden layer using arbitrary squashing functions are 
capable of approximating any Borel measurable 
function from one finite dimensional space to another 
to any desired degree of accuracy, provided 
sufficiently many hidden units are available. In this 
sense, multilayer feedforward networks are belonging 
to class of universal approximators” [6].

The classic RBF can be formed to accomplish tasks 
of the recognition of shapes with no linear and 
complex contours; they are limited to treat some static 
models, rather than to treat shapes that are in temporal 
nature [6]. The Temporal RBF, as Adaptive Time 
Delay Neural Network (ATDNN), Local Short Term 
Memory (LSTM)..., is proposed to defeat this 
limitation. Networks with this capacity can play an 
important role in domain of applications that has 
properties varying like temporal signals and dynamic 
shapes. As we take part of advantages of the classic 
RBF in approximation and recognition, the objective 
come closer toward a behaviour wanted by a collection 
of functions, named kernels [3]. A kernel is 
characterized by a centre and a receptor field r; these 
kernels can be chosen by k-means or by vector 
quantification technique. 

In general, the temporal discrimination functions of 
K classes are written under the following form [6]:
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ϕ   (1)

where x (tn) = [x (tn), x (tn - 1),... x (tn - p) ]t; bj : The 
bias; p: Is the memory order and m1 is the dimension
of the hidden layer. In the following part we describe 
the network architecture and the training algorithm. 

3.1. Network Architecture 
Figure 5 shows how estimating the decision functions 
according to neural network architecture.

Now we define: 
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where ϕ: Is an activation function (Linear or Sigmoid)  
and W0k are the bias.

We can demonstrate that our TRBF is a kind of 
TDNN network since this last can approximate any 
spatiotemporal function to a desired accuracy by using 
the Stone-Weirstrass theorem [6], under some 
restrictions:

• If φ is a bounded and monotone increasing 
differentiable function.

• At least one hidden layer of N hidden units.
• Having d-times delays elements in each input 

hidden connections pairs.
Now we describe each block delay (see Figure 6).

Figure 6. Representation of delay block for (τ1, τ2).

The kernel function is: 

)XC(Yh[i][j] ij i, −= σφ               (3)
where:
i: 1.. h, h: is  the number of centres. 
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Figure 5. Representation of TRBF network.
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j: 1.. m, m: is the dimension of the hidden time delay  
(τ2). 

Dimension of Here = Dimension of X = n x l. 
n: number of feature of the input vector. 
l: is the dimension of time delay of input (τ1). 
φ j, σi: The kernel function characterized by the time 
delay of j delay with receiving field σi ( see Figure 7).

Figure7. Kernel example.

3.2. OLS Training Algorithm 

The OLS algorithm is a sequential method, conceived 
in origin for the identification of no linear systems and 
permits to make an incremental training [3, 7, 8]. OLS 
is adapted from the Gram-Schmidt orthogonalization 
procedure. The algorithm starts by considering all N
data of the class Ω as centres, then orders them from 
the most to the less relevant centres: At the first step, 
the relevance of each centre is estimated by measuring 
the angle between target d and each column vector Pi. 
The remaining centres and the output are 
orthogonalized with respect to the column vector Pi
related to the first selected centre, and the procedure is 
repeated until all centres are ranked. The algorithm 
must be carried out separately for each subnet [10]. 
This algorithm can be applied to RBF network that can 
be considered like a particular case of the regression 
model linear defined by: 

)*( EPd += θ (4)

W is the orthogonal image of P:

)**( EAWd += θ (5)

This equation is used for iterative construction of the 
RBF network as criteria of selection. Hence an initial 
whole of M centers, the network is constructed 
iteratively, by the addition of the center that possesses 
the value [maximal error] and we take the 
corresponding Gi. 

θ*AG =                             (6)

Iteratively we calculate elements of α and W by:
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The criteria of iteration stop known of Akaike:
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=

M
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erri > ε (9)

In end of iterations, we calculate weights θi according 
to the system, A contains α values: 

θ*AG = (10)

4. Results and Simulation
4.1. Parameters of Training 
We used the method of function networks to combined 
temporal radial basis with the OLS, applied at every 
creation of a corresponding network to such action. 

We use data normalized in a vector of entrance to 9 
measurements with  time delay of 2 unit delay to the 
entrance with  hidden layer that calculates its number 
of hidden neurons following an incremental approach, 
while following the criteria of Akaike (1-sum_errors > 
threshold) for the corresponding stop. However, we 
have limited the training by the choice of only one 
Gaussian kernel instead of a mixture of kernels (risk of 
a big complexity). 

We played on the value of the receiving field of the 
kernel that is worth between 1 and the spread of the 
training basis. In order to accelerate the process of 
count we have made some modifications on the 
training basis, like the method of center-reduce data or 
by shift the data according to following formula  [1, 8]: 
(x’ = 2 * x - 1). 

4.2. Choice of Kernels 
Certain authors proposing to choose a variety of 
kernels in the training like: Thin plate spline, the 
Gaussian and multiquadratic kernels, but it needs to an 
enormous count time to choose the best center with the 
best kernel, in our survey, we fixed the kernel.

4.3. Training and Test Rates
First, these results have been obtained in both training 
and test by dividing the number of success decision 
over the total number of proposed examples and 
respectively by category.

Second, looking at Table 1, we notice after these 
results that the navigation reacts well with the TRBF 
training. It comes back to the reduced class number 
that enters in conflict (3 classes) on the first hand and 
in other hand to the fact that examples of training base 
have been chosen minutely. 

Ci

φ: kernel that can be 
- Gaussian: exp (-r2 / σ2)
- logarithmic: log (r2 + k2)
- Quadratic: r2 i + 1

- Thin plate spline: r2 log (r)
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Table.1 Training rates.

Action Turn to Left Advance Turn to  
Right

Global 
Rate

Training 
rate 95.88% 96.46% 97.9% 96.74%

Test  rate 94.23% 95.88% 97.53% 95.88%

4.4. Tolerance to Noise 
Table 2 presents the gotten results while adding to data 
of the validation basis a Gaussian noise of spread 
(variable between 0.01 and 0.1. we note that until β =
0.05 there nearly is not any reduction of performances. 
It assures practically that we could replace the laser 
telemeter by another sensor. When choosing a 
Gaussian noise we got these results:

Table 2. Comparison between different noised data with a Gaussian 
noise, while playing on the factor of spreadβ .

Action Turn  to 
left

Advanc
e

Turn  to 
right

Global 
rate

β = 0.01 94.23% 95.88% 97.53% 96.74%

β = 0.03 95.06% 93.41% 96.7% 95.05%

β = 0.05 93.8% 92.5% 95.47% 93.92%

β = 0.08 90.9% 89.3% 93.41% 91.20%

β = 0.1 88.88% 87.65% 92.18% 89.57%

After these results, we notice that Gaussian noise, in 
spite of increase of the spread type, didn't drag a total 
deterioration on the global rate until a spread β = 0.1. 
We conclude that the margin of the spread type that 
keeps the best performances belongs to the interval 
[0.01, 0.05]. 

4.5. Simulation
4.5.1.  Simulation in Structured Environment

We notice seeing Figure 8 that the critic transition 
through door between two pieces, followed by the 
entrance in passage, is perfectly realized. 

Figure 8. Structured environment test.

In particular, we observe that anticipation capacity 
of robot in movement is very mildly in center. We 
recall that there is not any goal attraction strategy.

4.5.2. Simulation in Unknown Environment 

The good results in environments of training incited us 
to do other tests to validate the capacity of the network 
to make sail correctly the robot in very different 
situations.

Figure 9 shows that results gotten in a course 
through passage of shapes bent and of variable widths 
obliging the trajectory to have some various curvature 
radiuses. We note a good navigation practically with a 
regular trajectory without to-stroke. All small obstacle 
placed close to the centre of the scene is perfectly 
avoided. 

Figure 9. Unknown environment test.

5. Conclusions
We presented in this article the realization of reactive 
navigation module based on the use of network like 
TRBF while introducing a stationary time delay to the 
vector of measures. A training basis and a validation 
basis have been worked out from elementary 
environments. In every case, a decision of 
displacement is chosen among three possibilities:  
Advance, turn on the right or turn on the left. The done 
choice generally aims to bring closer the robot for a 
median trajectory in the environment to cross. We 
tested various disruption influences then. While adding 
to measures of distance with a Gaussian noise of 
variable spread, we showed the hardiness of network 
screw to screw of a measure noise can go until 5%. It 
guarantees that our network will be able to function 
correctly with sensors of modest performance. 

Finally, the whole of simulations has been done 
while letting the robot sail in buckle closed under the 
conduct of the network. Beginning by simple 
labyrinths, organized of various assemblies of 
situations learned, these simulations continued in 
cases, more and more distant of those of the training 
basis. 

In general, the navigation took place with success. 
The described trajectory is always very soft; avoid all 
met obstacles, permits robot turns there in impasse in 
general way, resemble to what would make an animal 
or a man in the same situation. In spite of its extreme 
simplicity, the developed solution for the reactive 
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navigation of our method seems robust, comfortably 
efficient, and transposable towards other sensors.
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