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Abstract: Computing the minimum cost path is a key requirement in Intelligent Transportation Systems (ITS) and in some 
Geographical Information Systems (GIS) applications. The major characteristics of these systems are the facts that the 
underlying transportation graph is large in size and the computation is under time constraint. Due to the insufficiency of the 
classic algorithms under these settings, recent studies have focused on speeding the computation by employing alternative 
techniques such as heuristics, precomputation and parallelization. In this study, we investigate solutions assuming a shared 
nothing architecture (i. e., Teradata multimedia database system) as a way of speeding up the computation further. We build 
our algorithms on a recently developed graph model, Hierarchical mulTigraph (HiTi), and describe both concurrent and 
parallel versions of the algorithms. The concurrent algorithm allows simultaneous exploration of the search space by utilizing 
dynamically created agents across multiple disk nodes, which is efficiently supported by the Teradata multimedia database 
system architecture. The parallel algorithm breaks the problem into a set of smaller subproblems by exploiting a set of 
intermediate nodes that the shortest path passes through. We also investigate the impact of replicating subgraphs in the 
performance of our algorithms. We evaluated our algorithms via a simulation study and demonstrated that our concurrent and 
parallel algorithms show almost a linear speedup as the number of disk/CPU nodes is increased. Concurrent algorithm 
exhibits better sizeup, and scaleup results than the parallel algorithm.
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1. Introduction
In this section, we first motivate our work based on 
two real-world applications. Subsequently, we 
compare our work with related studies. Finally, our 
major contributions are presented.

1.1. Motivation
Recently, new fields such as Intelligent Transportation 
Systems (ITS) and Geographical Information Systems 
(GIS) have gained much attention from different 
academic disciplines. An ITS can be considered as the 
integration of advanced technologies in areas such as 
communication, information and navigation in order to 
achieve an economically improved and safer 
transportation systems. A GIS can be considered as the 
integration of different types/formats of data, which are 
related through geographical information. One of the 
interesting queries that can utilize this rich set of 
information is to find a best path between a source and 
a destination. One particular problem that is identified, 
as a key requirement for ITS and some GIS 
applications is the efficient processing of minimum 
cost path queries. The underlying transportation graphs 
are typically large and the queries need to be processed 
very quickly due to the real time nature of the 
application. Due to these characteristics, the classic 

algorithms (such as Dijkstra) have been found to be 
insufficient. In order to remedy the situation alternative 
methods such as heuristics, precomputation and 
parallelization have been studied.

In this study, we investigate solutions assuming a 
shared nothing architecture as a way of speeding up the 
computation further. In particular, our target hardware 
and software platform is a Teradata Multimedia 
Database System (M-DBS) [5, 6], which is built on 
NCR WorldMark multi-disk multi-processor system. 
Teradata M-DBS software supports the concept of 
agents as pieces of code that can migrate and execute 
on the physical (disk/CPU) node(s) containing the 
object(s) referenced by the agent. It also provides users 
with the capability of implementing their User Defined 
Functions (UDFs) in order to extend the functionality 
of the M-DBS. We define each of our minimum cost 
path algorithms as one UDF on Teradata M-DBS. Each 
UDF forks many agents on multiple nodes in order to 
speedup computation by simultaneous execution of 
agents. 

We have developed our algorithms on a famous 
graph model, Hierarchical mulTigraph (HiTi) [16, 17], 
because of several reasons. First, it is the most recent 
work on single pair shortest path problem, which is 
developed for large road graphs. Second, it performs 
better than the traditional A* algorithm by exploiting 
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the hierarchical nature of road navigation. Third, it is 
based on partitioning the graph into small subgraphs, 
which is very suitable for a shared nothing system. 
This partitioning significantly reduces the search space 
for computing the minimum cost path over a very large 
topographical road map [17]. In this paper we discuss 
several partitioning techniques that can form the 
underlying structure of these HiTi graphs, which are 
interesting in their own nature.

1.2. Related Work
There have been extensive studies on the shortest path 
problem both in theory and in practice. For all-pairs 
shortest path problems, the classic algorithms are 
Floyd-Warshall [7, 20] for general graphs and 
Johnson's algorithm for sparse graphs [15]. For the 
single-source shortest path problem the classic ones are 
Bellman-Ford [3, 8] and Dijkstra [4].

Parallel and distributed algorithms are developed to 
take advantage of the technological developments in 
computer architecture. For example in a series of 
studies [9, 10, 18] the graph is fragmented to 
recursively decompose the problem into smaller tasks 
and assign each task to a different processor. However 
their disconnection sets are precomputed beforehand, 
and they don't depend on the source and destination
nodes of the problem at hand. Moreover their methods 
mainly targets acyclic fragments formed after 
partitioning. This restriction makes it very unsuitable 
for transportation graphs, which have almost grid-like 
and highly cyclic structure. Furthermore, we are not 
aware of any study that investigates concurrent/parallel 
minimum cost path algorithms assuming a shared 
nothing architecture with agent-based methodology.

Recent works aim at finding efficient solutions to 
single pair shortest path problem. This problem is in 
fact the most important problem for Navigation 
system. Shekar in [19] developed a hierarchical A*

algorithm. Their motivation was that the classic 
algorithms (like Dijkstra) process all the nodes in the 
graph to reach to a solution that is more than 
unnecessary and time consuming in practice. Therefore 
they suggest a heuristic method that searches only a 
necessary subset of the nodes. Their method takes 
advantage of the specific nature of transportation 
networks, i. e., the existence of high-speed roads like 
freeways and highways. One major drawback of this 
approach is that it may not find the optimal solution. It 
is also not suitable for a direction-based centralized 
architecture since the computation of the entire path is 
required to find the next optimal direction.

A recent research done in [12, 14] followed a 
different approach: path encoding. They tried to 
develop algorithms that respond to the path queries as 
fast as possible since the number of queries received at 
any time can be very large especially in busy hours of 
traffic. In this method each node stores the tuple 

<destination, successor, weight> for all (or subset of) 
the destination nodes in the graph. A hierarchical data 
structure by fragmenting the graph is studied in [13] 
and different fragmentation strategies are evaluated in 
[14].

Agrawal in [1, 2] used a branch and bound search 
algorithm to reduce the total number of nodes visited 
[1]. Their overall approach is to precompute some 
partial information and then use it at run time to prune 
the search space. The essential part of their 
construction is the domain partitioning since it 
determines the goodness of the bounding procedure. 
The ideal domain partitioning requires choosing a 
specified number of domain centers such that the 
average distance to (from) a node from (to) its domain 
center is minimized. However, since this is an NP-hard 
problem they use heuristics that may reduce the search 
efficiency. As was observed in [17], another drawback 
of this approach is that it searches all the unnecessary 
intermediate edges before reaching to the target,
therefore it ignores the hierarchical nature of the 
navigation systems. A similar work was done in [10] 
showed that Transitive closure query in a distributed 
environment could be broken into several subqueries 
that can be processed in parallel. In [14] a Topological 
clustering technique SPC was proposed to exploit the 
unique GIS road map characteristics to achieve I/O 
optimization in path query processing but it had the 
problem of space and computation overhead for 
creating link tables. An important recent work in [16, 
17] explains a HiTi (Hierarchical mulTigraph) model 
to speed up the single pair shortest path problem on a 
topological road map [17]. They successfully avoid the 
searching of unnecessary intermediate edges by the 
help of these graphs. We will explain HiTi graphs 
briefly in Section “Concurrent/Parallel HiTi” since our 
algorithms are developed for these graphs.

1.3. Major Contributions
In this study, we investigate solutions assuming a 
shared nothing architecture (i. e., Teradata multimedia 
database system) to quickly compute the minimum 
cost paths in large transportation graphs. Our 
algorithms are based on a recently developed graph 
model, Hierarchical mulTigraph (HiTi) [17], and 
describe both concurrent and parallel versions of the 
algorithms. Our concurrent algorithms allow 
simultaneous exploration of the search space by 
utilizing dynamically created agents across multiple 
disk nodes, which is efficiently supported by the 
Teradata multimedia database system architecture. Our 
parallel algorithm exploits the property of HiTi graphs 
that allows the computation to be recursively broken 
into smaller subproblems. We also investigate the 
impact of replicating subgraphs in the performance of 
our algorithms. We evaluated both of our algorithms 
via a simulation study and demonstrated an almost 
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linear speedup for the algorithms as we increase the 
number of disk/CPU nodes. 

The rest of this paper is organized as follows. In 
Section “Data Structures”, we describe grid-based 
partitioning technique. We also investigate the role of 
replication in Section “Replication”. In Section 
“Concurrent/Parallel HiTi”, we first describe the agent-
based methodology, which is the underlying concept of 
all of our algorithms. We then briefly describe the HiTi 
graph model. Finally we describe our concurrent and 
parallel versions of the shortest path algorithm 
developed for HiTi graphs. Section “Performance 
Evaluation” evaluates our algorithms using a 
simulation model. Our conclusion and future research 
directions are contained in Section “Conclusion”.

2. Data Structures
Most of the previous studies on computing shortest 
paths either ignored or used heuristic methods to 
partition the graph. However partitioning the graph is 
one of the most important part of any algorithms since 
it determines the effectiveness of search procedures 
and storage allocations [2, 11, 13]. Therefore, it is 
essential to provide a partitioning technique that is 
specifically tailored for transportation graphs and have 
proven complexity bounds which can be fine tuned for 
the underlying system. In the following sections, we 
explain grid-based partitioning technique and its 
adoption to parallel and distributed systems.

2.1. Grid-Based Declustering
Suppose a graph with n nodes and m edges which can 
be covered by a bounding box of width w and height h 
when embedded in the plane. Such an input is typical 
especially in GIS applications. A natural way of 
spatially partitioning the graph is by imposing a regular 
grid on top of this bounding box. Using an r x s sized 
grid results in tiles of sizes wh/rs that can estimate n/rs
nodes in each tile. Considering the grid-like structure 
of transportation graphs (i. e., each node is usually a 4-
way intersection), such a measure is a good 
approximation to the number of nodes in each tile, 
which is needed to decluster the graph. In our 
simulations (see Section “Performance Evaluation”), 
we partitioned the graph by using 8 x 8 dimensional 
grid. See Figure 1, Grid based graph.

SG1 SG2

SG3 SG4

Figure 1. Grid based partitioning of a graph into 4 subgraphs of 
equal geometric space.

2.2. Replication
Each of the above partitioning method can be 
combined with replication. To discuss the role of 
replication, suppose we have p disk-nodes. If the graph 
is partitioned into exactly p subgraphs, then we obtain 
a one-to-one assignment of these subgraphs to the disk-
nodes. This approach may appear to be the ideal 
declustering technique. However, in an agent-based 
system, depending on the nature of the particular 
algorithm being executed, some disk nodes might have 
a heavy I/O traffic if too many agents are trying to 
access them. To avoid such “hot-spots” a technique 
called replication is often used. In this technique, 
instead of partitioning the graph into p subgraphs, we 
may, for example, partition it into fracp2 subgraphs 
and replicate each subgraph once to fill the remaining 
fracp2 empty disk nodes. In general we can have 
fracp2 subgraphs each of them with k copies, where l ≤
k ≤ p.

In our experimental studies, we evaluated the 
impact of replicating the subgraphs over the disk 
nodes. We only tried the cases k = 1, 2 because of the 
following reasons. 

1. Space: The more the replication, the more the space 
requirement is. We can see this by using the 
following simple calculation. If we assume that each 
subgraph has almost the same size then with k
replication each subgraph has size nk/p where n is 
the graph size. Subsequently, the total space 
requirement is (nk/p) x p = nk. So the total size 
increases by a factor of the replication number.

2. Consistency: Extra effort must be spent to make 
these multiple copies consistent if the data structures 
used are dynamic (which is the case in our 
algorithms). In general the cost is linear in the 
number of replicated copies. 

3. Load: The more the replication, the less the 
difference between the loads on disk nodes. In this 
case we are facing the situation of over-replicating 
the subgraphs whose benefit becomes negligible 
compared to the costs associated to it.

3. Concurrent/Parallel HiTi
In this section we discuss our algorithms that are based 
on a recently developed graph model, Hierarchical 
mulTigraph (HiTi) [17], and describe both concurrent 
and parallel versions of the algorithms. Our concurrent 
algorithms allow simultaneous exploration of the 
search space by utilizing dynamically created agents 
across multiple disk nodes which is efficiently 
supported by the Teradata multimedia database system 
architecture. Our parallel algorithm exploits the 
property of HiTi graphs which allows the computation 
to be recursively broken into smaller subproblems.
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3.1. Agent Based Methodology
We will briefly describe the agent-based methodology. 
For details see [5]. In a multi-disk/CPU environment 
that stores large objects (such as multimedia), 
transferring the data to the tasks is costly. So instead of 
transferring the data across the nodes, the tasks 
(agents) are transferred to the disk/CPU node where 
the data resides.

In these systems the computation is based on the 
execution of agents. The execution of these agents is 
triggered by different events. An agent can be cloned 
or migrated. Agent cloning occurs when the data to be 
modified resides on other disk/CPU nodes. Agent 
migration is useful when the agent needs to access 
more than one object residing in different disk/CPU 
nodes. This can be done sequentially in a proper order. 
Agents are programmed by using a scripting language 
and depending on the operations performed these 
scripts range from very simple to very complex. They 
are transferred along with their context and a mailbox 
that is used for triggering events. In our algorithms, 
agents communicate by reading/writing information 
from/to disks.

3.2. HiTi Graphs
We start by briefly explaining the HiTi graph model 
that was originally designed in [17] and give the 
definitions and the notations that will be used by the 
algorithms. Subsequently, we describe the 
corresponding single pair shortest path algorithm.

3.2.1. Construction, Definitions and Notations
The construction of HiTi graph starts by first 
partitioning the original graph into disjoint subgraphs 
called Component Road Maps (CROM). (These are 
called level 1 subgraphs.) Such a partitioning can be 
obtained by using the method explained in Section 
“Data Structures”. Then the boundary nodes between 
each neighbor CROMs are identified. A direct 
connection between two different CROMs, i. e., an 
edge between the boundary nodes, is called a between
connection. For each CROM, the cost for each pair of 
connected boundary nodes is precomputed and if the 
corresponding path is solely contained within the 
CROM then this is called a within connection. A HiTi 
graph is then defined as a graph whose nodes are the 
boundary nodes and the edges are the between and 
within edges. This construction can be continued 
hierarchically by defining a level k CROM that 
contains a set of level k-1 CROMs for k ≥ 2. The 
resulting structure can be viewed as a subgraph tree 
(ST) whose root is the entire graph. The ith subgraph at 
level j (of ST) is denoted as SGj

i. A HiTi graph defined 
over level k+1 subgraph tree ST is called a level k HiTi 
graph and is denoted as Hk (Pk, Ak) where Pk is the set 

of all the boundary nodes and Ak is the set of all the 
within and between edges.

Let X be a set of subgraphs in ST. Then SA (x)
denotes the set of ancestors of X. SC (x) denotes the set 
of direct children of X. SN (x) denotes the set of 
boundary nodes in the subgraphs of X. LUBSG (SG1

i,
SG1

j) denotes the least leveled common ancestor 
subgraph of SG1

i and SG1
j.

3.2.2. Shortest Path Algorithm Based on HiTi 
Graph (SPAH)

The Shortest Path algorithm (SPAH) is a variation of 
the A* algorithm and it exploits the hierarchical 
structure of HiTi graphs. It consists of two phases: 
ascending and descending. The ascending phase is the 
period of traversal from the source node START to the 
boundary nodes SN (Sl-1 (SG1

j)) where l = LUBSG (SG1
i,

SG1
j). The descending phase is the period of traversal 

from the boundary nodes of SN (Sl-1 (SG1
j)) to the 

destination node DEST. The following is the complete 
algorithm described in [17].

Algorithm Concurrent-SPAH (START, DEST)

begin
Assume we have a level k HiTi graph defined on a level k 
+1 ST;
Find SG i

1   SG j
1

Hk (Pk, Ak)
LUBSG (SG i

1, SG j
1)

P = k; p ≥1; p - -
SN (SC (SPA (SG j

1)))
λ = 0
λ (Agent) > λ (Nodei)
λ (Nodei) = λ (Agenti)
Nodei
Nodei
min (l - 1, r) ≤ p ≤ r
Nodei z→ Nodej
λ = λ (Nodei) + z
Nodej
Agenti
Nodei
Nodei z →Nodej
λ = λ (Node) + z
Nodej
Agentj

Figure 2. Concurrent-SPAH.

3.3. Concurrent HiTi
Our concurrent algorithm exploits the agent-based 
methodology Teradata M-DBS that was described 
briefly in section “Agent based Methodology”. The 
intuition is to simultaneously explore the search space 
by the help of dynamically created agents that can 
migrate across multiple disk/CPU nodes (see Figure 3). 
Since such technique is efficiently supported by the 
Teradata architecture, we expect significant speedup 
when the graphs have large size. Figure 2 gives the 
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complete algorithm that is based on SPAH and 
modified to take advantage of agent-based 
environment.
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Figure 3. From left to right, the figures show how the concurrent 
algorithm runs. The nodes with thick black circle are the ones that 
have active agents running on. S: Source node, and D: Destination 
node.

3.4. Parallel HiTi
Observe that SPAH consists of two phases: Ascending
and descending. In the ascending and descending
phases the edge traversal is from the node START to 
some marked boundary nodes and from the marked 
boundary nodes to the node END. All the paths those 
pass through the marked boundary nodes are searched. 
This suggests computing the shortest distance from 
START to a boundary node and from a boundary node
to DEST, for all the boundary nodes in parallel. Hence, 
if an agent is working on a node (Nodei), then the agent 
has to access the information (links connected to the 
node) that is stored on the same disk node. 
Subsequently, the agent has to clone it self and then 
migrate to all the nodes with links to Nodei, i. e., solve 
more than one shortest path problem simultaneously. 
To avoid cycles, we apply the same techniques 
described in section “Concurrent HiTi”. Figure 4 
demonstrates the Parallel-SPAH algorithm. 

Algorithm Concurrent-SPAH (START, DEST)
begin

    Assume we have a level k HiTi graph defined on a level k +1 ST;
               Find SG i

1   SG j
1

Hk (Pk, Ak)
                      LUBSG (SG i

1, SG j
1)

        P = k; p ≥1; p - -
                      SN (SC (SPA (SG j

1)))

Figure 4. Parallel-SPAH algorithm.

4. Performance Evaluation
In this section we evaluate our proposed techniques by 
applying a large set of experiments using a simulation 
system.

4.1. Simulation Setup and Measures
We have implemented the simulations in C++ and ran 
the performance comparison on a Sun workstation 
under Solaris to verify the practicality of our 
propositions. In our first set of experiments, Synthetic 

grid-graphs were used as data sets. The number of 
nodes was varied to obtain graphs of different sizes. 
Most of the experiments were performed with a graph 
of 1024 nodes, with average out-degree of 4 and a 
weight of [1, 5]. The function f (u, DEST) computes 
the Manhattan distance |x1 - x2| + |y1 – y2|, where (x1, 
y2) and (x2, y2) (are the locations of the points on the 
grid) between the node u and DEST. For our analysis, 
we create two dimensional grid graphs G (V, E) with 4 
adjacent nodes. From G (V, E), we create a level 4 
subgraph tree ST. The level 4 subgraphs tree ST 
consists of 64 levels 1, 16 level2, 4 level 3, and 1 level 
4 subgraphs.

In the second set of experiments, we use randomly 
generated graphs. The distance between two nodes was 
a random variable over an interval [10, 100]. The edge 
cost is generated based on a uniform distribution that 
was normalized to be consistent with the distance 
between two nodes. Each node has an out-degree of [3,
5] links. [2, 4] of the links were to nodes that have the 
shortest Euclidean distance from that node and the 
other links were for other nodes selected randomly. 
After creating the graph we spatially decluster the 
graph (Section “Grid-based Declustering”) into smaller 
subgraphs and build the HiTi graph on the top of it. We 
use level 4 subgraph tree ST to generate level 3 HiTi 
graph for our analysis. The function f (u, DEST) was 
used to estimate the cost of the shortest path from node 
u to DEST. The function f (u, DEST) computes the 
Euclidean distance between the node u and DEST [17].

We create adjacency lists for each subgraph. Each 
node has the following information: all links attached 
to it plus (level, cost, destination). The ST graph is 
stored on one disk. The boundary (within and between) 
links are attached to the nodes of the original graph. 
We conduct single source shortest path search for 
randomly selected nodes. We compute 5 different 
shortest paths randomly pairs of source and destination 
nodes and averaged the results for the 5 runs. 

In our experiments we use a measure that counts the 
Maximum number of links (MLAC) accessed among 
all the agents to reach the Destination (DEST). In 
sequential algorithm it measures the total number of 
links accessed to reach from Source (SOURCE) to 
Destination (DEST). All the parallel and concurrent 
algorithms links that are accessed simultaneously are 
considered as one MLAC measure.

In our performance comparison we use three 
performance measures. One is effect on MLAC as the 
size of the graph changes. The other one is the effect 
on MLAC as the number of CPU/disk nodes changes. 
The third one is the effect on MLAC as the limit on 
agents/disk accesses changes. For the Parallel 
algorithm, we change the limit on the total number of 
disk accesses at a time, and for the concurrent 
algorithm we change the limit on the total number of 
agents that a CPU could handle at a time. This measure 
is the same as the limit on the disk accesses for the 
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parallel algorithm. This is due to the fact that in our 
concurrent algorithm each agent created needs to 
access only one piece of data from the disk. We should 
note that our simulations ignore the typical 
optimization of real systems such as the memory 
residency of the data due to caching.

4.2. Results of the Experiments
We now discuss the performance of the ideas presented 
in the previous sections by conducting simulations. We 
study the influence of changing the number of graph 
nodes, the number of disks on MLAC. The structure of 
this section is as follows. In Sections “Speed-Up”, 
“Size-Up”, and “Scale-Up” we study the speedup, 
sizeup, and scaleup characteristics of our algorithms. 
Then, in Section “Replication”, the benefits of 
replication are made obvious by presenting the 
simulation results. And in the last Section 
“Comparison of Parallel, Concurrent and SPAH” a 
comparison is made between SPAH, concurrent, and 
parallel algorithms. This section shows the graph size, 
and the system configuration in which each algorithm 
performs the best.  And in the last Section “Random 
Graphs” we study the performance of the algorithms 
on randomly generated graphs. 

4.2.1. Speed-Up
For our first set of experiments, we examined the 
speedup characteristics of the parallel and concurrent
algorithms. We changed the number of disk nodes 
while keeping the graph size fixed. We did this for 
graph sizes of 16X16, 24X24 and 32X32 nodes.

Figure 5 and Figure 6 show the results of the 
speedup experiments. It is clear from the graphs that as 
we increase the number of disk/CPU nodes MLAC 
gets smaller. The speedup performance improved with 
larger graph sizes for the parallel algorithm. The 
concurrent algorithm achieved higher speedup 
performance than the parallel algorithm, but it was 
improved with smaller graph sizes. This result might 
seem surprising, but as the disk/CPU nodes increase 
more agents will run simultaneously and for the same 
number of agents the problem with less nodes (less 
links) gets solved faster. Total number of parallel 
threads depends on the HiTi graph levels, and the 
number of marked nodes in the graph and is not 
affected by the number of disk/CPU nodes. So, in our 
experiment we only changed the disk/CPU nodes 
configuration with fixing the HiTi graph (fixing graph 
size), which means that the total number of parallel 
threads was fixed. The only effect on the parallel 
algorithm was that more threads were executed 
simultaneously on the new disks and this explains the 
increase in speedup.

It is clear from the results that our concurrent and 
parallel algorithm shows almost a linear speedup as the 
number of disk/CPU nodes is increased.
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Figure 5. Speedup: Number of disk/CPU nodes vs. the maximum 
number of links accessed among all the agents for graph sizes of 
16X16, 20X20, and 32X32 nodes.
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4.2.2. Size-Up
In sizeup experiments, we examine how the parallel
and concurrent algorithms perform on a fixed number 
of disk/CPU nodes as we increase the size of the 
graphs. Figure 7 shows this for three different 
disk/CPU configurations where the graph is increased 
from 10X10 to 24X24 nodes. It is clear from the 
figures that as we throw in more disk/CPU nodes for 
the same graph size, we get a faster response (which is 
measured by MLAC). Concurrent algorithm exhibits 
better sizeup results than the parallel algorithm, i. e.,
by doubling the graph size we are not doubling the 
response time (MLAC) as we increase the disk/CPU 
nodes size. The same reasoning that was applied to the 
speedup case applies to the sizeup case for the 
differences between the performance of the parallel 
and concurrent algorithms. 
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Figure 7. SizeUp: Number of graph nodes vs. the maximum 
number of links accessed among all the agents.

4.2.3. Scale-Up
In the next experiments, we increased the size of the 
graph in proportion to the number of disk/CPU nodes 
in the system; i. e., each disk/CPU node has a fixed 
number of graph nodes. The performance results of 
these experiments are shown in Figure 8. It is clear that 
both algorithms scales well, i. e., MLAC doesn’t 

increase dramatically as the graph size increases with 
the increase of disk/CPU nodes. The increases in 
MLAC are due to the fact that when we increase the 
number of disk/CPU nodes we are increasing the graph 
size. This leads to an increase in the average length of 
shortest paths in the graph; i. e., MLAC. It is true that 
the amount of data per disk/CPU node does not change 
for a given experiment, but the graph size changes and 
the graph nodes in different disk/CPU nodes are not 
completely independent. So, MLAC is not remaining 
constant; as it should ideally; as the disk/CPU nodes is 
increased. The results show nice scaleup, especially for 
the concurrent algorithm. Overall, we can conclude 
that concurrent and parallel algorithms can indeed be 
used for large graph sizes.
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Figure 8. Scale-up: Number of disk/CPU nodes vs. the maximum 
number of links accessed among all the agents.

4.2.4. Replication
In this section we show the results of replication of the 
graph nodes. We restricted the experiment to only one 
replication of the graph. Figure 9 shows the results of 
replication effect as the graph size increases from 
12X12 to 22X22 nodes, and the effect of increasing 
agents/disk accesses. In the figure on the left, the graph 
size ranges from 12X12 to 22X22 nodes for two 
agents/disk accesses limits of 4, and 16. In the right 
figure, we change the agents/disk limits from 2 to 32 
for two graph sizes of 16X16, and 32X32 nodes. From 
the results, we may conclude that as the graph size 
increases, we see a better replication effect on the 
performance of the concurrent algorithm, especially 
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when we have smaller agents/disk accesses limit. And 
as the agents/disk accesses increasing the effect of 
replication reduce, since we are able to execute more 
agents simultaneously (which was the mean reason for 
using replication).
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Figure 9. Replication - Concurrent Algorithm.

4.2.5. Comparison of Parallel, Concurrent and 
SPAH

In this section we compare the original sequential 
algorithm (SPAH) to the parallel and concurrent 
algorithms. In these experiments, the graph sizes 
ranges from 24X24 to 32X32 nodes, the number of 
disk/CPU nodes varied from 2 to 64, and the 
agents/disk accesses were limited to 8, 16, and 32. The 
results for the run are shown in Figure 10. Both of the 
parallel and concurrent algorithms outperformed the 
SPAH algorithm in terms of MLAC. For small graph 
size the concurrent algorithm outperforms the parallel 
algorithm in terms of MLAC and scalability. For larger 
graph size the parallel algorithm outperforms the 
concurrent algorithm for smaller disk/CPU nodes 
configuration. As the disk/CPU nodes, and the 
agent/disk accesses limit increases the concurrent 
algorithm performs the best.

The next experiments measures the effect of 
changing the agents/disk accesses, and the change in 
disk/CPU nodes on MLAC for both parallel, and 
concurrent algorithms. The results of the experiments 
are shown in Figure 11. Both algorithms show a good 

scaleup. They both perform better with increasing the 
disk/CPU nodes, the agents/disk accesses, or both. The 
increase in agents/disk accesses has a larger affect 
(reducing response time) on the concurrent algorithm 
than on the parallel, especially for small disk/CPU 
configuration. On the other hand, in the parallel 
algorithm the agents/disk accesses effect reduces as the 
disk/CPU increases. This is where we reach a point 
that every parallel thread is executed on a different 
disk, and each thread performance is limited to its 
sequential base. That is why the increase in agents/disk 
accesses does not affect it anymore. Figure 12 shows 
that as we increase the agents/disk accesses limit, the 
total number of agents created stays almost constant 
for larger disk/CPU nodes configuration. This means 
that we get better performance by increasing the 
number of the disk/CPU nodes and at the same time we 
are not increasing the load on the system (since the 
total agents created remains almost constant).
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Figure 10. Comparison: Number of disk/CPU nodes vs. the 
maximum number of links accessed among all the agents for 
agents/disk accesses of 8, 16, and 32.

4.2.4. Random Graphs

The last set of experiments is based on a randomly 
generated graph with 24X24 nodes, and an average 
out-degree of 3. We conducted the same single-source 
path search experiments described in the previous 
sections. Interestingly, the experiments show the same 
performance as we had for the synthetic graphs. SPAH 
remains the worst, while the concurrent shows better 
performance for larger disk/CPU nodes and parallel 
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algorithm shows better performance for smaller 
disk/CPU nodes configuration or smaller agents/disk 
accesses limits.
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Figure 11. Comparison: Number of disk/CPU nodes vs. the 
maximum number of links accessed among all the agents for 
agents/disks accesses of 4, 8, 16, 32, and no limit.

5. Conclusion
This study proposed both concurrent and parallel 
versions of a recently developed graph model, 
Hierarchical mulTigraph (HiTi), as a solution for 
speeding up the computation of shortest path problem 
on a shared nothing architecture (i. e., Teradata 
multimedia database system). The concurrent 
algorithm allows simultaneous exploration of the 
search space by utilizing dynamically created agents 
across multiple disk nodes, which is efficiently 
supported by the Teradata multimedia database system 
architecture. The parallel algorithm breaks the problem 
into a set of smaller subproblems by exploiting a set of 
intermediate nodes that the shortest path passes 
through. We evaluated our algorithms via a simulation 
study and demonstrated that our concurrent and 
parallel algorithms show almost a linear speedup as the 
number of disk/CPU nodes is increased. Concurrent 
algorithm exhibited better sizeup, and scaleup results 
than the parallel algorithm.
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