
The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005 281

Minimum Cost Path for a Shared
Nothing Architecture

Maytham Safar
Computer Engineering Department, Kuwait University, Kuwait

Abstract: Computing the minimum cost path is a key requirement in Intelligent Transportation Systems (ITS) and in some
Geographical Information Systems (GIS) applications. The major characteristics of these systems are the facts that the
underlying transportation graph is large in size and the computation is under time constraint. Due to the insufficiency of the
classic algorithms under these settings, recent studies have focused on speeding the computation by employing alternative
techniques such as heuristics, precomputation and parallelization. In this study, we investigate solutions assuming a shared
nothing architecture (i. e., Teradata multimedia database system) as a way of speeding up the computation further. We build
our algorithms on a recently developed graph model, Hierarchical mulTigraph (HiTi), and describe both concurrent and
parallel versions of the algorithms. The concurrent algorithm allows simultaneous exploration of the search space by utilizing
dynamically created agents across multiple disk nodes, which is efficiently supported by the Teradata multimedia database
system architecture. The parallel algorithm breaks the problem into a set of smaller subproblems by exploiting a set of
intermediate nodes that the shortest path passes through. We also investigate the impact of replicating subgraphs in the
performance of our algorithms. We evaluated our algorithms via a simulation study and demonstrated that our concurrent and
parallel algorithms show almost a linear speedup as the number of disk/CPU nodes is increased. Concurrent algorithm
exhibits better sizeup, and scaleup results than the parallel algorithm.

Keywords: Shortest path, GIS system, intelligent transportation systems, shared nothing architecture, teradata multimedia
database.

Received May 24, 2004; accepted July 31, 2004

1. Introduction
In this section, we first motivate our work based on
two real-world applications. Subsequently, we
compare our work with related studies. Finally, our
major contributions are presented.

1.1. Motivation
Recently, new fields such as Intelligent Transportation
Systems (ITS) and Geographical Information Systems
(GIS) have gained much attention from different
academic disciplines. An ITS can be considered as the
integration of advanced technologies in areas such as
communication, information and navigation in order to
achieve an economically improved and safer
transportation systems. A GIS can be considered as the
integration of different types/formats of data, which are
related through geographical information. One of the
interesting queries that can utilize this rich set of
information is to find a best path between a source and
a destination. One particular problem that is identified,
as a key requirement for ITS and some GIS
applications is the efficient processing of minimum
cost path queries. The underlying transportation graphs
are typically large and the queries need to be processed
very quickly due to the real time nature of the
application. Due to these characteristics, the classic

algorithms (such as Dijkstra) have been found to be
insufficient. In order to remedy the situation alternative
methods such as heuristics, precomputation and
parallelization have been studied.

In this study, we investigate solutions assuming a
shared nothing architecture as a way of speeding up the
computation further. In particular, our target hardware
and software platform is a Teradata Multimedia
Database System (M-DBS) [5, 6], which is built on
NCR WorldMark multi-disk multi-processor system.
Teradata M-DBS software supports the concept of
agents as pieces of code that can migrate and execute
on the physical (disk/CPU) node(s) containing the
object(s) referenced by the agent. It also provides users
with the capability of implementing their User Defined
Functions (UDFs) in order to extend the functionality
of the M-DBS. We define each of our minimum cost
path algorithms as one UDF on Teradata M-DBS. Each
UDF forks many agents on multiple nodes in order to
speedup computation by simultaneous execution of
agents.

We have developed our algorithms on a famous
graph model, Hierarchical mulTigraph (HiTi) [16, 17],
because of several reasons. First, it is the most recent
work on single pair shortest path problem, which is
developed for large road graphs. Second, it performs
better than the traditional A* algorithm by exploiting

282 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

the hierarchical nature of road navigation. Third, it is
based on partitioning the graph into small subgraphs,
which is very suitable for a shared nothing system.
This partitioning significantly reduces the search space
for computing the minimum cost path over a very large
topographical road map [17]. In this paper we discuss
several partitioning techniques that can form the
underlying structure of these HiTi graphs, which are
interesting in their own nature.

1.2. Related Work
There have been extensive studies on the shortest path
problem both in theory and in practice. For all-pairs
shortest path problems, the classic algorithms are
Floyd-Warshall [7, 20] for general graphs and
Johnson's algorithm for sparse graphs [15]. For the
single-source shortest path problem the classic ones are
Bellman-Ford [3, 8] and Dijkstra [4].

Parallel and distributed algorithms are developed to
take advantage of the technological developments in
computer architecture. For example in a series of
studies [9, 10, 18] the graph is fragmented to
recursively decompose the problem into smaller tasks
and assign each task to a different processor. However
their disconnection sets are precomputed beforehand,
and they don't depend on the source and destination
nodes of the problem at hand. Moreover their methods
mainly targets acyclic fragments formed after
partitioning. This restriction makes it very unsuitable
for transportation graphs, which have almost grid-like
and highly cyclic structure. Furthermore, we are not
aware of any study that investigates concurrent/parallel
minimum cost path algorithms assuming a shared
nothing architecture with agent-based methodology.

Recent works aim at finding efficient solutions to
single pair shortest path problem. This problem is in
fact the most important problem for Navigation
system. Shekar in [19] developed a hierarchical A*

algorithm. Their motivation was that the classic
algorithms (like Dijkstra) process all the nodes in the
graph to reach to a solution that is more than
unnecessary and time consuming in practice. Therefore
they suggest a heuristic method that searches only a
necessary subset of the nodes. Their method takes
advantage of the specific nature of transportation
networks, i. e., the existence of high-speed roads like
freeways and highways. One major drawback of this
approach is that it may not find the optimal solution. It
is also not suitable for a direction-based centralized
architecture since the computation of the entire path is
required to find the next optimal direction.

A recent research done in [12, 14] followed a
different approach: path encoding. They tried to
develop algorithms that respond to the path queries as
fast as possible since the number of queries received at
any time can be very large especially in busy hours of
traffic. In this method each node stores the tuple

<destination, successor, weight> for all (or subset of)
the destination nodes in the graph. A hierarchical data
structure by fragmenting the graph is studied in [13]
and different fragmentation strategies are evaluated in
[14].

Agrawal in [1, 2] used a branch and bound search
algorithm to reduce the total number of nodes visited
[1]. Their overall approach is to precompute some
partial information and then use it at run time to prune
the search space. The essential part of their
construction is the domain partitioning since it
determines the goodness of the bounding procedure.
The ideal domain partitioning requires choosing a
specified number of domain centers such that the
average distance to (from) a node from (to) its domain
center is minimized. However, since this is an NP-hard
problem they use heuristics that may reduce the search
efficiency. As was observed in [17], another drawback
of this approach is that it searches all the unnecessary
intermediate edges before reaching to the target,
therefore it ignores the hierarchical nature of the
navigation systems. A similar work was done in [10]
showed that Transitive closure query in a distributed
environment could be broken into several subqueries
that can be processed in parallel. In [14] a Topological
clustering technique SPC was proposed to exploit the
unique GIS road map characteristics to achieve I/O
optimization in path query processing but it had the
problem of space and computation overhead for
creating link tables. An important recent work in [16,
17] explains a HiTi (Hierarchical mulTigraph) model
to speed up the single pair shortest path problem on a
topological road map [17]. They successfully avoid the
searching of unnecessary intermediate edges by the
help of these graphs. We will explain HiTi graphs
briefly in Section “Concurrent/Parallel HiTi” since our
algorithms are developed for these graphs.

1.3. Major Contributions
In this study, we investigate solutions assuming a
shared nothing architecture (i. e., Teradata multimedia
database system) to quickly compute the minimum
cost paths in large transportation graphs. Our
algorithms are based on a recently developed graph
model, Hierarchical mulTigraph (HiTi) [17], and
describe both concurrent and parallel versions of the
algorithms. Our concurrent algorithms allow
simultaneous exploration of the search space by
utilizing dynamically created agents across multiple
disk nodes, which is efficiently supported by the
Teradata multimedia database system architecture. Our
parallel algorithm exploits the property of HiTi graphs
that allows the computation to be recursively broken
into smaller subproblems. We also investigate the
impact of replicating subgraphs in the performance of
our algorithms. We evaluated both of our algorithms
via a simulation study and demonstrated an almost

Minimum Cost Path for a Shared Nothing Architecture 283

linear speedup for the algorithms as we increase the
number of disk/CPU nodes.

The rest of this paper is organized as follows. In
Section “Data Structures”, we describe grid-based
partitioning technique. We also investigate the role of
replication in Section “Replication”. In Section
“Concurrent/Parallel HiTi”, we first describe the agent-
based methodology, which is the underlying concept of
all of our algorithms. We then briefly describe the HiTi
graph model. Finally we describe our concurrent and
parallel versions of the shortest path algorithm
developed for HiTi graphs. Section “Performance
Evaluation” evaluates our algorithms using a
simulation model. Our conclusion and future research
directions are contained in Section “Conclusion”.

2. Data Structures
Most of the previous studies on computing shortest
paths either ignored or used heuristic methods to
partition the graph. However partitioning the graph is
one of the most important part of any algorithms since
it determines the effectiveness of search procedures
and storage allocations [2, 11, 13]. Therefore, it is
essential to provide a partitioning technique that is
specifically tailored for transportation graphs and have
proven complexity bounds which can be fine tuned for
the underlying system. In the following sections, we
explain grid-based partitioning technique and its
adoption to parallel and distributed systems.

2.1. Grid-Based Declustering
Suppose a graph with n nodes and m edges which can
be covered by a bounding box of width w and height h
when embedded in the plane. Such an input is typical
especially in GIS applications. A natural way of
spatially partitioning the graph is by imposing a regular
grid on top of this bounding box. Using an r x s sized
grid results in tiles of sizes wh/rs that can estimate n/rs
nodes in each tile. Considering the grid-like structure
of transportation graphs (i. e., each node is usually a 4-
way intersection), such a measure is a good
approximation to the number of nodes in each tile,
which is needed to decluster the graph. In our
simulations (see Section “Performance Evaluation”),
we partitioned the graph by using 8 x 8 dimensional
grid. See Figure 1, Grid based graph.

SG1 SG2

SG3 SG4

Figure 1. Grid based partitioning of a graph into 4 subgraphs of
equal geometric space.

2.2. Replication
Each of the above partitioning method can be
combined with replication. To discuss the role of
replication, suppose we have p disk-nodes. If the graph
is partitioned into exactly p subgraphs, then we obtain
a one-to-one assignment of these subgraphs to the disk-
nodes. This approach may appear to be the ideal
declustering technique. However, in an agent-based
system, depending on the nature of the particular
algorithm being executed, some disk nodes might have
a heavy I/O traffic if too many agents are trying to
access them. To avoid such “hot-spots” a technique
called replication is often used. In this technique,
instead of partitioning the graph into p subgraphs, we
may, for example, partition it into fracp2 subgraphs
and replicate each subgraph once to fill the remaining
fracp2 empty disk nodes. In general we can have
fracp2 subgraphs each of them with k copies, where l ≤
k ≤ p.

In our experimental studies, we evaluated the
impact of replicating the subgraphs over the disk
nodes. We only tried the cases k = 1, 2 because of the
following reasons.

1. Space: The more the replication, the more the space
requirement is. We can see this by using the
following simple calculation. If we assume that each
subgraph has almost the same size then with k
replication each subgraph has size nk/p where n is
the graph size. Subsequently, the total space
requirement is (nk/p) x p = nk. So the total size
increases by a factor of the replication number.

2. Consistency: Extra effort must be spent to make
these multiple copies consistent if the data structures
used are dynamic (which is the case in our
algorithms). In general the cost is linear in the
number of replicated copies.

3. Load: The more the replication, the less the
difference between the loads on disk nodes. In this
case we are facing the situation of over-replicating
the subgraphs whose benefit becomes negligible
compared to the costs associated to it.

3. Concurrent/Parallel HiTi
In this section we discuss our algorithms that are based
on a recently developed graph model, Hierarchical
mulTigraph (HiTi) [17], and describe both concurrent
and parallel versions of the algorithms. Our concurrent
algorithms allow simultaneous exploration of the
search space by utilizing dynamically created agents
across multiple disk nodes which is efficiently
supported by the Teradata multimedia database system
architecture. Our parallel algorithm exploits the
property of HiTi graphs which allows the computation
to be recursively broken into smaller subproblems.

284 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

3.1. Agent Based Methodology
We will briefly describe the agent-based methodology.
For details see [5]. In a multi-disk/CPU environment
that stores large objects (such as multimedia),
transferring the data to the tasks is costly. So instead of
transferring the data across the nodes, the tasks
(agents) are transferred to the disk/CPU node where
the data resides.

In these systems the computation is based on the
execution of agents. The execution of these agents is
triggered by different events. An agent can be cloned
or migrated. Agent cloning occurs when the data to be
modified resides on other disk/CPU nodes. Agent
migration is useful when the agent needs to access
more than one object residing in different disk/CPU
nodes. This can be done sequentially in a proper order.
Agents are programmed by using a scripting language
and depending on the operations performed these
scripts range from very simple to very complex. They
are transferred along with their context and a mailbox
that is used for triggering events. In our algorithms,
agents communicate by reading/writing information
from/to disks.

3.2. HiTi Graphs
We start by briefly explaining the HiTi graph model
that was originally designed in [17] and give the
definitions and the notations that will be used by the
algorithms. Subsequently, we describe the
corresponding single pair shortest path algorithm.

3.2.1. Construction, Definitions and Notations
The construction of HiTi graph starts by first
partitioning the original graph into disjoint subgraphs
called Component Road Maps (CROM). (These are
called level 1 subgraphs.) Such a partitioning can be
obtained by using the method explained in Section
“Data Structures”. Then the boundary nodes between
each neighbor CROMs are identified. A direct
connection between two different CROMs, i. e., an
edge between the boundary nodes, is called a between
connection. For each CROM, the cost for each pair of
connected boundary nodes is precomputed and if the
corresponding path is solely contained within the
CROM then this is called a within connection. A HiTi
graph is then defined as a graph whose nodes are the
boundary nodes and the edges are the between and
within edges. This construction can be continued
hierarchically by defining a level k CROM that
contains a set of level k-1 CROMs for k ≥ 2. The
resulting structure can be viewed as a subgraph tree
(ST) whose root is the entire graph. The ith subgraph at
level j (of ST) is denoted as SGj

i. A HiTi graph defined
over level k+1 subgraph tree ST is called a level k HiTi
graph and is denoted as Hk (Pk, Ak) where Pk is the set

of all the boundary nodes and Ak is the set of all the
within and between edges.

Let X be a set of subgraphs in ST. Then SA (x)
denotes the set of ancestors of X. SC (x) denotes the set
of direct children of X. SN (x) denotes the set of
boundary nodes in the subgraphs of X. LUBSG (SG1

i,
SG1

j) denotes the least leveled common ancestor
subgraph of SG1

i and SG1
j.

3.2.2. Shortest Path Algorithm Based on HiTi
Graph (SPAH)

The Shortest Path algorithm (SPAH) is a variation of
the A* algorithm and it exploits the hierarchical
structure of HiTi graphs. It consists of two phases:
ascending and descending. The ascending phase is the
period of traversal from the source node START to the
boundary nodes SN (Sl-1 (SG1

j)) where l = LUBSG (SG1
i,

SG1
j). The descending phase is the period of traversal

from the boundary nodes of SN (Sl-1 (SG1
j)) to the

destination node DEST. The following is the complete
algorithm described in [17].

Algorithm Concurrent-SPAH (START, DEST)

begin
Assume we have a level k HiTi graph defined on a level k
+1 ST;
Find SG i

1 SG j
1

Hk (Pk, Ak)
LUBSG (SG i

1, SG j
1)

P = k; p ≥1; p - -
SN (SC (SPA (SG j

1)))
λ = 0
λ (Agent) > λ (Nodei)
λ (Nodei) = λ (Agenti)
Nodei
Nodei
min (l - 1, r) ≤ p ≤ r
Nodei z→ Nodej
λ = λ (Nodei) + z
Nodej
Agenti
Nodei
Nodei z →Nodej
λ = λ (Node) + z
Nodej
Agentj

Figure 2. Concurrent-SPAH.

3.3. Concurrent HiTi
Our concurrent algorithm exploits the agent-based
methodology Teradata M-DBS that was described
briefly in section “Agent based Methodology”. The
intuition is to simultaneously explore the search space
by the help of dynamically created agents that can
migrate across multiple disk/CPU nodes (see Figure 3).
Since such technique is efficiently supported by the
Teradata architecture, we expect significant speedup
when the graphs have large size. Figure 2 gives the

Minimum Cost Path for a Shared Nothing Architecture 285

complete algorithm that is based on SPAH and
modified to take advantage of agent-based
environment.

2

1

2

1

3
1 2

2

0 α
S

D

2

1

2

1

3
1 2

2

0 2

1

3

S

D

2

1

2

1

3
1 2

2

0 2

1

2

3

S

D

Agents 1 # Agents 3 # Agents 1

2

1

2

1

3
1 2

2

0 2

1

2

3

S

D

Agents 0

α α
α

α

Figure 3. From left to right, the figures show how the concurrent
algorithm runs. The nodes with thick black circle are the ones that
have active agents running on. S: Source node, and D: Destination
node.

3.4. Parallel HiTi
Observe that SPAH consists of two phases: Ascending
and descending. In the ascending and descending
phases the edge traversal is from the node START to
some marked boundary nodes and from the marked
boundary nodes to the node END. All the paths those
pass through the marked boundary nodes are searched.
This suggests computing the shortest distance from
START to a boundary node and from a boundary node
to DEST, for all the boundary nodes in parallel. Hence,
if an agent is working on a node (Nodei), then the agent
has to access the information (links connected to the
node) that is stored on the same disk node.
Subsequently, the agent has to clone it self and then
migrate to all the nodes with links to Nodei, i. e., solve
more than one shortest path problem simultaneously.
To avoid cycles, we apply the same techniques
described in section “Concurrent HiTi”. Figure 4
demonstrates the Parallel-SPAH algorithm.

Algorithm Concurrent-SPAH (START, DEST)
begin

 Assume we have a level k HiTi graph defined on a level k +1 ST;
 Find SG i

1 SG j
1

Hk (Pk, Ak)
 LUBSG (SG i

1, SG j
1)

 P = k; p ≥1; p - -
 SN (SC (SPA (SG j

1)))

Figure 4. Parallel-SPAH algorithm.

4. Performance Evaluation
In this section we evaluate our proposed techniques by
applying a large set of experiments using a simulation
system.

4.1. Simulation Setup and Measures
We have implemented the simulations in C++ and ran
the performance comparison on a Sun workstation
under Solaris to verify the practicality of our
propositions. In our first set of experiments, Synthetic

grid-graphs were used as data sets. The number of
nodes was varied to obtain graphs of different sizes.
Most of the experiments were performed with a graph
of 1024 nodes, with average out-degree of 4 and a
weight of [1, 5]. The function f (u, DEST) computes
the Manhattan distance |x1 - x2| + |y1 – y2|, where (x1,
y2) and (x2, y2) (are the locations of the points on the
grid) between the node u and DEST. For our analysis,
we create two dimensional grid graphs G (V, E) with 4
adjacent nodes. From G (V, E), we create a level 4
subgraph tree ST. The level 4 subgraphs tree ST
consists of 64 levels 1, 16 level2, 4 level 3, and 1 level
4 subgraphs.

In the second set of experiments, we use randomly
generated graphs. The distance between two nodes was
a random variable over an interval [10, 100]. The edge
cost is generated based on a uniform distribution that
was normalized to be consistent with the distance
between two nodes. Each node has an out-degree of [3,
5] links. [2, 4] of the links were to nodes that have the
shortest Euclidean distance from that node and the
other links were for other nodes selected randomly.
After creating the graph we spatially decluster the
graph (Section “Grid-based Declustering”) into smaller
subgraphs and build the HiTi graph on the top of it. We
use level 4 subgraph tree ST to generate level 3 HiTi
graph for our analysis. The function f (u, DEST) was
used to estimate the cost of the shortest path from node
u to DEST. The function f (u, DEST) computes the
Euclidean distance between the node u and DEST [17].

We create adjacency lists for each subgraph. Each
node has the following information: all links attached
to it plus (level, cost, destination). The ST graph is
stored on one disk. The boundary (within and between)
links are attached to the nodes of the original graph.
We conduct single source shortest path search for
randomly selected nodes. We compute 5 different
shortest paths randomly pairs of source and destination
nodes and averaged the results for the 5 runs.

In our experiments we use a measure that counts the
Maximum number of links (MLAC) accessed among
all the agents to reach the Destination (DEST). In
sequential algorithm it measures the total number of
links accessed to reach from Source (SOURCE) to
Destination (DEST). All the parallel and concurrent
algorithms links that are accessed simultaneously are
considered as one MLAC measure.

In our performance comparison we use three
performance measures. One is effect on MLAC as the
size of the graph changes. The other one is the effect
on MLAC as the number of CPU/disk nodes changes.
The third one is the effect on MLAC as the limit on
agents/disk accesses changes. For the Parallel
algorithm, we change the limit on the total number of
disk accesses at a time, and for the concurrent
algorithm we change the limit on the total number of
agents that a CPU could handle at a time. This measure
is the same as the limit on the disk accesses for the

286 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

parallel algorithm. This is due to the fact that in our
concurrent algorithm each agent created needs to
access only one piece of data from the disk. We should
note that our simulations ignore the typical
optimization of real systems such as the memory
residency of the data due to caching.

4.2. Results of the Experiments
We now discuss the performance of the ideas presented
in the previous sections by conducting simulations. We
study the influence of changing the number of graph
nodes, the number of disks on MLAC. The structure of
this section is as follows. In Sections “Speed-Up”,
“Size-Up”, and “Scale-Up” we study the speedup,
sizeup, and scaleup characteristics of our algorithms.
Then, in Section “Replication”, the benefits of
replication are made obvious by presenting the
simulation results. And in the last Section
“Comparison of Parallel, Concurrent and SPAH” a
comparison is made between SPAH, concurrent, and
parallel algorithms. This section shows the graph size,
and the system configuration in which each algorithm
performs the best. And in the last Section “Random
Graphs” we study the performance of the algorithms
on randomly generated graphs.

4.2.1. Speed-Up
For our first set of experiments, we examined the
speedup characteristics of the parallel and concurrent
algorithms. We changed the number of disk nodes
while keeping the graph size fixed. We did this for
graph sizes of 16X16, 24X24 and 32X32 nodes.

Figure 5 and Figure 6 show the results of the
speedup experiments. It is clear from the graphs that as
we increase the number of disk/CPU nodes MLAC
gets smaller. The speedup performance improved with
larger graph sizes for the parallel algorithm. The
concurrent algorithm achieved higher speedup
performance than the parallel algorithm, but it was
improved with smaller graph sizes. This result might
seem surprising, but as the disk/CPU nodes increase
more agents will run simultaneously and for the same
number of agents the problem with less nodes (less
links) gets solved faster. Total number of parallel
threads depends on the HiTi graph levels, and the
number of marked nodes in the graph and is not
affected by the number of disk/CPU nodes. So, in our
experiment we only changed the disk/CPU nodes
configuration with fixing the HiTi graph (fixing graph
size), which means that the total number of parallel
threads was fixed. The only effect on the parallel
algorithm was that more threads were executed
simultaneously on the new disks and this explains the
increase in speedup.

It is clear from the results that our concurrent and
parallel algorithm shows almost a linear speedup as the
number of disk/CPU nodes is increased.

0
100
200
300
400
500
600
700

1 2 4 8 16 32 64
of disks

Concurrent Algorithm

M
LA

C

16X16
20X20
32X32

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64

of disks
Parallel Algorithm

M
LA

C

16X16
20X20
32X32

Figure 5. Speedup: Number of disk/CPU nodes vs. the maximum
number of links accessed among all the agents for graph sizes of
16X16, 20X20, and 32X32 nodes.

0

1

2

3

4

5

6

2 4 8 16 32 64

of disks
Concurrent Algorithm

Sp
ee
d
U
p

16X16
20X20
32X32

1

1.2

1.4

1.6

1.8

2

2.2

2 4 8 16 32 64
of disks

Parallel Algorithm

Sp
ee
d
U
p 16X16

20X20
32X32

Figure 6. Speedup: Number of disk/CPU nodes vs. the speedup for
graph sizes of 16X16, 20X20, and 32X32 nodes.

Minimum Cost Path for a Shared Nothing Architecture 287

4.2.2. Size-Up
In sizeup experiments, we examine how the parallel
and concurrent algorithms perform on a fixed number
of disk/CPU nodes as we increase the size of the
graphs. Figure 7 shows this for three different
disk/CPU configurations where the graph is increased
from 10X10 to 24X24 nodes. It is clear from the
figures that as we throw in more disk/CPU nodes for
the same graph size, we get a faster response (which is
measured by MLAC). Concurrent algorithm exhibits
better sizeup results than the parallel algorithm, i. e.,
by doubling the graph size we are not doubling the
response time (MLAC) as we increase the disk/CPU
nodes size. The same reasoning that was applied to the
speedup case applies to the sizeup case for the
differences between the performance of the parallel
and concurrent algorithms.

0

10

20

30

40

50

60

70

80

90

8X
8

10
X
10

12
X
12

14
X
14

16
X
16

18
X
18

20
X
20

22
X
22

24
X
24

of graph nodes
disk/CPU nodes of 16, 32, and 64

Concurrent Algorithm

16 disks
32 disks
64 disks

40

60

80

100

120

140

160

180

200

10
X
10

12
X
12

14
X
14

16
X
16

18
X
18

20
X
20

22
X
22

24
X
24

of graph nodes
disk/CPU nodes 2, 8, and 32

Parallel Algorithm

2 disks
8 disks
32 disks

Figure 7. SizeUp: Number of graph nodes vs. the maximum
number of links accessed among all the agents.

4.2.3. Scale-Up
In the next experiments, we increased the size of the
graph in proportion to the number of disk/CPU nodes
in the system; i. e., each disk/CPU node has a fixed
number of graph nodes. The performance results of
these experiments are shown in Figure 8. It is clear that
both algorithms scales well, i. e., MLAC doesn’t

increase dramatically as the graph size increases with
the increase of disk/CPU nodes. The increases in
MLAC are due to the fact that when we increase the
number of disk/CPU nodes we are increasing the graph
size. This leads to an increase in the average length of
shortest paths in the graph; i. e., MLAC. It is true that
the amount of data per disk/CPU node does not change
for a given experiment, but the graph size changes and
the graph nodes in different disk/CPU nodes are not
completely independent. So, MLAC is not remaining
constant; as it should ideally; as the disk/CPU nodes is
increased. The results show nice scaleup, especially for
the concurrent algorithm. Overall, we can conclude
that concurrent and parallel algorithms can indeed be
used for large graph sizes.

0

20

40

60

80

100

120

140

2 4 8 16 32
of disks

Concurrent Algorithm

20 node
24 node
32 node

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 32
of disks

Parallel Algorithm

20 node
24 node
32 node

Figure 8. Scale-up: Number of disk/CPU nodes vs. the maximum
number of links accessed among all the agents.

4.2.4. Replication
In this section we show the results of replication of the
graph nodes. We restricted the experiment to only one
replication of the graph. Figure 9 shows the results of
replication effect as the graph size increases from
12X12 to 22X22 nodes, and the effect of increasing
agents/disk accesses. In the figure on the left, the graph
size ranges from 12X12 to 22X22 nodes for two
agents/disk accesses limits of 4, and 16. In the right
figure, we change the agents/disk limits from 2 to 32
for two graph sizes of 16X16, and 32X32 nodes. From
the results, we may conclude that as the graph size
increases, we see a better replication effect on the
performance of the concurrent algorithm, especially

288 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

when we have smaller agents/disk accesses limit. And
as the agents/disk accesses increasing the effect of
replication reduce, since we are able to execute more
agents simultaneously (which was the mean reason for
using replication).

0

50

100

150

200

250

12X12 14X14 16X16 18X18 20X20 22X22
graph nodes

Agents/Disk accesses limit of 4, and 16

no rep (4)
rep (4)
no rep (16)
rep (16)

0

100

200

300

400

500

600

2 4 8 16 32
Agents/Disk accesses limit

Graph sizes of 16X16, and 32X32 nodes

16X16 no rep
16X16 rep
32X32 no rep
32X32 rep

Figure 9. Replication - Concurrent Algorithm.

4.2.5. Comparison of Parallel, Concurrent and
SPAH

In this section we compare the original sequential
algorithm (SPAH) to the parallel and concurrent
algorithms. In these experiments, the graph sizes
ranges from 24X24 to 32X32 nodes, the number of
disk/CPU nodes varied from 2 to 64, and the
agents/disk accesses were limited to 8, 16, and 32. The
results for the run are shown in Figure 10. Both of the
parallel and concurrent algorithms outperformed the
SPAH algorithm in terms of MLAC. For small graph
size the concurrent algorithm outperforms the parallel
algorithm in terms of MLAC and scalability. For larger
graph size the parallel algorithm outperforms the
concurrent algorithm for smaller disk/CPU nodes
configuration. As the disk/CPU nodes, and the
agent/disk accesses limit increases the concurrent
algorithm performs the best.

The next experiments measures the effect of
changing the agents/disk accesses, and the change in
disk/CPU nodes on MLAC for both parallel, and
concurrent algorithms. The results of the experiments
are shown in Figure 11. Both algorithms show a good

scaleup. They both perform better with increasing the
disk/CPU nodes, the agents/disk accesses, or both. The
increase in agents/disk accesses has a larger affect
(reducing response time) on the concurrent algorithm
than on the parallel, especially for small disk/CPU
configuration. On the other hand, in the parallel
algorithm the agents/disk accesses effect reduces as the
disk/CPU increases. This is where we reach a point
that every parallel thread is executed on a different
disk, and each thread performance is limited to its
sequential base. That is why the increase in agents/disk
accesses does not affect it anymore. Figure 12 shows
that as we increase the agents/disk accesses limit, the
total number of agents created stays almost constant
for larger disk/CPU nodes configuration. This means
that we get better performance by increasing the
number of the disk/CPU nodes and at the same time we
are not increasing the load on the system (since the
total agents created remains almost constant).

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64
disks

Graph size 24X24 nodes

SPAH
C-8
C-16
C-32
P-8
P-16
P-32

0

100

200

300

400

500

600

700

2 4 8 16 32 64
disks

Graph size 32X32 nodes

SPAH
C-8
C-16
C-32
P-8
P-16
P-32

Figure 10. Comparison: Number of disk/CPU nodes vs. the
maximum number of links accessed among all the agents for
agents/disk accesses of 8, 16, and 32.

4.2.4. Random Graphs

The last set of experiments is based on a randomly
generated graph with 24X24 nodes, and an average
out-degree of 3. We conducted the same single-source
path search experiments described in the previous
sections. Interestingly, the experiments show the same
performance as we had for the synthetic graphs. SPAH
remains the worst, while the concurrent shows better
performance for larger disk/CPU nodes and parallel

Minimum Cost Path for a Shared Nothing Architecture 289

algorithm shows better performance for smaller
disk/CPU nodes configuration or smaller agents/disk
accesses limits.

60
80

100
120
140
160
180
200
220

1 2 4 8 16 32 64

disks
Graph size 32X32 nodes

Parallel Algorithm

SPAH
1
2
4
8
16
32
No limit

10

100

1000

10000

1 2 4 8 16 32 64
disks

Graph size 24X24
Concurrent Algorithm

SPAH
4
8
16
32
No limit

Figure 11. Comparison: Number of disk/CPU nodes vs. the
maximum number of links accessed among all the agents for
agents/disks accesses of 4, 8, 16, 32, and no limit.

5. Conclusion
This study proposed both concurrent and parallel
versions of a recently developed graph model,
Hierarchical mulTigraph (HiTi), as a solution for
speeding up the computation of shortest path problem
on a shared nothing architecture (i. e., Teradata
multimedia database system). The concurrent
algorithm allows simultaneous exploration of the
search space by utilizing dynamically created agents
across multiple disk nodes, which is efficiently
supported by the Teradata multimedia database system
architecture. The parallel algorithm breaks the problem
into a set of smaller subproblems by exploiting a set of
intermediate nodes that the shortest path passes
through. We evaluated our algorithms via a simulation
study and demonstrated that our concurrent and
parallel algorithms show almost a linear speedup as the
number of disk/CPU nodes is increased. Concurrent
algorithm exhibited better sizeup, and scaleup results
than the parallel algorithm.

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

2 4 8 16 32 64
disks

Graph size 24X24 nodes
Parallel Algorithm

2
4
8
16
32
No limit

5000

7000

9000

11000

13000

15000

17000

19000

21000

23000

1 2 4 8 16 32 64

disks
Graph size 32X32 nodes
Concurrent Algorithm

4
8
16
32
No limit

Figure 12. Comparison: Number of disk/CPU nodes vs. total
number of created agents for agents/disks accesses of 2,4,8,16,32,
and no limit.

Acknowledgments
Research Administration at Kuwait University (Project
No EO02/01) has funded this research.

References
[1] Agrawal R., and Jagadish H. V., “Algorithms for

Searching Massive Graphs,” Transactions on
Knowledge and Data Engineering, vol. 6, no. 2,
pp. 225-238, 1994.

[2] Agrawal R., Dar S., and Jagadish H. V., “Direct
Transitive Closure Algorithms: Design and
Performance Evaluation,” ACM TODS, vol. 15,
no. 3, pp. 427-458, 1990.

[3] Bellman R., “On a Routing Problem,” Quarterly
of Applied Mathematics, vol. 16, no. 1, pp. 87-90,
1958.

[4] Dijkstra E. W., “A Note on Two Problems in
Connection with Graph Theory,” Numerische
Mathematik, vol. 1, pp. 269-271, 1959.

[5] Connell W. O., Ieong I. T., Schrader D., Watson
C., Au G., Biliris A., Choo S., Colin P.,
Linderman G., Panagos E., Wang J., and Walter
T., “A Teradata Content-Based Multimedia
Object Manager for Massively Parallel
Architectures,” in Proceedings of the ACM
SIGMOD, pp. 68-78, 1996.

290 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

[6] Connell W. O., Schrader D., and Che H. H., “The
Teradata SQL3 Multimedia Database Server,”
pp. 68-78, 1996.

[7] Floyd R. W., “Algorithm 97 (Shortest Path),”
Communications of the ACM, vol. 5, no. 6, pp.
345, 1962.

[8] Ford L. R., and Fulkerson D. R., “Flows in
Networks,” Princeton University Press, 1962.

[9] Houtsma M. A. W., Apers P., and Ceri S., “Data
Fragmentation for Parallel Transitive Closure
Strategies,” in Proceedings of the 9th
International Conference on Data Engineering,
pp. 447-456, 1993.

[10] Houtsma M. A. W., Apers P., and Ceri S.,
“Distributed Transitive Closure Computations:
The Disconnection Set Approach,” in
Proceedings of the 16th VLDB Conference, pp.
335-346, 1990.

[11] Houtsma M. A. W., Wilschut A., and Flokstra J.,
“Implementation and Performance Evaluation of
a Parallel Transitive Closure Algorithm on
Prisma/db,” in Proceedings of the 19th VLDB
Conference, 1993.

[12] Huang W., Jing N., and Rundensteincr E., “A
Semi-Materialized View Approach for Route
Maintenance in IVHS,” in Proceedings of the 2nd
ACM Workshop on Geographic Information
Systems, pp. 144-151, 1994.

[13] Huang W., Jing N., and Rundensteincr E.,
“Effective Graph Clustering for Path Queries in
Digital Map Databases,” in Proceedings of the 5th
International Conference on Information and
Knowledge Management, 1996.

[14] Huang W., Jing N., and Rundensteincr E.,
“Hierarchical Optimization of Optimal Path
Finding for Transportation Applications,” in
Proceedings of the 5th International Conference
on Information and Knowledge Management,
1996.

[15] Johnson D. B., “Efficient Algorithms for Shortest
Paths in Sparse Networks,” Journal of the ACM,
vol. 24, no. 1, pp. 1-13, 1977.

[16] Jung S., and Pramanik S., “An Efficient Path
Computation Model for Hierarchically Structured
Topological Road Maps,” IEEE Transaction on
Knowledge and Data Engineering, 2002.

[17] Jung S. and Pramanik S., “HiTi Graph Model of
Topological Road Maps in Navigation Systems,”
Proceedings of the 12th International Conference
on Data Engineering, pp. 76-84, 1996.

[18] Shahabi C., Kolahdouzan M., and Sharifzadeh
M., “A Road Network Embedding Technique for
k-Nearest Neighbor Search in Moving Object
Databases, ” ACMGIS, McLean, VA, USA, 2002.

[19] Shekar S., Kohli A., and Coyle M., “Path
Computation Algorithms for Advanced Traveler
Information Systems,” in Proceedings of the 9th

International Conference on Data Engineering,
pp. 31-39, 1993.

[20] Warshall S., “A Theorem on Boolean Matrices,”
Journal of the ACM, vol. 9, no. 1, pp. 11-12,
1962.

Maytham Safar is currently an
assistant professor at the Computer
Engineering Department at Kuwait
University. He received his PhD
degree in computer science from the
University of Southern California in
2000. He has one book and more

than 12 articles, book chapters, and conference/journal
papers in the areas of databases and multimedia. His
research interests include peer-to-peer networks and
multidimensional databases. He served on many
conferences as a reviewer and/or a scientific program
committee member such as ICDCS 2000, EURASIA-
ICT 2002, ICWI 2002, ICME 2002, ICWI 2003, AINA
2003, ICWI 2004, iiWAS 2004. He also served as a
member on the editorial board or a reviewer for many
journals such as IEEE Transactions on Multimedia
Journal, ACM Computing Reviews, Journal of Digital
Information Management (JDIM), Multimedia Tools
and Applications Journal (MTAP).

