
The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005 301

Integrating Software Traceability for Change
Impact Analysis

Suhaimi Ibrahim1, Norbik Bashah Idris1, Malcolm Munro2, and Aziz Deraman3

1 Centre for Advanced Software Engineering, University of Technology Malaysia, Malaysia
2 Department of Computer Science, University of Durham, United Kingdom

3 Faculty of Technology and Information System, University Kebangsaan Malaysia, Malaysia

Abstract: Software maintenance is recognized as the most costly activity in software engineering with typical estimates of
more than half of the software development cost. The main problem to a maintainer is that seemingly small changes can ripple
throughout the system to cause substantial impact elsewhere. Software traceability and its subsequent impact analysis help
relate the consequences or ripple-effects of a proposed change across different levels of software models. In this paper, we
present a software traceability approach to support change impact analysis of object oriented software. The significant
contribution in our traceability approach can be observed in its ability to integrate the high level with the low level software
models that involve the requirements, test cases, design and code. Our approach allows a direct link between a component at
one level to other components at any levels. It supports the top down and bottom up traceability in response to tracing for the
ripple-effects. We developed a software prototype called Catia to support C++ software, applied it to a case study of an
embedded system and discuss the results.

Keywords: Requirement traceability, impact analysis, concept location, change request.

Received June 17, 2004; accepted October 30, 2004

1. Introduction

Software maintenance is recognized as the most
expensive phase of the software lifecycle, with typical
estimates ranging from 60% to 80% of the total cost
[16]. Many software practitioners generally agree that
making software changes without visibility into their
effects can lead to poor effort estimates, delay in
release schedules, degradation in software design,
unreliable software products, and premature retirement
of the software system [14, 20]. The Year 2000 date-
change phenomenon is a good example of poor insight
into the impacts of change [1].

Software change impact analysis [3], or impact
analysis for short, offers considerable leverage in
understanding and implementing change in the system
because it provides a detailed examination of the
consequences of changes in software. Impact analysis
provides visibility into the potential effects of changes
before the actual changes are implemented. The ability
to identify the change impact or potential effect will
greatly help a maintainer or management to determine
appropriate actions to take with respect to change
decision, schedule plans, cost and resource estimates.

A maintainer generally accomplishes impact
analysis by analyzing the existing dependencies or
relationships among the software components
composing the software system. Two main lines of
approach have been described in the literature for
executing such analyses. The first approach addresses

the problem at the code level, focusing on the analysis
of various dependencies in code, like data and control
dependencies, or function dependencies. The second
approach takes into account some of the software
models in the software life-cycle, such as from the
design model to code model. This approach addresses
impact analysis from a broader perspective.

To implement impact analysis at a broader
perspective is considerably hard to manage as it
involves traceability within and across different
models. Ramesh relates traceability as the ability to
trace the dependent items within a model and the
ability to trace the corresponding items in other models
[18]. Such kind of traceability is called requirement
traceability [18]. Pursuant to this, Turner and Munro
[21] assume that a system traceability implies that all
models of the software are consistently updated.

Research on requirement traceability has been
widely explored since the last two decades that
supports many areas such as reverse engineering,
visualization, reuse, etc. Traceability is fundamental to
the software development and maintenance of large
system. It shows the ability to trace from high level
abstracts to low level abstracts e. g., from a
requirement to its implementation code. The fact about
this traceability model is that if the component
relationships are too coarse, they must be decomposed
to understand complex relationships. On the other
hand, if they are too granular, it is difficult to

302 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

reconstruct them into more recognized, easily
understood software work products [4].

We would like to explore change impact analysis
from which we would be able to capture the impacts of
a proposed change. What we mean by a ‘proposed
change’ is a target component that needs to be
modified as a result of change request. Change request
is initiated by the client or internal development staff
due to the need to make a change in the software
system. It should be translated into some explicit and
more understandable items before a change impact
analysis can be implemented.

This paper is organized as follows. Section 2
presents an overview of our traceability and impact
analysis model. Section 3 discusses our approach to
capture the artefacts change impact and its traceability.
Section 4 discusses a case study and followed by some
results in section 5. Section 6 presents some related
work. Finally, section 7 presents a conclusions and
some glimpses into future work.

2. Traceability Model

Figure 1 reflects the notion of our model to establish
the relationships between artefacts; requirements,
design, test cases and code. The thick arrows represent
direct relationships while thin arrows represent indirect
relationships. Both direct and indirect relationships can
be derived from static and dynamic analysis of
component relationships.

Figure 1. Meta-model of system traceability.

Direct relationships apply actual values of two
components, while indirect relationships apply
intermediate values of relationship e. g., using a
transitive closure. Static relationships are software
traces between components resulting from a study of
static analysis on the source code and other related
models. Dynamic analysis on the other hand, results
from execution of software to find traces such as
executing test cases to find the impacted codes. We
classify our model into two categories; vertical and
horizontal traceability. Vertical traceability refers to
the association of dependent items within a model and
horizontal traceability refers to the association of
corresponding items between different models [7].

2.1. Horizontal Traceability Analysis

We regard a horizontal traceability as a traceability
model of inter-artefacts such that each component (we

call it as an artefact) in one level provides links to
other components at different levels. Figure 2 shows a
traceability from the point of view of requirements. For
example, R1 is a requirement that has direct impacts on
test cases T1 and T2. R1 also has direct impacts on the
design D1, D2, D3 and on the code component C1, C3,
C4. Meanwhile T1 has its own direct impact on D1 and
D1 on C4, C6, etc which reflect the indirect impacts to
R1. The same principle also applies to R2. R1 and R2
might have an impact on the same artefacts e. g., on
T2, D3, C4, etc. Thus, the system impact can be
interpreted as follows:

S = (G, E)
 G = GR  GD  GC  GT
 E = ER  ED  EC  ET

Where
S: Represents a total impact in the system
G: Represents an artefact of type requirements (GR),
 Design (GD), Code (GC) or Test cases (GT).
E: Represents the relationships between artefacts from
 the point of view of an artefact of interest. This is
 identified by ER, ED, EC, and ET.

Figure 2. Traceability from the requirement traceability
perspective.

Each level of horizontal relationship can be derived in
the following perspectives.

1. Requirement traceability

ER  GR x SGR
SGR = GD  GC  GT

A requirement component relationship (ER) is
defined as a relationship between requirement (GR)
with other artefacts (SGR) at different levels.

2. Design traceability

ED  GD x SGD
SGD = GR  GC  GT

A design component relationship (ED) is defined as
a relationship between a design component (GD)
with other artefacts (SGD) at different levels.

3. Test case traceability

ET  GT x SGT
SGT = GR  GD  GC

A test case component relationship (ET) is defined
as a relationship between a test case (GT) with other
artefacts (SGT) at different levels.

Requirement

Test Cases Code

Design

C1 C5

R1

T1

D1

C6
C4

T2

D3
D2

C3

D4T3

R2

D3D1

C4

C4

C2

Integrating Software Traceability for Change Impact Analysis 303

4. Code traceability

EC  GC x SGC
SGC = GR  GD  GT

A code component relationship (EC) is defined as a
relationship between a code component (GC) with
other artefacts (SGC) at different levels.

2.2. Vertical Traceability Analysis

We relate a vertical traceability model as intra-artefacts
of which an artefact provides links to other artefacts
within the same level. In principle, we consider the
following as vertical platforms:

 Requirement level.
 Test case level.
 Design level.
 Code level.
Requirement level here refers to the functional
requirements. While the test case level refers to the test
descriptions that describes all possible situations that
need to be tested to fulfil a functional requirement. In
some systems, there might exist some requirements or
test cases being further decomposed into their sub
components. However, to comply with our model, each
is uniquely identified. To illustrate this phenomenon,
let us consider the following example.

Req #: 5
Code: SRS_REQ-02-05

Description: The driver presses an “Activation” button
to activate the AutoCruise function.
The test cases involved:
1. Test case #: 1
 Code: TCASE-12-01
 Description: Launch the Auto Cruise with speed
 is > 80 km/hr.

1.1. Test case #: 1.1
Code: TCASE-12-01-01
Description: Launch the Auto Cruise while not
on fifth gear.

1.2. Test case #: 1.2
Code: TCASE-12-01-02
Description: Launch the Auto Cruise while on
fifth gear.

2. Test case #: 2
 Code: TCASE-12-02

Description: Display the LED with a warning
message “In Danger” while on auto cruise if the
speed is >= 150 km/h.

We can say that Req # 5 requires three test cases
instead of two as we need to split the group of test
case# 1 into its individual test case # 1.1 and test
case # 1.2.

Design level can be classified into high level design
abstracts (e. g., collaboration design models) and low
level design abstracts (e. g., class diagrams) or a

combination of both. In our implementation, we apply
the low level design abstracts that contain the software
packages and classes with their interactions while the
code level is to include all the methods and their
interactions.

3. Approach

3.1. Hypothesize Traces

We believe that some relationships exist among the
software artefacts in a system. We need to trace and
capture their relationships somehow not only within
the same level but also across different levels before a
change impact analysis can be implemented. The
process of tracing and capturing these artefacts is
called hypothesizing traces.

Hypothesized traces can often be elicited from
system documentation or corresponding models. It is
not important in our approach whether the hypotheses
should be performed manually through the available
documentations and software models or automatically
with the help of a tool. Figure 3 reflects one way of
hypothesizing traces. It can be explained in the
following steps:

1. For each requirement, identify some selected test
cases (RxT).

2. Clarify this knowledge with the available
documentation, if necessary.

3. Run a test scenario (dynamic analysis) for each test
case based on the available test descriptions and
procedures, and capture the ripple effect in terms of
the methods involved (TxM). We developed a tool
support, called CodeMentor to identify the impacted
code by instrumenting the source code prior to its
execution [11].

4. Perform a static analysis on the code to capture the
call graphs of call-invocations (MxM) and other
structural relationships as shown in Table 1. These
structural relationships are explicitly available in
codes that need to be captured because they
represent the program dependencies affected by the
change impact. More discussion on this is found in
the following section.

We experimented using tool supports such as McCabe
[23] and Code Surfer [22] to help capture the program
dependencies. Other manual works as well as the need
for other types of information saw us developing our
own code parser called TokenAnalyzer [10].

3.2. Impact Analysis

Techniques are available to address program
dependencies in code such as call graphs, data flows
and dependence graphs of program slicing [9].
However, the way these techniques are used may vary
depending on the problem being addressed. In our
case, we use the call graphs and dependence graphs to

304 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

capture the program dependencies of method-to-
method and class-to-class relationships. For example,
in method-to-method relationships, we identify the
method interactions derived from the call relationships.
Say, if

 M1  M2
 M4

M1 calls two other methods; M2 and M4. This means
any change made to M2 or M4 would have a potential
effect on M1. So, in our context of impact analysis, we
have to work the other way around by picking up a
callee and finding its corresponding callers.

In another example, if class A is inherited from
class B, then any change made in class B may affect
class A and all its lower subclasses, but not its upper
classes. Table 1 provides information on what type of
relationship, with descriptions and examples of all
possible dependencies in C++ that can contribute to
change impact. Our code parser, TokenAnalyzer was
specially designed and developed to capture all these
dependencies.

Figure 3. Hypothesized and observed traces.

3.3. Traceability Approach

Intrinsically, traceability provides a platform to
implement change impact analysis. We can classify
three techniques of traceability.
1. Traceability via explicit links: Explicit links provide

a technical means of explicit traceability e. g.,
traceability associated with the basic inter-class
relationships in a class diagram modelled using
UML [5].

2. Traceability via name tracing: Name tracing
assumes a consistent naming strategy and is used
when building models. It is performed by searching
items with names similar to the ones in the starting
model [15].

3. Traceability via domain knowledge and concept
location: Domain knowledge and concept location
are normally used by experienced software

developer tracing concepts using his knowledge
about how different items are interrelated [17].

We apply 1 and 3 in our traceability approach. We
obtain the explicit links of component relationships
from the hypothesized traces and establish a set of
matrices to implement the traceability between
components in the system. We use concept location to
establish links between requirements and test cases
with the implementation code. This process requires a
maintainer to understand the domain knowledge of the
system he wants to modify. With this prior knowledge
of a requirement, a maintainer should be able to
decompose it into more explicit items in terms of
classes, methods or variables. These explicit items
represent a requirement or a concept that are more
traceable in the code [17]. With the help of test cases in
hand, our approach via codeMentor should be able to
support a maintainer tracing and locating the ripple-
effects of the defined items in terms of the impacted
methods and classes.

Name tracing is another technique for implementing
traceability. It can be used to locate the corresponding
items of a model with another model e. g., to locate the
occurrences of an item of similar name in a
requirement with the ones that exist in the
implementation code in an effort to establish some
links between requirements and code. However, this
strategy is not practical in our context of study. The
reason is that name tracing cannot be used to search
for structural relationships of program dependencies.

Figure 4 describes the implementation of our total
traceability approach. The horizontal relationships can
occur at the cross boundaries as shown by the thin
solid arrows. The crossed boundary relationship for the
requirements-test cases is shown by RxT, test case-
code by TxM, and so forth. The vertical relationships
can occur at the code Method interactions (MxM) and
design Class interactions (CxC), Package interactions
(PxP) level respectively. The method interactions can
simply be transformed into class interactions and
package interactions by the use of mapping mechanism
based on the fact that a package is made up of one or
more classes and a class is made up of one or more
methods. The thick doted lines represent the total
traceability we need to implement in either top down
or bottom up tracing. By top-down tracing, we mean
we can identify the traceability from the higher level
artefacts down to its lower levels e. g., from a test case
we can identify its associated implementation code.
For bottom-up tracing, it allows us to identify the
impacted artefacts from a lower to a higher level of
artefacts e. g., from a method we can identify its
impacted test cases and requirements.

5. Satisfy goal

 2. Clarify
 knowledge

1. Select
 test cases

 3. Observe
 traces

Code

 4. Generate traces

Requirement

Documentations

DesignTest Cases

4. Generate traces

Integrating Software Traceability for Change Impact Analysis 305

Table 1. Structural relationships in C++.

Relationships Definitions Examples

Aggregation

A class contains a data
members of pointer
(reference) to some other
class.
-----Impact -------
A  B

class B {};
class A
{
 B * test
};

Call

An operation (method) of
the first class calls an
operation of the second
one.
-----Impact -------
A  B

class B
{void f ()};
class A
{ void method ()
 { B test;
 test.f ();}
 }

Composition

A class contains a data
member of some other
class type.
-----Impact -------
A  B

class B {};
class A
{
 B test;
}

Create

Some operation of the first
class creates an object of
the second class
(instantiation) .
-----Impact -------
A  B

class B {};
class A
{
B *s = new B ();
}

Inheritance

Inheritance relation among
classes.
-----Impact -------
A  B

class B {};
class A : public B

Association

A class contains an
operation with formal
parameters that have some
class type.
-----Impact -------
A  B

class B{};
class A
{
void m1 (B* par = 0);

}

Friendship

Dependency from two
classes.
-----Impact -------
B  A

class B{};
class A
{
 friend class B;
}

Figure 4. System artefacts and their links.

4. CASE Study: OBA

To implement our model, we applied it to a case study
of software project, called the On-Board Auto Cruise
(OBA). OBA is actually an embedded software system
with LOC of about 4K, developed as a term project in
group-based post-graduate students of computer
science at the Centre for Advanced Software

Engineering, University of Technology Malaysia. It
was built with a complete project management and
documentations adhering to DOD standards, MIL 498
[8]. The software project was built based on the UML
specification and design standards [5] with software
written in C++. The objective of our case study is to
realize a traceability and impact analysis between the
software components that include the requirements,
design, code and test cases.

5. Results

We identified from the OBA project, 46 requirements,
34 test cases, 12 packages, 23 classes and 80 methods.
Our prototype, Configuration artifact traceability for
impact analysis (Catia) assumes that a user change
request has already been translated and expressed in
terms of the acceptable components i. e., requirements,
classes, methods or test cases. Catia was designed to
manage the impact of one type of artifacts at a time.
The system works such that given an artifact as a
primary impact, Catia can determine its impacts on
other artifacts (secondary artifacts) in either top-down
or bottom-up tracing.

Listing 1 and Listing 2 show the output of our
prototype. In Listing 1, the user chose a requirement by
inputting req12 as a primary impact and chose classes
and test cases as his secondary impact of interest.
Catia then produced a list of impacted classes and test
cases for the req12. This snapshot output reflects the
top-down traceability as the result was derived from a
requirement down to its low level software
components.

Listing 1. Snapshot of top-down traceability.

 (TxC),(TxP)

(MxC)

Design
(CxC),(PxP)

(RxM)

Top
Down

(TxM)

(RxT) (RxC)Bottom
Up

Requirements

Test cases

Code
(MxM)

306 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

Listing 2 shows a snapshot of a bottom-up
traceability when the user presented mtd10 and mtd20
as his primary impact and would like to view the
impacted code in terms of methods, classes, test cases
and requirements. Catia produced a list of the
impacted artefacts for each mtd10 and mtd20. Taking
mtd10 for example, it causes impact to methods
EngineIsOn(), InitManager() and KeypadHandler(). In
terms of the impacted classes, it affected the classes
Cignition and Ckeypad, and so forth.

Listing 2. Snapshot of bottom-up traceability.

Listing 3 shows the summary of the component
relationships of OBA system. In the first part of the
summary, Catia shows the number of artefacts of each
component type, while in the second part, it shows a
total count of each type of program dependencies. The
total count of all program dependencies was detected
to be 64.

6. Related Work

We need to make clear that a software traceability and
change impact are two different issues in literature and
research undertaking, although both are related to one
another. In change impact analysis, efforts and tools
are more focused on code rather than software system.
These include OOTME [12], CHAT [13] and OMEGA
[6]. Object-Oriented Test Model Model Environment
(OOTME) provides a graphical representation of
object oriented system that supports program
relationships such as inheritance, control structures,
uses, aggregation and object state behavior. OOTME is
suitable to support regression testing across functions
and objects.

Change impact Analysis Tool (CHAT), an
algorithmic approach to measure the ripple-effects of
proposed changes is based on object oriented data
dependence graph that integrates both intra-methods
and inter-methods. OMEGA, an integrated
environment tool for C++ program maintenance was
developed to handle the message passing, class and
declaration dependencies in a model called C++DG.
The use of program slicing leads to recursive analysis
of the ripple effects caused by code modification.
McCabe [23] supports impacts at testing scenarios
using call graphs of method-calls-method relationships,
while, Code Surfer [22] provides an impressive impact
analysis at the code level based on static analysis. The
latter also allows a user to manipulate artefacts at any
statements.

As the above mentioned approaches and tools are
only limited to code model, we are not able to
appreciate the real change impact as viewed from the
system perspective. To manage a change impact
analysis at a broader perspective, we have to associate
them with traceability approach that requires a rich set
of coarse and fine grained granularity relationships
within and across different level of software models.
Sneed’s work [12] relates to a traceability approach by
constructing a repository to handle maintenance tasks
that links the code to testing and concept models. His
concept model seems to be too generalized that
includes the requirements, business rules, reports, use
cases, service functions and data objects. He developed
a model and a tool called GEOS to integrate all three
software entities. The tool is used to select the
impacted entities and pick up their sizes and
complexities for effort estimation.

Listing 3. Summary of system relationships.

Bianchi et al. [2] introduces a traceability model to
support impact analysis in object-oriented

Integrating Software Traceability for Change Impact Analysis 307

environment. However, both [2, 19] do not involve a
direct link between requirements and test cases to the
code. Yet their work considers classes as the smallest
artefacts of software components. Lindvall and
Sandahl [15] present a traceability approach based on
domain knowledge to collect and analyse software
change metrics related to impact analysis for resource
estimates. However, their work does not consider
automated concept location. They relate some change
requests to the impacted code in terms of classes but no
requirements and test cases involved.

Our work differs from the above in that we attempt
to integrate the software components that include the
requirements, test cases, design and code. Our model
and approach allow a component at one level to
directly link to other components of any levels.
Another significant achievement can be seen in its
ability to support top down and bottom up tracing from
a component perspective. This allows a maintainer to
identify all the potential effects before a decision can
be made. Our traceability integration manages to link
the high level software components down to the
implementation code with methods being considered as
our smallest artefacts. This allows potential effects to
become more focused.

7. Conclusions and Future Work

We apply the combination of both dynamic and static
analysis techniques to integrate requirements to the
low level components. Dynamic analysis is used to
link the requirements and test cases to the
implementation code, while static analysis is used to
establish relationships between components within the
code and design models. Our approach of traceability
and impact analysis contributes some knowledge to the
integration of both top-down and bottom-up impacts of
system artefacts. This strategy allows provision for
efficiency as the impacted artefacts can be directly
accessed from an artefact perspective.

It seems that our approach would be more
impressive if we could extend our traceability
approach to include the detailed statements such as
variables as our smallest artefacts. However, we have
to bear in mind that considering those options would
create large relationships among the software artefacts
that may degrade the system performance. In large
system, the maintainers are normally interested to
know which classes or methods that need to be
modified rather than the detailed statements of the code
[15]. They would then intuitively recognize those
detailed parts as they explore further.

Currently, our prototype uses text based exploration
to describe the impacts. The application can be turned
into GUI, which will be our future work. Last but not
least, with all these basic infrastructures we provide, it
can be used as a basis to measure impacts as
measurement is another important issue that needs to

be addressed in software maintenance. We reserve this
objective for future work.

References

[1] Arnold R. S., “The Year 2000 Problem: Impact,
Strategies and Tools,” Technical Report,
Software Evolution Technology, 1996.

[2] Bianchi A., Fasolino A. R., and Visaggio G., “An
Exploratory Case Study of the Maintenance
Effectiveness of Traceability Models,” IWPC, pp.
149-158, 2000.

[3] Bohner S. A. and Arnold R. S., “An Introduction
to Software Change Impact Analysis,” IEEE CS
Press, Los Alamitos, CA, pp. 1-26, 1996.

[4] Bohner S. A. and Arnold R. S., “Software
Change Impact Analysis for Design Evolution,”
in Proceedings of the 8th International
Conference on Software Maintenance and
Reengineering, IEEE CS Press, Los Alamitos,
CA, pp. 292-301, 1991.

[5] Booch G., Jacobson I., and Rumbaugh J., UML
Distilled Applying the Standard Object Modeling
Language, Addison-Wesley, 1997.

[6] Chen X., Tsai W. T., and Huang H., “Omega: An
Integrated Environment for C++ Program
Maintenance,” in Proceedings of International
Conference on Software Maintenance, IEEE
Computer Society, pp. 114-123, 1996.

[7] Gotel O. and Finkelstein A., “An Analysis of the
Requirements Traceability Problem,” in
Proceedings of the First International
Conference on Requirements Engineering,
Colorado, pp. 94-101, 1994.

[8] Harmonization Working Group (HWG),
incorporation with USA Department of Defense
(DOD), Overview and Tailoring Guidebook on
MIL-STD-498, Arlington, 1996.

[9] Horwitz S., Reps T., and Binkley D.,
“Interprocedural Slicing Using Dependence
Graphs,” ACM Transactions on Programming
Languages and Systems, vol. 12, no. 1, pp. 26-60,
1990.

[10] Ibrahim S. and Mohamad R. N., “Code Parser for
C++,” Technical Report, Technical Report of
Software Engineering, Malaysian University of
Technology, August 2004.

[11] Ibrahim S., Idris N. B., and Deraman A., “Case
Study: Reconnaissance Techniques to Support
Feature Location Using RECON2,” Asia-Pacific
Software Engineering Conference, IEEE, pp.
371-378, December 2003.

[12] Kung D., Gao J., Hsia P., and Wen F., “Change
Impact Identification in Object-Oriented
Software Maintenance,” in Proceedings of the
International Conference on Software
Maintenance, pp. 202-211, 1994.

308 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

[13] Lee M., “Algorithmic Analysis of the Impacts of
Changes to Object-Oriented Software,” in
Proceedings of the 34th International Conference
on Object-Oriented Languages and Systems, pp.
61-70, 2000.

[14] Lehman M. M., “Software Evolution,”
Encyclopedia of Software Engineering, pp. 1202-
1208, 1994.

[15] Lindvall M. and Sandahl K., “Traceability
Aspects of Impacts Analysis in Object-Oriented
System,” Journal of Software Maintenance
Research and Practice, vol. 10, pp. 37-57, 1998.

[16] Pressman R. S., Software Engineering: A
Practitioner’s Approach, 4th Edition, McGraw
Hill, New York, 1997.

[17] Rajlich V. and Wilde N., “The Role of Concepts
in Program Comprehension,” in Proceedings of
10th International Workshop on Program
Comprehension, IEEE, pp. 271-278, 2002.

[18] Ramesh B., “Requirements Traceability: Theory
and Practice,” Annuals of Software Engineering,
vol. 3, pp. 397-415, 1997.

[19] Sneed H. M., “Impact Analysis of Maintenance
Tasks for a Distributed Object-Oriented System,”
in Proceedings of Software Maintenance, IEEE,
pp. 180-189, 2001.

[20] Swanson E. R. and Beath C., Maintaining
Information Systems Organizations, John Wiley
& Sons, New York, 1987.

[21] Turver R. J. and Munro M., “An Early Impact
Analysis Technique for Software Maintenance,”
Journal of Software Maintenance: Research and
Practice, vol. 6, no. 1, pp. 35-52, 1994.

[22] www.gramatech.com/products/codesurfer/index.
html, 2004.

[23] www.mccabe.com, 2004.

Suhaimi Ibrahim is a senior
lecturer in software engineering at
the Centre for Advanced Software
Engineering, University of
Technology Malaysia. He is
involved in several short term and
National IRPA research projects on

ICT and now pursuing his study for a PhD programme
working on research related to software impact
analysis. His research interests include reverse
engineering, change impact analysis, requirement
traceability, and software testing and software quality.

Norbik Bashah Idris is a professor
and director of the Centre for
Advanced Software Engineering at
University of Technology Malaysia
(KL Campus). He has helped to
spearhead and establish real-time
software engineering in Malaysia,

working with multinationals and local industry

especially on propagating software process quality. His
research interests include real time systems, software
engineering, and software maintenance.

Malcolm Munro is a professor of
software engineering at the Durham
University, UK. He has led a
number of EPSRC funded projects
including Release (Reconstruction
of Legacy Systems), Visualising
Software in a Virtual Reality

Environment (VVSRE), Guided Slicing and Targeted
Transformation (GUSTT), and distributed and dynamic
visualisation generation (Jigsaw). He is also involved
in research in Software as a Service (SaaS) and the
application of Bayesian networks to software testing
and program comprehension. His research interests
include software visualisation, software maintenance
and evolution, and program comprehension.

Aziz Deraman is a professor of
software engineering and currently
he is the dean of the Faculty of
Information Science and Technology
(FTSM), University Kebangsaan
Malaysia. He also affiliated is
various organizations and industries

as an adviser, panel as well as a resident consultant in
information technology. He maintains a diverse
research interest including IT strategic planning,
software process, and management and community
computing.

