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Abstract: Software maintenance is recognized as the most costly activity in software engineering with typical estimates of 
more than half of the software development cost. The main problem to a maintainer is that seemingly small changes can ripple 
throughout the system to cause substantial impact elsewhere. Software traceability and its subsequent impact analysis help
relate the consequences or ripple-effects of a proposed change across different levels of software models. In this paper, we
present a software traceability approach to support change impact analysis of object oriented software. The significant 
contribution in our traceability approach can be observed in its ability to integrate the high level with the low level software 
models that involve the requirements, test cases, design and code. Our approach allows a direct link between a component at 
one level to other components at any levels. It supports the top down and bottom up traceability in response to tracing for the 
ripple-effects. We developed a software prototype called Catia to support C++ software, applied it to a case study of an 
embedded system  and discuss the  results.
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1. Introduction

Software maintenance is recognized as the most 
expensive phase of the software lifecycle, with typical 
estimates ranging from 60% to 80% of the total cost 
[16].  Many software practitioners generally agree that 
making software changes without visibility into their 
effects can lead to poor effort estimates, delay in 
release schedules, degradation in software design, 
unreliable software products, and premature retirement 
of the software system [14, 20].  The Year 2000 date-
change phenomenon is a good example of poor insight 
into the impacts of change [1].

Software change impact analysis [3], or impact 
analysis for short, offers considerable leverage in 
understanding and implementing change in the system 
because it provides a detailed examination of the 
consequences of changes in software. Impact analysis 
provides visibility into the potential effects of changes 
before the actual changes are implemented. The ability 
to identify the change impact or potential effect will 
greatly help a maintainer or management to determine 
appropriate actions to take with respect to change 
decision, schedule plans, cost and resource estimates.   

A maintainer generally accomplishes impact 
analysis by analyzing the existing dependencies or 
relationships among the software components
composing the software system. Two main lines of 
approach have been described in the literature for 
executing such analyses. The first approach addresses 

the problem at the code level, focusing on the analysis 
of various dependencies in code, like data and control 
dependencies, or function dependencies. The second 
approach takes into account some of the software 
models in the software life-cycle, such as from the 
design model to code model. This approach addresses 
impact analysis from a broader perspective. 

To implement impact analysis at a broader 
perspective is considerably hard to manage as it 
involves traceability within and across different 
models. Ramesh relates traceability as the ability to 
trace the dependent items within a model and the 
ability to trace the corresponding items in other models 
[18]. Such kind of traceability is called requirement 
traceability [18]. Pursuant to this, Turner and Munro 
[21] assume that a system traceability implies that all 
models of the software are consistently updated. 

Research on requirement traceability has been 
widely explored since the last two decades that 
supports many areas such as reverse engineering, 
visualization, reuse, etc. Traceability is fundamental to 
the software development and maintenance of large 
system. It shows the ability to trace from high level 
abstracts to low level abstracts e. g., from a 
requirement to its implementation code. The fact about 
this traceability model is that if the component 
relationships are too coarse, they must be decomposed 
to understand complex relationships. On the other 
hand, if they are too granular, it is difficult to 
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reconstruct them into more recognized, easily 
understood software work products [4].

We would like to explore change impact analysis 
from which we would be able to capture the impacts of 
a proposed change. What we mean by a ‘proposed 
change’ is a target component that needs to be 
modified as a result of change request. Change request 
is initiated by the client or internal development staff 
due to the need to make a change in the software 
system. It should be translated into some explicit and 
more understandable items before a change impact 
analysis can be implemented.

This paper is organized as follows. Section 2 
presents an overview of our traceability and impact 
analysis model. Section 3 discusses our approach to 
capture the artefacts change impact and its traceability. 
Section 4 discusses a case study and followed by some
results in section 5. Section 6 presents some related 
work. Finally, section 7 presents a conclusions and 
some glimpses into future work.

2. Traceability Model 

Figure 1 reflects the notion of our model to establish 
the relationships between artefacts; requirements, 
design, test cases and code. The thick arrows represent 
direct relationships while thin arrows represent indirect 
relationships. Both direct and indirect relationships can 
be derived from static and dynamic analysis of 
component relationships. 

Figure 1. Meta-model of system traceability.

Direct relationships apply actual values of two 
components, while indirect relationships apply
intermediate values of relationship e. g., using a 
transitive closure. Static relationships are software 
traces between components resulting from a study of 
static analysis on the source code and other related 
models.  Dynamic analysis on the other hand, results 
from execution of software to find traces such as 
executing test cases to find the impacted codes. We 
classify our model into two categories; vertical and 
horizontal traceability. Vertical traceability refers to 
the association of dependent items within a model and 
horizontal traceability refers to the association of 
corresponding items between different models [7].

2.1. Horizontal Traceability Analysis

We regard a horizontal traceability as a traceability 
model of inter-artefacts such that each component (we 

call it as an artefact) in one level provides links to 
other components at different levels.  Figure 2 shows a 
traceability from the point of view of requirements. For 
example, R1 is a requirement that has direct impacts on 
test cases T1 and T2. R1 also has direct impacts on the 
design D1, D2, D3 and on the code component C1, C3, 
C4. Meanwhile T1 has its own direct impact on D1 and 
D1 on C4, C6, etc which reflect the indirect impacts to 
R1. The same principle also applies to R2. R1 and R2 
might have an impact on the same artefacts e. g., on 
T2, D3, C4, etc. Thus, the system impact can be 
interpreted as follows:

S = (G, E)
       G = GR  GD  GC  GT
      E = ER  ED  EC  ET

Where 
S: Represents a total impact in the system
G: Represents an artefact of type requirements (GR),   
      Design (GD), Code (GC) or Test cases (GT).
E: Represents the relationships between artefacts from     
     the point of view of an artefact of interest. This is 
     identified by ER, ED, EC, and ET.

Figure 2. Traceability from the requirement traceability 
perspective.

Each level of horizontal relationship can be derived in
the following perspectives.

1. Requirement traceability

ER  GR x SGR
SGR = GD  GC  GT

A requirement component relationship (ER) is 
defined as a relationship between requirement (GR) 
with other artefacts (SGR) at different levels.

2. Design traceability

ED  GD x SGD
SGD = GR  GC  GT

A design component relationship (ED) is defined as 
a relationship between a design component (GD) 
with other artefacts (SGD) at different levels.   

3. Test case traceability

ET  GT x SGT
SGT = GR  GD  GC

A test case component relationship (ET) is defined 
as a relationship between a test case (GT) with other 
artefacts (SGT) at different levels. 
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4. Code traceability

EC  GC x SGC
SGC = GR  GD  GT

A code component relationship (EC) is defined as a 
relationship between a code component (GC) with
other artefacts (SGC) at different levels.

2.2. Vertical Traceability Analysis 

We relate a vertical traceability model as intra-artefacts 
of which an artefact provides links to other artefacts 
within the same level. In principle, we consider the 
following as vertical platforms:

 Requirement level.
 Test case level.
 Design level.
 Code level.
Requirement level here refers to the functional 
requirements. While the test case level refers to the test 
descriptions that describes all possible situations that 
need to be tested to fulfil a functional requirement. In 
some systems, there might exist some requirements or 
test cases being further decomposed into their sub 
components. However, to comply with our model, each 
is uniquely identified.  To illustrate this phenomenon, 
let us consider the following example.

Req #: 5 
Code: SRS_REQ-02-05

Description: The driver presses an “Activation” button 
to activate the AutoCruise function. 
The test cases involved:
1. Test case #: 1 
     Code: TCASE-12-01
     Description: Launch the Auto Cruise with speed
      is > 80 km/hr.

1.1. Test case #: 1.1
Code: TCASE-12-01-01
Description: Launch the Auto Cruise while not 
on fifth gear. 

1.2. Test case #: 1.2
Code: TCASE-12-01-02
Description: Launch the Auto Cruise while on 
fifth gear. 

2. Test case #: 2
      Code: TCASE-12-02

Description: Display the LED with a warning 
message “In Danger” while on auto cruise if the
speed is >= 150 km/h.

We can say that Req # 5 requires three test cases 
instead of two as we need to split the group of test 
case# 1 into its individual  test case # 1.1 and test
case # 1.2.  

Design level can be classified into high level design 
abstracts (e. g., collaboration design models) and low 
level design abstracts (e. g., class diagrams) or a 

combination of both. In our implementation, we apply 
the low level design abstracts that contain the software 
packages and classes with their interactions while the 
code level is to include all the methods and their 
interactions.  

3. Approach

3.1. Hypothesize Traces

We believe that some relationships exist among the 
software artefacts in a system. We need to trace and 
capture their relationships somehow not only within 
the same level but also across different levels before a 
change impact analysis can be implemented. The 
process of tracing and capturing these artefacts is 
called hypothesizing traces. 

Hypothesized traces can often be elicited from 
system documentation or corresponding models. It is 
not important in our approach whether the hypotheses 
should be performed manually through the available 
documentations and software models or automatically
with the help of a tool. Figure 3 reflects one way of 
hypothesizing traces. It can be explained in the 
following steps:

1. For each requirement, identify some selected test 
cases (RxT).

2. Clarify this knowledge with the available 
documentation, if necessary.

3. Run a test scenario (dynamic analysis) for each test 
case based on the available test descriptions and 
procedures, and capture the ripple effect in terms of 
the methods involved (TxM). We developed a tool
support, called CodeMentor to identify the impacted 
code by instrumenting the source code prior to its 
execution [11].  

4. Perform a static analysis on the code to capture the 
call graphs of call-invocations (MxM) and other 
structural relationships as shown in Table 1. These 
structural relationships are explicitly available in 
codes that need to be captured because they 
represent the program dependencies affected by the 
change impact. More discussion on this is found in 
the following section. 

We experimented using tool supports such as McCabe 
[23] and Code Surfer [22] to help capture the program 
dependencies. Other manual works as well as the need 
for other types of information saw us developing our 
own code parser called TokenAnalyzer [10].

3.2. Impact Analysis 

Techniques are available to address program 
dependencies in code such as call graphs, data flows 
and dependence graphs of program slicing [9]. 
However, the way these techniques are used may vary 
depending on the problem being addressed. In our 
case, we use the call graphs and dependence graphs to 
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capture the program dependencies of method-to-
method and class-to-class relationships. For example, 
in method-to-method relationships, we identify the
method interactions derived from the call relationships.  
Say, if

      M1  M2
 M4

M1 calls two other methods; M2 and M4. This means 
any change made to M2 or M4 would have a potential 
effect on M1. So, in our context of impact analysis, we 
have to work the other way around by picking up a 
callee and finding its corresponding callers.

In another example, if class A is inherited from 
class B, then any change made in class B may affect 
class A and all its lower subclasses, but not its upper 
classes. Table 1 provides information on what type of 
relationship, with descriptions and examples of all 
possible dependencies in C++ that can contribute to 
change impact. Our code parser, TokenAnalyzer was 
specially designed and developed to capture all these 
dependencies. 

Figure 3. Hypothesized and observed traces.

3.3. Traceability Approach

Intrinsically, traceability provides a platform to 
implement change impact analysis. We can classify 
three techniques of traceability. 
1. Traceability via explicit links: Explicit links provide 

a technical means of explicit traceability e. g.,
traceability associated with the basic inter-class 
relationships in a class diagram modelled using 
UML [5].

2. Traceability via name tracing: Name tracing
assumes a consistent naming strategy and is used 
when building models. It is performed by searching 
items with names similar to the ones in the starting 
model [15].

3. Traceability via domain knowledge and concept 
location: Domain knowledge and concept location 
are normally used by experienced software 

developer tracing concepts using his knowledge 
about how different items are interrelated [17].

We apply 1 and 3 in our traceability approach. We 
obtain the explicit links of component relationships 
from the hypothesized traces and establish a set of 
matrices to implement the traceability between 
components in the system. We use concept location to 
establish links between requirements and test cases 
with the implementation code. This process requires a 
maintainer to understand the domain knowledge of the 
system he wants to modify. With this prior knowledge 
of a requirement, a maintainer should be able to 
decompose it into more explicit items in terms of 
classes, methods or variables. These explicit items 
represent a requirement or a concept that are more 
traceable in the code [17]. With the help of test cases in 
hand, our approach via codeMentor should be able to 
support a maintainer tracing and locating the ripple-
effects of the defined items in terms of the impacted 
methods and classes.

Name tracing is another technique for implementing 
traceability. It can be used to locate the corresponding 
items of a model with another model e. g., to locate the 
occurrences of an item of similar name in a 
requirement with the ones that exist in the 
implementation code in an effort to establish some 
links between requirements and code. However, this 
strategy is not practical in our context of study. The 
reason is that name tracing cannot be used to search 
for structural relationships of program dependencies.  

Figure 4 describes the implementation of our total 
traceability approach. The horizontal relationships can 
occur at the cross boundaries as shown by the thin 
solid arrows. The crossed boundary relationship for the 
requirements-test cases is shown by RxT, test case-
code by TxM, and so forth. The vertical relationships 
can occur at the code Method interactions (MxM) and 
design Class interactions (CxC), Package interactions
(PxP) level respectively. The method interactions can 
simply be transformed into class interactions and 
package interactions by the use of mapping mechanism 
based on the fact that a package is made up of one or 
more classes and a class is made up of one or more 
methods. The thick doted lines represent the total 
traceability we need to implement in either top down 
or bottom up tracing. By top-down tracing, we mean 
we can identify the traceability from the higher level 
artefacts down to its lower levels e. g., from a test case 
we can identify its associated implementation code. 
For bottom-up tracing, it allows us to identify the 
impacted artefacts from a lower to a higher level of 
artefacts e. g., from a method we can identify its 
impacted test cases and requirements.

5. Satisfy goal

   
                   

                         2. Clarify
                 knowledge

1. Select   
    test cases

      3. Observe
          traces

Code

          4. Generate  traces

Requirement

Documentations

DesignTest Cases
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Table 1. Structural relationships in C++.

Relationships Definitions Examples

Aggregation

A class contains a data 
members of pointer 
(reference) to some other 
class.
-----Impact -------
A  B

class B {};
class A 
{
   B * test
};

Call

An operation (method) of 
the first class calls an 
operation of the second 
one.
-----Impact -------
A  B

class B 
{void f ()};
class A
{ void method ()
  { B test;
    test.f ();}
 }

Composition

A class contains a data 
member of some other 
class type.
-----Impact -------
A  B

class B {};
class A
{
  B test;
}

Create

Some operation of the first 
class creates an object of 
the second class 
(instantiation) .
-----Impact -------
A  B

class B {};
class A
{
B *s = new B ();
}

Inheritance

Inheritance relation among 
classes.
-----Impact -------
A  B

class B {};
class A : public B

Association

A class contains an 
operation with formal 
parameters that have some 
class type.
-----Impact -------
A  B

class B{};
class A
{
void m1 (B* par = 0);

}

Friendship

Dependency from two 
classes.
-----Impact -------
B  A

class B{};
class A
{
  friend class B;
}

Figure 4. System artefacts and their links.

4. CASE Study: OBA

To implement our model, we applied it to a case study 
of software project, called the On-Board Auto Cruise 
(OBA). OBA is actually an embedded software system 
with LOC of about 4K, developed as a term project in
group-based post-graduate students of computer 
science at the Centre for Advanced Software 

Engineering, University of Technology Malaysia. It 
was built with a complete project management and 
documentations adhering to DOD standards, MIL 498
[8]. The software project was built based on the UML 
specification and design standards [5] with software 
written in C++. The objective of our case study is to 
realize a traceability and impact analysis between the 
software components that include the requirements, 
design, code and test cases. 

5. Results

We identified from the OBA project, 46 requirements, 
34 test cases, 12 packages, 23 classes and 80 methods. 
Our prototype, Configuration artifact traceability for 
impact analysis (Catia) assumes that a user change 
request has already been translated and expressed in 
terms of the acceptable components i. e., requirements, 
classes, methods or test cases. Catia was designed to 
manage the impact of one type of artifacts at a time. 
The system works such that given an artifact as a 
primary impact, Catia can determine its impacts on 
other artifacts (secondary artifacts) in either top-down 
or bottom-up tracing.   

Listing 1 and Listing 2 show the output of our 
prototype. In Listing 1, the user chose a requirement by 
inputting req12 as a primary impact and chose classes
and test cases as his secondary impact of interest. 
Catia then produced a list of impacted classes and test 
cases for the req12. This snapshot output reflects the 
top-down traceability as the result was derived from a 
requirement down to its low level software 
components.

Listing 1. Snapshot of top-down traceability.

  (TxC),(TxP)

(MxC)

Design
(CxC),(PxP)

(RxM)

Top
Down

(TxM)

(RxT) (RxC)Bottom
Up

Requirements

Test cases

Code
(MxM)
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Listing 2 shows a snapshot of a bottom-up 
traceability when the user presented mtd10 and mtd20
as his primary impact and would like to view the 
impacted code in terms of methods, classes, test cases 
and requirements. Catia produced a list of the 
impacted artefacts for each mtd10 and mtd20. Taking 
mtd10 for example, it causes impact to methods 
EngineIsOn(), InitManager() and KeypadHandler(). In 
terms of the impacted classes, it affected the classes 
Cignition and Ckeypad, and so forth.

Listing 2. Snapshot of bottom-up traceability.

Listing 3 shows the summary of the component 
relationships of OBA system. In the first part of the 
summary, Catia shows the number of artefacts of each 
component type, while in the second part, it shows a 
total count of each type of program dependencies. The 
total count of all program dependencies was detected 
to be 64.

6. Related Work

We need to make clear that a software traceability and 
change impact are two different issues in literature and 
research undertaking, although both are related to one 
another. In change impact analysis, efforts and tools 
are more focused on code rather than software system. 
These include OOTME [12], CHAT [13] and OMEGA 
[6]. Object-Oriented Test Model Model Environment 
(OOTME) provides a graphical representation of 
object oriented system that supports program 
relationships such as inheritance, control structures, 
uses, aggregation and object state behavior. OOTME is
suitable to support regression testing across functions
and objects. 

Change impact Analysis Tool (CHAT), an
algorithmic approach to measure the ripple-effects of 
proposed changes is based on object oriented data 
dependence graph that integrates both intra-methods 
and inter-methods. OMEGA, an integrated 
environment tool for C++ program maintenance was 
developed to handle the message passing, class and 
declaration dependencies in a model called C++DG. 
The use of program slicing leads to recursive analysis 
of the ripple effects caused by code modification. 
McCabe [23] supports impacts at testing scenarios 
using call graphs of method-calls-method relationships, 
while, Code Surfer [22] provides an impressive impact 
analysis at the code level based on static analysis. The 
latter also allows a user to manipulate artefacts at any 
statements.  

As the above mentioned approaches and tools are 
only limited to code model, we are not able to 
appreciate the real change impact as viewed from the 
system perspective. To manage a change impact 
analysis at a broader perspective, we have to associate 
them with traceability approach that requires a rich set 
of coarse and fine grained granularity relationships 
within and across different level of software models.
Sneed’s work [12] relates to a traceability approach by 
constructing a repository to handle maintenance tasks 
that links the code to testing and concept models. His 
concept model seems to be too generalized that 
includes the requirements, business rules, reports, use 
cases, service functions and data objects. He developed 
a model and a tool called GEOS to integrate all three 
software entities. The tool is used to select the 
impacted entities and pick up their sizes and 
complexities for effort estimation. 

Listing 3. Summary of system relationships.

Bianchi et al. [2] introduces a traceability model to 
support impact analysis in object-oriented 
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environment. However, both [2, 19] do not involve a 
direct link between requirements and test cases to the 
code. Yet their work considers classes as the smallest 
artefacts of software components. Lindvall and 
Sandahl [15] present a traceability approach based on 
domain knowledge to collect and analyse software 
change metrics related to impact analysis for resource 
estimates. However, their work does not consider
automated concept location. They relate some change 
requests to the impacted code in terms of classes but no 
requirements and test cases involved. 

Our work differs from the above in that we attempt 
to integrate the software components that include the 
requirements, test cases, design and code. Our model 
and approach allow a component at one level to 
directly link to other components of any levels. 
Another significant achievement can be seen in its 
ability to support top down and bottom up tracing from 
a component perspective. This allows a maintainer to 
identify all the potential effects before a decision can 
be made. Our traceability integration manages to link 
the high level software components down to the 
implementation code with methods being considered as 
our smallest artefacts. This allows potential effects to 
become more focused.

7. Conclusions and Future Work

We apply the combination of both dynamic and static 
analysis techniques to integrate requirements to the 
low level components. Dynamic analysis is used to 
link the requirements and test cases to the 
implementation code, while static analysis is used to 
establish relationships between components within the 
code and design models. Our approach of traceability 
and impact analysis contributes some knowledge to the 
integration of both top-down and bottom-up impacts of 
system artefacts. This strategy allows provision for 
efficiency as the impacted artefacts can be directly 
accessed from an artefact perspective. 

It seems that our approach would be more 
impressive if we could extend our traceability 
approach to include the detailed statements such as 
variables as our smallest artefacts. However, we have 
to bear in mind that considering those options would 
create large relationships among the software artefacts 
that may degrade the system performance. In large 
system, the maintainers are normally interested to 
know which classes or methods that need to be 
modified rather than the detailed statements of the code 
[15]. They would then intuitively recognize those 
detailed parts as they explore further.  

Currently, our prototype uses text based exploration 
to describe the impacts. The application can be turned 
into GUI, which will be our future work. Last but not 
least, with all these basic infrastructures we provide, it 
can be used as a basis to measure impacts as 
measurement is another important issue that needs to 

be addressed in software maintenance.  We reserve this 
objective for future work.
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