
The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005 309

Design and Evaluation of an Input Buffered
 Packet Switch

Azeddine Bilami1, Mustapha Lalam2, Mehammed Daoui2, and Mohamed Benmohammed3

1 Department of Computing Science, University of Batna, Algeria
2 Department of Computer Science, University of Tizi Ouzou, Algeria

3 Department of Computer Science, University of Constantine, Algeria

Abstract: Many architectures of internet routers, ATM and ethernet switches have been proposed and analysed in literature.
Theoretically reliable and valid solutions have been developed to achieve high performances but a lot of them are not feasible
in practice for commercial and technological reasons. Few papers develop the implementation and simulation aspects. The
objective of this paper is the design of a packet switch with a minimum cost and hardware complexity. We propose an input-
queuing architecture using a multistage interconnection network and a simple cell selection policy implemented by hardware.
The switch is described and simulated using a VHDL language. Performances in terms of throughput and cell loss are
evaluated.

Keywords: Routing, switch, multistage interconnection network, Benes network, self routing, VHDL.

Received June 23, 2004; accepted October 30, 2004

1. Introduction
A major challenge concerned to high-speed switching
is related today to switch design that requires the best
possible compromise between ease of implementation
and goodness of performances.

Switch functionality is twofold:

• Managing packet buffering while selecting packets
to transmit each time to avoid contentions and cell
loss.

• Routing packets from their incoming ports to their
destination ports.

To avoid contentions and cell loss, the incoming
packets are stored in buffers. These buffers can be in
inputs, in outputs, in inputs and in outputs or shared by
inputs and outputs. So, a choice that a designer may
have is where to place the buffers. Although, a lot of
existing switches use the shared buffers technique, it
has been shown through several publications that the
method using input buffers is the only one which can
constantly answer to the increasing needs of large
switches and to the high rates of present and future
communication lines. With such solution, the cost of
the switch remains acceptable and the management of
the queues in the buffers less complex. Nevertheless, it
introduces the well known problem of the Head Of
Line (HOL) blocking which is usually solved by means
of scheduling algorithms. Appropriate scheduling
algorithms are adopted depending on the application
environment and some constraints such as line rate,
number of ports to connect, cost, expected
performances.

To route packets from input ports to output ports,
Multistage Interconnection Networks (MINs) are very
attractive. They can route in parallel the incoming
packets. They have a relatively low cost, and are better
adapted for VLSI implementation. MINs have been
used initially in multiprocessors architectures to
connect the processors to memory banks. Recently,
and regarding to their characteristics, another interest is
granted to these networks: They are used in the
Internet routers, in the ATM and Ethernet switches and
are appropriate to be used to construct electro-optic
switches.

 Using Benes network which presents the best cost
among non blocking MINs, and input buffers
technique with a simple selection policy of maximum
cells to transmit without conflicts in a cycle, we
propose in this paper a switch with a low cost
introducing a minimum hardware complexity.

This paper is organised as following. In the next
section, we present a self routing algorithm for Benes
network. In section 3, we describe and compare
different buffering techniques. The fourth section
discusses performances of a variety of scheduling
algorithms presented in literature. In section 5, we
describe the selection procedure adopted in this paper
and explain how it operates through an example. In
section 6, simulation results are presented and
compared to those of other solutions. Finally, we give
some concluding remarks in section 7.

It may be useful to define the following terms that
are used frequently in this paper.

310 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

Permutation: Is a one-to-one I/O mapping, where all
inputs and outputs are active. It is called a partial
permutation, if any I/O are not active.
Cell: We consider packets of a fixed size. We prefer
using in the continuation of this article, the term ‘cell’
instead of ‘packet’.
Throughput: Is the number of cells arriving to their
destinations divided by the total number of departed
cells from their sources in a unit time (a cycle).

2. Interconnection Network
2.1. Benes Network
A (NxN) Benes network (Figure 1) is a network with N
inputs and N outputs. Its dimension is r = log2N. It is
composed of 2 (log2N) - 1 stages of 2r - 1 switching
elements (SE for short) and presents with Waksman
network, the best cost among all the non blocking
multistage networks [1]:

Figure 1. A Benes network for N = 8.

Benes network is dynamic and rearrangeable. It
presents N/2 possible paths to establish a link between
a free input and a free output. It is for this fact fault
tolerant since we can always establish a path even if
some switches are out of use. It offers a constant
latency for all couples (input,output). The Only
drawback that is known about it, is the complexity of
its routing control algorithms. The solution usually
used is centralized: It needs a global controller, which
configures the network before the transfers. This
solution requires O (N . r) sequential time to position
all the SE(s).

2.2. Self Routing
One of the main features that this network has is the
self-routing property: Every 2x2 switch can decide to
which of its outputs the incoming cell will be
transmitted, depending only on the cell destination
address. This means that the implementation of a
complex routing algorithm, either centralized or
distributed, is not needed.

It has been proved that some permutations families
representing a subset of all possible permutations (N!
for a NxN Benes network), can be routed automatically
in only one pass, consuming O (log2N) in parallel time.
Lenfant in [17], has defined the Frequently Used
Bijections (FUB) family. Nassimi and Sahni have
proposed in [23], an algorithm for the Bit Permute
Complement (BPC) class. Boppana and Raghavendra
[3] have resolved the problem for the Linear
Complement (LC) family. These families are
regrouped in the same class Bit Permut CLosure
(BPCL) of self routing permutations.

Four strategies for the BPCL self routing
permutations have been defined in [8]: TCR, BCR,
LCR, HCR. In each of these strategies a particular bit
of the destination address called the Routing Bit (R-
Bit), determines the action to perform at the SE level.
The switching command can be in this case,
implemented locally at the 2x2 switch.

• Top Control Routing (TCR): R-Input is the superior
input.

• Bottom Control Routing (BCR): R-Input is the
lower input.

• Least Control Routing (LCR): R-Input is the
smallest input.

• Highest Control Routing (HCR): R-Input is the
biggest input.

The R-bit (routing bit) is defined:

Where: Xr, Xr-1, …, X1 is the destination address of the
R-Input

2.3. Routing Algorithm
The adopted routing algorithm in this paper, is one of
the most effective self routing algorithms for the Benes
network [25].

In a first time, the load is fairly distributed on the
2x2 switches of the r-1 first network stages using LCR
self routing strategy: The SE(s) are positioned
according to the R-Bit of the input with the smallest
destination address. We note here, that HCR strategy
can be used instead LCR for the r-1 first stages. The
performances will be the same: In [8], it has been
shown that HCR= LCR.

For the r remaining stages, the switches are
positioned using the classic routing algorithm applied
in the omega network: If the R-bit is a 0, than the cell
will be routed to the upper output of the SE, else it will
be routed to the lower output.

An example of routing using this algorithm is
illustrated in section 5.3.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Xi for 1 <= i <= r-1
R-Bi t =

X2r-i for r <= i <= 2r-1


0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

Design and Evaluation of an Input Buffered Packet Switch 311

3. Cell Buffering
The buffering operation consists in queuing the cells to
transmit. The performances of the switch can be
affected differently according to the way that is done.
Different strategies are used depending on the physical
site of the queues: In inputs, in outputs, in both inputs
and outputs, or in shared buffers.

3.1. Output Buffers
Although output buffers give the optimal delay-
throughput performance, switches that use them are
difficult to achieve. In this method, every output can
receive simultaneously during the same cycle, N cells
from the N inputs. Thus, the switch must be able to put
in the same queue and during one cycle, the N cells
destined to the same output. The operation of setting in
queue must therefore operate N times quickly than the
rate of cell arrivals (speed up). If this solution is
feasible in case of small capacity switches, it should be
not possible for switches of big capacities (the N-times
speed-up in the switch limits the scalability of this
architecture) [4, 7].

3.2. Shared Buffers
The approach using the shared buffers is a closer
solution to the previous. Instead of associating a
separated queue to every output, a common memory
buffer is used by all outputs. Only one queue is used to
hold all cells. This method is more economic in space.
It has been implemented in a lot of switches:
ATLANTA of Lucent Technologies, ATLAS [15], and
adopted in a lot of papers [16, 19, 26].

The disadvantages of this solution are related to:

• The complexity of the logic to control such memory
since the management of a single global queue is
difficult.

• The limit of the bandwidth of Dynamic RAM
(DRAM) that are commonly used in order to
provide large buffer storage space [10].

3.3. Input Buffers
To design high-speed switches and routers, alternatives
that present now a big interest are input buffers
adopted in our switch, and Combined Input Output
Queues (CIOQ), proposed in several recent
publications [6, 7, 27]. These two techniques do not
require some queues operating at multiple speed of the
communication lines.

The most realistic solution is the one using input
buffers, because it simplifies the implementation of big
capacity switches. Input buffers switches require only
O (N) buffers and O (N) controllers (a buffer is
associated with each input for queuing the incoming
cells). Also, this technique is able to overcome the

technology limitation and complexity management of a
single large multi queue memory. In this strategy, the
memory can be accessed simultaneously by a read and
a write operations. The memory must therefore,
present an access time at least two times faster than the
line rate (Speed up S = 2). This limitation can be a
serious problem only in case of very high rates (several
hundreds of Gb/s). With less speeds, such OC48c (2.5
Gb/s) or OC192c (10 Gb/s), many solutions can be
proposed to surmount it:

• Using multi-ports memories where such operations
can take place in parallel.

• Combined fast static SRAM with big capacity
dynamic RAM [10].

• Doubling the memory bandwidth using some
memory management techniques as: “Ping Pong”
[11].

• Queuing in a parallel manner the different packets
[18].

A major drawback of input buffers is related to queue
managing while selecting cells to transmit at every
cycle. The simplest way consists in storing the
incoming cells in FIFO queues. The cells at the head of
queues are the first served. This approach introduce the
problem of HOL blocking (the cells in the queues can
be blocked by the cells in conflicts at the heads of
queues). It has been demonstrated in [12], that in this
case only 2-√2 ≈ 58% of the input cells are served.

Several solutions have been adopted to palliate to
the problem of the HOL blocking:

• Operating the switch fabric at S times faster than the
input lines (speedup). A speedup by a factor of S
can remove S cells from each input port within each
cycle. This scheme removes completely the HOL
blocking effect. Unfortunately, and like output
queuing, a speedup of S = N in the switch, is not
feasible actually for high values of N. For low
values of S, HOL blocking phenomenal is only
reduced.

• In [2], the authors propose a copy of the routing
network for the control. Using the self routing
ability of Banyan network in order to avoid the
network set up operation before transfers (usually
adopted in such networks). The control network is
topologically similar to the routing network. But, it
only routes the labels (destination addresses) and
not the data during each cycle, to find the best
matching to submit to the routing network during
the next cycle. In the test phase, and in case of
conflicts, a random selection of other cells in the
queues that generate the conflicts is performed. This
procedure is repeated until obtaining the maximum
matching or until the end of cycle. The use of two
networks, one for the control and the second for the
routing is advantageous for its simplicity and allows
a high throughput, but it is expensive to implement,

312 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

since it needs more SEs than other solutions based
on non blocking multistage networks.

• Another approach is that which increases the
number of queues while adopting the solution of
virtual channels or virtual queues Virtual Output
Queues (VOQ). In this scheme, N virtual output
queues (corresponding to the N outputs) are
associated to every queue in input. A cell that
arrives at an input is queued depending on its
destination in the appropriate virtual queue. At each
cycle, only one cell is selected from every input (i.
e., from all the associated VOQ). Some scheduling
algorithms are required to find the optimal solution
(Maximum Matching) of maximum inputs to
transmit without conflicts. Some authors [13, 21]
have oriented their researches toward this solution
to achieve 100% of throughput. Nevertheless and
for big values of N, it needs a large memory to
implement the big number of buffers: O (N2) queues
for an NxN Benes network.

• A simple and economic solution but with less
performances than the previous has been proposed
in [14]. The number of queues at each input port is
limited to two. A queue containing the cells destined
to the outputs with even addresses and the second,
the cells destined to the outputs with odd addresses
(from where the name of the proposed switch: 'odd-
even switch'). The selection is done in a first time
from the even queues. In a second time, cells of the
‘odd’ queues, corresponding to the same inputs will
replace cells that loose in the first round. Although,
the performances offered by this switch are modest,
this solution represents an improvement
comparatively to a simple FIFO technique while
offering a throughput of about 70% without
introducing an important hardware complexity.

• Using Window Based Scheduling Algorithms [5,
22]. This solution improves the throughput while
choosing in a window (a part of the different
queues) the cells to transmit. The selected cells are
not necessarily the ones in the heads of queues.
When a cell in a head of queue is in conflict, the
algorithm selects another one of the same queue
depending on some criteria, in a window of W
depth. During a cycle, a set of a maximum N cells (a
cell from each queue) is selected to be transmitted.

4. Scheduling Algorithms
The research of the optimal solution in the queues can
be translated to a research of the maximum matching
in a bipartite graph. The algorithm establishes from the
set X of input addresses and the set Y of destinations
addresses a bipartite graph G in such a way that every
edge of G joins a vertex in X to a vertex in Y. A sub set
M of edges is called matching if there are not two
edges of M that have a common vertex. An example of

bipartite graph, correspondent to the treated example in
this article is given in section 5.3.

To find the optimal solution some scheduling
algorithms as Maximum Size Matching (MSM), and
Maximum Weight Matching (MWM) [21] use
different metrics such as the length of the queue
(Longest Queue First (LQF)), the age of the cell in the
queue (Oldest Cell First (OCF)). It has been proved
that used in a combination with virtual output queuing
(VOQ), these algorithms can achieve high throughput
≈ 100% in case of uniform traffic. However, this is
only a theoretical result. They consume respectively O
(N5/2) and O (N3log2N) and are too complex to be
implemented in hardware, since they need big
comparators to compare the different ages, lengths or
weights of the queues.

Several other algorithms with less complexity have
been proposed and implemented in hardware. Matrix
Unit Cell Scheduler (MUCS) [9] finds the optimal
solution by computing a traffic matrix. Iterative
algorithms, such iSLIP use multiple iterations to
converge on a maximal matching [20]. Round Robin
Matching (RRM) algorithm [28] affects a rotating
priority 'round robin' to the different queues to avoid
that some of them could be not served during a long
time (since their lengths or weights are less
competitive) and converge toward the optimal solution
on average in O (log2N) iterations.

The optimal solution can be also obtained by the
algorithms based on simple heuristics, but without
guarantee of an optimal throughput. A simple example
of these algorithms is the next one: At every beginning
of a cycle, the cells at the head of queues are in
competition to be transmitted, those that loose, let the
possibility to the cells that follow and so forth on the
whole width W of a window. This process can be
interrupted before, if the optimal solution is reached.
No metrics are used. This algorithm based on the
simple heuristic consume O (N . W) in sequential time
[22].

5. Proposed Switch
Our solution is based on the use of Input buffers to
queue the incoming cells. The general structure of the
proposed switch is shown in Figure 2.

5.1. Cell Buffers
We consider a switch operating at maximum rate of 3,2
Gb/s. The memory access time does not represent a
major problem since the required memory access time
in case of input buffers and single ported memory is
estimated to L / (2 * R) = 10ns (with data word length
L = 64 bits and line rate R = 3.2 Gb/s). Although, it
corresponds to a faster access time than typical access
time of DRAM memories (varying from 12 ns to 70
ns), with the later development of SDRAM, more

Design and Evaluation of an Input Buffered Packet Switch 313

larger memory bandwidth becomes possible without
cost increasing. The recent Double Data Rate 266-
DDR SDRAM with an 8 byte wide bus, offers a
bandwidth of 266 MHz x 8 Bytes = 2.1GB/s. In case of
dual ported memory (simultaneous read and write
operations are possible), which is very attractive for
input queuing systems, we can slow down the memory
access rate by half and hence achieve more than the
required bandwidth.

The logic to control the input queues is simple as
only a read and write pointer need to be maintained for
each queue.

5.2. Selection Process
The proposed solution is a deterministic window based
algorithm. To determine the cells that can be self
routed through the routing network, in one pass
without conflicts, the algorithm searches a match in a
window of W width. The algorithm describe in [22]
establishes the optimal solution by consulting all the
NxW cells. Such policies, based on the search of the
maximum matching, are not appropriated for high
values of N (since an exhaustive search is time
consuming). We opt for a solution with less time
complexity, while looking just for cells destined to
outputs not addressed by cells in the HOL vector
which contains the destination addresses of cells to
transmit during every cycle.

The algorithm presents at the inputs of the routing
network the permutation or the partial permutation,
where the maximum of outputs are solicited, to be then
routed automatically. This objective is reached using a
counter for every output, that indicates the number of
the output occurrences in the HOL vector.

In a first time, an output with an empty counter (=
0) does not appear in the HOL vector. A cell addressed
to this output is then looked for, in the queues on the
width W of the window. If found, it will replace a cell
destined to an output that appears more than once in
the HOL vector.

Our algorithm runs in O (W. (N2 - N)) sequential
time in worst case (all the N cells are addressed to the
same output), and O (N) sequential time in best case
(all the outputs are addressed in the HOL vector).

The selection process operates in three steps. The
principle is the following:

1. The cells are directed (using AIG component)
according to the highest weight bit of the destination
address toward a buffer in high half (HM) if the bit
is 0 (corresponds to outputs 0 to N/2-1), or toward a
buffer in the low half (LM) if the bit is 1
(corresponds to outputs N/2 to N-1).

2. Compose the vector HOL1 (in parallel, HOL2) from
the N cells in the head of HM queues (respectively
from cells in the head of LM queues). The number
of occurrences of every destination Nocc (output i)
is counted. Verify that: ∀ i, 0 < i < N / 2 - 1, Si ∈

HOL1 (in parallel, ∀ i, N / 2 – 1 < i < N - 1, Si ∈
HOL2), that means there is no occurrence counter
equal to 0 or all N/2 destinations exist in HOL1
(respectively in HOL2). If this condition is satisfied,
pass to step 3. Otherwise for each output i with
Nocc = 0, search in W for a cell destined to an
output of which Nocc (i) = 0, if it exists it will take
a place in HOL1 (respectively in HOL2), in
replacement of a cell addressed to an output of
which Nocc (i) > 1.

3. Iteratively, constitute the HOL vector to transmit
while selecting cells from HOL1 and HOL2. At
each iteration, HOL1 (i) or HOL2 (i) are in
competition to take place in HOL vector. The cell
with the less counter Nocc in the HOL is selected,
and its correspondent counter updated. If the two
cells have been already selected, no cell will be
transmitted from the input. A partial permutation is
so obtained.

Figure 2. Architecture of the proposed switch.

5.3. Example
Our algorithm is illustrated through the following
example:

In case of this example, the permutation selected
corresponds to the optimal solution. Yet, its research
was not the objective of the algorithm. We noted
through several simulations that on 100 permutations
generated randomly, the solution obtained coincides
with the optimal solution (maximum matching) in
more than 20%. Figure 4 shows the bipartite graph
corresponding to the cells of the window (W = 4). The
bold edges correspond to the graph of the maximum
matching.

314 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

Figure 3. An example of cell selection.

Figure 4. Bipartite graphe.

The permutation (6, 1, 7, 4, 3, 2, 0, 5) at the output
of the selection circuit is submitted to the routing
network. The permutation is routed using the algorithm
defined in section 2.3.

6. Simulation and Evaluation
6.1. VHDL Simulation
The switch design is based on VHDL entries. We use
the standard Very-high speed integrated circuits
Hardware Description Language (VHDL) to describe
and verify the good functioning of the proposed
switch.

A recursive construction of Benes network is used.
A 2x2 SE has been described according to the
algorithm given in section 2.3; it performs differently
depending on its physical emplacement, either in the
first r-1 stages or in the r following stages.

After that, we have specified the selection module in
the architecture level as discussed in the previous
section. We verify the functionality of each
component, then we grouped all the components to
form a complete switch including selection module and
routing module. A functional simulation has been
performed to verify the behaviour of the proposed
switch. Examples of complete functioning have been
verified via VHDL simulation with uniform arrivals.

Figure 5. Routing of P: (6, 1, 7, 4, 3, 2, 0, 5).

6.2. Experimental Results
Extensive simulations have been conducted to evaluate
the performance of the proposed switch. The
evaluation is made for an 8x8 switch with different
sizes of the window W = 2, W = 4, …, W = 10. The
circuit operates at a frequency of 100Mhz, with a 64
bit data bus. There is a maximum bandwidth of 3,2
Gb/s. On 800 cells with uniform traffic and destination
cells randomly distributed among all the outputs, a set
of maximum N = 8 cells is delivered each cycle (=
10ns). Different performance factors are measured.

The switch delay defined (for one cell) as the
average time spent between a cell arriving at the input
port and departing from the switch, is shown in Figure
6. The throughput and cell loss simulation results are
given in Figure 7.

Figure 8 shows the latency at two different levels
(selection circuit and routing network). We notice that
the total latency is especially affected by the routing
network latency. The selection procedure is more
faster. Thus, the research of the optimal solution could
be done on larger widths of W, while exploiting the
waiting times of the selection circuit. It results, an
improvement of the throughput (Higher than 95% for
W = 10).

000

001

010

011

100

101

110

111

010

110
001

111

100

011

000

101

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Design and Evaluation of an Input Buffered Packet Switch 315

11

11.5

12

12.5

13

13.5

14

1(fifo) 2 4 6 8 10W. Width

 S
w

itc
h

 d
el

ay
 (n

s)

Figure 6. Average delay per cell.

0

10

20

30

40

50

60

70

80

90

100

1(fifo)
2 4 6 8 10

Window width

Th
ro

ug
hp

ut
 a

nd
 c

el
l l

os
s

%

Throughput Cell loss

Figure 7. Throughput and cell loss with various window sizes.

0

10

20

30

40

50

60

80 100 133 150 166
Clock frequency (Mhz)

La
te

nc
y

 (n
s)

Selection Routing

Figure 8. selection circuit and routing network latencies under
different internal clock rates

6.3. Cost Evaluation
The cost of a switch is closely related to the hardware
complexity. The cost of input buffer switch depends on
the interconnection network cost, the size and the
number of buffers that it uses, and the hardware
complexity of the selection policy or scheduling
algorithm. The cost of interconnection network is

proportional to the number of switching elements and
the number of links between them. Traditional
techniques of finding the total cost of a chip, take for
granted that the cost of interconnecting subsequent
stages is negligible. This means that we can assume
that the cost depends only on the number of switching
elements. Therefore, the cost of Benes network
expressed in number of 2x2 SE is estimated to Nlog2N-
N/2.

The switch cost remains relatively low since we
adopted the following choices:

1. A Benes network that presents one of the lowest
costs among the non blocking multistage
interconnection networks. (Nlog2N – N / 2, against
Nlog2N for Banyan networks and N2 for crossbar).

2. No global controller is needed.
3. A simple selection policy that does not require some

big comparators, or other complex circuits doing
some operations on a big number of bits.

4. The number of queues or buffers used is limited to
O (N), comparatively to O (N2) what it is used in
other solutions adopting virtual queues (VOQ).

The throughput and time complexity of our solution
are compared to others, especially FIFO, simple and
optimal heuristics, and odd-even switch, because
among the studied approaches in this paper, they
present the minimum hardware and time complexity.

The throughput results given in table 1, correspond
to the solution using window based scheduling
algorithms for w = 2, which is analogous to the Odd-
Even model where contention resolution also consists
of two rounds (one for polling the odd and one for
polling the even queues). With higher values of W, it is
obvious that the obtained throughput applying these
algorithms will be better.

Table 1. Comparison with other solutions.

Method Time Complexity Throughput

FIFO O (N) 0,586

Simple Heuristic O (WN) 0,68

Optimal O (WN3/2) 0.71

MWM O (N3log2N) 1.00

Odd-Even O (2N) 0,71

Our solution O (W(N2-N)) 0,877

The experimental results show that a throughput
improvement of about 50% and 23% is achieved in
comparison respectively with the FIFO strategy, Odd-
Even and optimal heuristics under uniform traffic.
Future simulations are projected to study the
functioning of the switch under other arrival models,
especially under burst traffic.

316 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

7. Conclusion and Future Work
In this paper, we have attempted to show that to design
high performance packet switches, theoretical solutions
related to buffering, selection, and routing switch
functionalities could be defined. However, in practice
many of these solutions providing 100% of throughput
are not foreseeable.

In fact, the designer has to find the best compromise
between actual implementation and performances. Our
proposed switch has a better throughput comparatively
to studied switches involving minimum hardware and
time complexity. In our design, we avoided every
choice that can improve throughput and switch delay,
but will have a significant impact on cost.

Finally and as future work, we plan to synthesise the
switch and implement it using FPGA technology. The
expected result will be a low cost high performance
packet switch in a single chip.

References
[1] Beauquier B. and Darot E., “On Arbitrary

Waksman Networks and their Vulnerability,”
Technical Report, INRIA, no. 3788, 1997.

[2] Boppana R. V. and Raghavendra C. S.,
“Designing Efficient Benes and Banyan Based
Input-Buffered ATM Switches,” in Proceedings
of ICC’99, Vancouver, Canada, 1999.

[3] Boppana R. V. and Raghavendra C. S., “Optimal
Self-Routing of Linear-Complement
Permutations in Hypercubes,” in Proceedins of
the 5th Distributed Memory Computing
Conference (DMCC'5), pp. 800-808, 1990.

[4] Brown T., “A High Performance Two-Stage
Packet Switch Architecture,” IEEE Transactions
on Communications, vol. 47, no. 8, pp. 1792-
1795, December 1999.

[5] Cam H., “Preventing Internal and External
Conflicts in an Input Buffering Reverse Baseline
ATM Switch,” International Journal of
Communication Systems, vol. 13, no. 4, pp. 317-
334, 2000.

[6] Cessa R., Oki E., Jing Z., and Chao H. J.,
“CIXB-1: Combined Input-Once-Cell-Crosspoint
Buffered Switch,” IEEE Workshop on High
Performance Switching and Routing, Dallas, TX,
2001.

[7] Chuang S. T., Goel A., McKeown N., and
Prabhakar B., “Matching Output Queuing with a
Combined Input Output Queued Switch,” in
Proceedings of INFOCOM'99, New York, USA,
1999.

[8] Das N., Mukhopadhyaya K., and Dattagupta J.,
“Self Routing in Benes Network,” Technical
Report No. E/02/92, Indian Statistical Institute,
Calcutta, 1992.

[9] Duan H., Lockwood J. W., and Kang S. M.,
“Matrix Unit Cell Scheduler (MUCS) for Input-
Buffered ATM Switches,” IEEE
Communications Letters, vol. 2, no. 1, 1998.

[10] Garcia J., Corbal J., Cerda L., and Valero M.,
“Design and Implementation of High-
Performance Memory Systems for Future Packet
Buffers,” IEEE Proceedings of the 36th

International Symposium on Microarchitecture,
2003.

[11] Joo Y. and McKeown N., “Doubling Memory
Bandwidth for Network Buffers,”
IEEE INFOCOM, vol. 2, pp. 808-815, San
Francisco, 1998.

[12] Karol M., Hluchyj M., and Morgan S., “Input
Versus Output Queuing on Space Division
Switch,” IEEE Transactions on Communications,
pp. 1347-1356, 1987.

[13] Keslassy I. and McKeown N., “Analysis of
Scheduling Algorithms that Provide 100%
Throughput in Input-Queued Switches,” in
Proceedings of the 39th Annual Allerton
Conference on Communication Control and
Computing, Monticello, Illinois, 2001.

[14] Kolias C. and Kleinrock L., “The Odd-Even
Input Queuing ATM Switch: Performance
Evaluation,” in Proceedings of ICC'96, 1996.

[15] Kornaros G., Pnevmatikas D., Vatsolaki P.,
Kalokerios G., Xanthaki C., Mavroidis D.,
Serparos D., and Katerimis M., “Implementation
of ATLAS 1: A Single Chip ATM Switch with
Backpressure,” in Proceeding of IEEE Hot
Interconnects VI Symposium, Standford
University, California, USA, 1998.

[16] Lauer H. C., Ghosh A., and Shen C., “A General
Purpose Queue Architecture for ATM Switch,”
Technical Report 97-17, Mitsubishi Electric
Research Laboratories, 1994.

[17] Lenfant J., “Parallel Permutations of Data: A
Benes Network Control Algorithm for Frequently
Used Permutations,” IEEE Transactions on
Computers, vol. 27, no. 7, pp. 637-647, 1978.

[18] Lyer S. and McKeown N., “Analysis of the
Parallel Packet Switch Architecture,” IEEE/ACM
Transactions on Networking, vol. 11, no. 2, 2003.

[19] Lyer S. and McKeown N., “Techniques for Fast
Shared Memory Switches,” HPNG Technical
Report, Stanford University, 2001.

[20] McKeown N., “iSLIP: A Scheduling Algorithm
for Input-Queued Switches,” IEEE/ACM
Transactions on Networking, vol. 7, no. 2, pp.
188-201, April 1999.

[21] McKeown N., Mekkittikul A., Venkat A., and
Walrand J., “Achieving 100% throughput in an
Input- Queued Switch,” IEEE Transactions on
Communications, vol. 47, no. 8, August 1999.

[22] Moh W. M. and Chung Y. F., “Design and
Evaluation of Cell Scheduling Algorithms for

Design and Evaluation of an Input Buffered Packet Switch 317

ATM Switches,” in Proceedings of IEEE
Singapore International Conference on
Networks, pp. 355-369, World Scientific, 1997.

[23] Nassimi D. and Sahni S., “Parallel Permutation
and Sorting Algorithms and New Generalized
Connection Network,” Journal of the ACM, pp.
642-667, 1982.

[24] Park Y. K., Cherkassky V., and Lee G., “ATM
Cell Scheduling for Broadband Switching Systems
by Neural Network,” in Proceedings of
International Workshop on Applications of Neural
Networks to Telecommunications (IWANNT),
Princeton, pp. 112-118, 1993.

[25] Raghavendra C. S. and Boppana V., “On Self
Routing in Benes and Shuffle-Exchange
Networks,” IEEE Transactions on Computers,
vol. 40, no. 9, 1991.

[26] Tutsch D., Hendler M., and Hommel G.,
“Multicast Performance of Multistage
Interconnection Networks with Shared
Buffering,” in Proceedings of ICN'2001, in
Lorenz P. (Ed), pp. 478-487, 2001.

[27] Yang M. and Zheng S. Q., “An Efficient
Scheduling Algorithm for CIOQ Switches with
Space-Division Multiplexing Expansion,” IEEE
INFOCOM, 2003.

[28] Yihan Li., Shivendra P., and Chao H. J., “On the
Performance of a Dual Round-Robin Switch,”
IEEE INFOCOM, pp. 1688-1697, 2001.

Azeddine Bilami received his BSc
degree from the High School of
Computer Science (CERI) Algiers,
Algeria, in 1983, and the MSc
degree in computer science from the
University of Batna, Algeria, in
1996, where he is currently an

assistant professor. His current research interests are
interconnection networks, parallel architectures, and
wireless networks.

Mustapha Lalam received the MSc
degree in computer architecture from
the High School of Computer
Science, Algiers, Algeria in 1980.
He also received the PhD degree in
computer science from University of
Toulouse, France in 1990. He joined

University of Tizi Ouzou, Algeria in 1993. He has
been engaged in the research and development of
computer architecture, distributed systems and
mobility management for wireless mobile computing
and communications. He is the dean of the Faculty of
Electrical Engineering and Computing in Tizi Ouzou.

Mehammed Daoui received his
MSc in computing systems from the
University Mouloud Mammedi, Tizi
Ouzou, Algeria in 2001. He is an
assistant professor at the same
university. He has been engaged in
the research and development of

computer architecture, distributed systems and
mobility management for wireless mobile
communications

Mohamed Benmohammed received
his BSc degree from the High School
of Computer Science (CERI)
Algiers, Algeria, in 1983 and the
PhD degree in computer science
from the University of Sidi
Belabbes, Algeria, in 1997.

Currently, he is an assistant professor at Constantine
University. His research interests include parallel
architectures and high level synthesis.

