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1. Introduction
A major challenge concerned to high-speed switching 
is related today to switch design that requires the best 
possible compromise between ease of implementation 
and goodness of performances. 

Switch functionality is twofold:

• Managing packet buffering while selecting packets 
to transmit each time to avoid contentions and cell 
loss.

• Routing packets from their incoming ports to their 
destination ports.

To avoid contentions and cell loss, the incoming 
packets are stored in buffers. These buffers can be in 
inputs, in outputs, in inputs and in outputs or shared by 
inputs and outputs. So, a choice that a designer may 
have is where to place the buffers. Although, a lot of 
existing switches use the shared buffers technique, it 
has been shown through several publications that the 
method using input buffers is the only one which can 
constantly answer to the increasing needs of large 
switches and to the high rates of present and future 
communication lines. With such solution, the cost of 
the switch remains acceptable and the management of 
the queues in the buffers less complex. Nevertheless, it 
introduces the well known problem of the Head Of 
Line (HOL) blocking which is usually solved by means 
of scheduling algorithms. Appropriate scheduling 
algorithms are adopted depending on the application 
environment and some constraints such as line rate, 
number of ports to connect, cost, expected 
performances. 

To route packets from input ports to output ports, 
Multistage Interconnection Networks (MINs) are very 
attractive. They can route in parallel the incoming 
packets. They have a relatively low cost, and are better 
adapted for VLSI implementation. MINs have been 
used initially in multiprocessors architectures to 
connect the processors to memory banks. Recently, 
and regarding to their characteristics, another interest is 
granted to these networks: They are used in the 
Internet routers, in the ATM and Ethernet switches and 
are appropriate to be used to construct electro-optic 
switches.

 Using Benes network which presents the best cost 
among non blocking MINs, and input buffers 
technique with a simple selection policy of maximum 
cells to transmit without conflicts in a cycle, we 
propose in this paper a switch with a low cost 
introducing a minimum hardware complexity. 

This paper is organised as following. In the next 
section, we present a self routing algorithm for Benes 
network. In section 3, we describe and compare 
different buffering techniques. The fourth section 
discusses performances of a variety of scheduling 
algorithms presented in literature. In section 5, we 
describe the selection procedure adopted in this paper 
and explain how it operates through an example. In 
section 6, simulation results are presented and 
compared to those of other solutions. Finally, we give 
some concluding remarks in section 7.

It may be useful to define the following terms that 
are used frequently in this paper.



310 The International Arab Journal of Information Technology,   Vol. 2,   No. 4,   October 2005

Permutation: Is a one-to-one I/O mapping, where all 
inputs and outputs are active. It is called a partial 
permutation, if any I/O are not active.
Cell: We consider packets of a fixed size. We prefer 
using in the continuation of this article, the term ‘cell’ 
instead of ‘packet’. 
Throughput: Is the number of cells arriving to their 
destinations divided by the total number of departed 
cells from their sources in a unit time (a cycle).

2. Interconnection Network 
2.1. Benes Network
A (NxN) Benes network (Figure 1) is a network with N 
inputs and N outputs. Its dimension is r = log2N. It is 
composed of 2 (log2N) - 1 stages of 2r - 1 switching 
elements (SE for short) and presents with Waksman 
network, the best cost among all the non blocking 
multistage networks [1]:

Figure 1. A Benes network for N = 8. 
 

Benes network is dynamic and rearrangeable. It 
presents N/2 possible paths to establish a link between 
a free input and a free output. It is for this fact fault 
tolerant since we can always establish a path even if 
some switches are out of use. It offers a constant 
latency for all couples (input,output). The Only 
drawback that is known about it, is the complexity of 
its routing control algorithms. The solution usually 
used is centralized: It needs a global controller, which 
configures the network before the transfers. This 
solution requires O (N . r) sequential time to position 
all the SE(s).

2.2. Self Routing
One of the main features that this network has is the 
self-routing property: Every 2x2 switch can decide to 
which of its outputs the incoming cell will be 
transmitted, depending only on the cell destination 
address. This means that the implementation of a 
complex routing algorithm, either centralized or 
distributed, is not needed. 

It has been proved that some permutations families 
representing a subset of all possible permutations (N! 
for a NxN Benes network), can be routed automatically 
in only one pass, consuming O (log2N) in parallel time.  
Lenfant in [17], has defined the Frequently Used 
Bijections (FUB) family. Nassimi and Sahni have 
proposed in [23], an algorithm for the Bit Permute 
Complement (BPC) class. Boppana and Raghavendra 
[3] have resolved the problem for the Linear 
Complement (LC) family. These families are 
regrouped in the same class Bit Permut CLosure
(BPCL) of self routing permutations.

Four strategies for the BPCL self routing 
permutations have been defined in [8]: TCR, BCR, 
LCR, HCR.  In each of these strategies a particular bit 
of the destination address called the Routing Bit (R-
Bit), determines the action to perform at the SE level. 
The switching command can be in this case, 
implemented locally at the 2x2 switch.  

• Top Control Routing (TCR): R-Input is the superior 
input.   

• Bottom Control Routing (BCR): R-Input is the 
lower input.    

• Least Control Routing (LCR): R-Input is the 
smallest input.  

• Highest Control Routing (HCR): R-Input is the 
biggest input.  

The R-bit (routing bit) is defined:  

Where: Xr, Xr-1, …, X1 is the destination address of the 
R-Input

2.3. Routing Algorithm 
The adopted routing algorithm in this paper, is one of 
the most effective self routing algorithms for the Benes 
network [25]. 

In a first time, the load is fairly distributed on the 
2x2 switches of the r-1 first network stages using LCR 
self routing strategy: The SE(s) are positioned 
according to the R-Bit of the input with the smallest 
destination address. We note here, that HCR strategy 
can be used instead LCR for the r-1 first stages. The 
performances will be the same: In [8], it has been 
shown that HCR= LCR. 

For the r remaining stages, the switches are 
positioned using the classic routing algorithm applied 
in the omega network: If the R-bit is a 0, than the cell 
will be routed to the upper output of the SE, else it will 
be routed to the lower output. 

An example of routing using this algorithm is 
illustrated in section 5.3. 
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3. Cell Buffering  
The buffering operation consists in queuing the cells to 
transmit. The performances of the switch can be
affected differently according to the way that is done. 
Different strategies are used depending on the physical 
site of the queues: In inputs, in outputs, in both inputs 
and outputs, or in shared buffers.   

3.1. Output Buffers
Although output buffers give the optimal delay-
throughput performance, switches that use them are 
difficult to achieve. In this method, every output can 
receive simultaneously during the same cycle, N cells 
from the N inputs. Thus, the switch must be able to put 
in the same queue and during one cycle, the N cells 
destined to the same output. The operation of setting in 
queue must therefore operate N times quickly than the 
rate of cell arrivals (speed up). If this solution is 
feasible in case of small capacity switches, it should be 
not possible for switches of big capacities (the N-times 
speed-up in the switch limits the scalability of this 
architecture) [4, 7].

3.2. Shared Buffers  
The approach using the shared buffers is a closer 
solution to the previous. Instead of associating a 
separated queue to every output, a common memory 
buffer is used by all outputs. Only one queue is used to 
hold all cells. This method is more economic in space. 
It has been implemented in a lot of switches: 
ATLANTA of Lucent Technologies, ATLAS [15], and 
adopted in a lot of papers [16, 19, 26].

The disadvantages of this solution are related to:

• The complexity of the logic to control such memory 
since the management of a single global queue is 
difficult.

•  The limit of the bandwidth of Dynamic RAM 
(DRAM) that are commonly used in order to 
provide large buffer storage space [10].

3.3. Input Buffers
To design high-speed switches and routers, alternatives 
that present now a big interest are input buffers 
adopted in our switch, and Combined Input Output 
Queues (CIOQ), proposed in several recent 
publications [6, 7, 27]. These two techniques do not 
require some queues operating at multiple speed of the 
communication lines.

The most realistic solution is the one using input 
buffers, because it simplifies the implementation of big 
capacity switches. Input buffers switches require only 
O (N) buffers and O (N) controllers (a buffer is 
associated with each input for queuing the incoming 
cells). Also, this technique is able to overcome the 

technology limitation and complexity management of a 
single large multi queue memory. In this strategy, the 
memory can be accessed simultaneously by a read and 
a write operations. The memory must therefore, 
present an access time at least two times faster than the 
line rate (Speed up S = 2). This limitation can be a 
serious problem only in case of very high rates (several 
hundreds of Gb/s). With less speeds, such OC48c (2.5 
Gb/s) or OC192c (10 Gb/s), many solutions can be 
proposed to surmount it:

• Using multi-ports memories where such operations 
can take place in parallel. 

• Combined fast static SRAM with big capacity 
dynamic RAM [10].

• Doubling the memory bandwidth using some 
memory management techniques as: “Ping Pong” 
[11]. 

• Queuing in a parallel manner the different packets 
[18]. 

A major drawback of input buffers is related to queue 
managing while selecting cells to transmit at every 
cycle. The simplest way consists in storing the 
incoming cells in FIFO queues. The cells at the head of 
queues are the first served. This approach introduce the 
problem of HOL blocking (the cells in the queues can 
be blocked by the cells in conflicts at the heads of 
queues). It has been demonstrated in [12], that in this 
case only 2-√2 ≈ 58% of the input cells are served.  

Several solutions have been adopted to palliate to 
the problem of the HOL blocking:   

• Operating the switch fabric at S times faster than the 
input lines (speedup). A speedup by a factor of S 
can remove S cells from each input port within each 
cycle. This scheme removes completely the HOL 
blocking effect. Unfortunately, and like output 
queuing, a speedup of S = N in the switch, is not 
feasible actually for high values of N. For low 
values of S, HOL blocking phenomenal is only 
reduced. 

• In [2], the authors propose a copy of the routing 
network for the control. Using the self routing 
ability of Banyan network in order to avoid the 
network set up operation before transfers (usually 
adopted in such networks). The control network is 
topologically similar to the routing network. But, it 
only routes the labels (destination addresses) and 
not the data during each cycle, to find the best 
matching to submit to the routing network during 
the next cycle. In the test phase, and in case of 
conflicts, a random selection of other cells in the 
queues that generate the conflicts is performed. This 
procedure is repeated until obtaining the maximum 
matching or until the end of cycle.  The use of two 
networks, one for the control and the second for the 
routing is advantageous for its simplicity and allows 
a high throughput, but it is expensive to implement, 
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since it needs more SEs than other solutions based 
on non blocking multistage networks.

• Another approach is that which increases the 
number of queues while adopting the solution of 
virtual channels or virtual queues Virtual Output 
Queues (VOQ). In this scheme, N virtual output 
queues (corresponding to the N outputs) are 
associated to every queue in input. A cell that 
arrives at an input is queued depending on its 
destination in the appropriate virtual queue. At each 
cycle, only one cell is selected from every input   (i.
e., from all the associated VOQ). Some scheduling 
algorithms are required to find the optimal solution 
(Maximum Matching) of maximum inputs to 
transmit without conflicts. Some authors [13, 21] 
have oriented their researches toward this solution 
to achieve 100% of throughput. Nevertheless and 
for big values of N, it needs a large memory to 
implement the big number of buffers: O (N2) queues 
for an NxN Benes network.

• A simple and economic solution but with less 
performances than the previous has been proposed 
in [14]. The number of queues at each input port is 
limited to two. A queue containing the cells destined 
to the outputs with even addresses and the second,  
the cells destined to the outputs with odd addresses 
(from where the name of the proposed switch: 'odd-
even switch'). The selection is done in a first time 
from the even queues. In a second time, cells of the 
‘odd’ queues, corresponding to the same inputs will 
replace cells that loose in the first round. Although, 
the performances offered by this switch are modest, 
this solution represents an improvement 
comparatively to a simple FIFO technique while 
offering a throughput of about 70% without 
introducing an important hardware complexity.

• Using Window Based Scheduling Algorithms [5, 
22]. This solution improves the throughput while 
choosing in a window (a part of the different 
queues) the cells to transmit. The selected cells are 
not necessarily the ones in the heads of queues. 
When a cell in a head of queue is in conflict, the 
algorithm selects another one of the same queue 
depending on some criteria, in a window of W 
depth. During a cycle, a set of a maximum N cells (a 
cell from each queue) is selected to be transmitted. 

4. Scheduling Algorithms
The research of the optimal solution in the queues can 
be translated to a research of the maximum matching 
in a bipartite graph. The algorithm establishes from the 
set X of input addresses and the set Y of destinations 
addresses a bipartite graph G in such a way that every 
edge of G joins a vertex in X to a vertex in Y. A sub set 
M of edges is called matching if there are not two 
edges of M that have a common vertex. An example of 

bipartite graph, correspondent to the treated example in 
this article is given in section 5.3.

To find the optimal solution some scheduling 
algorithms as Maximum Size Matching (MSM), and 
Maximum Weight Matching (MWM) [21] use 
different metrics such as the length of the queue 
(Longest Queue First (LQF)), the age of the cell in the 
queue (Oldest Cell First (OCF)). It has been proved 
that used in a combination with virtual output queuing 
(VOQ), these algorithms can achieve high throughput 
≈ 100% in case of uniform traffic.  However, this is 
only a theoretical result. They consume respectively O
(N5/2) and O (N3log2N) and are too complex to be
implemented in hardware, since they need big 
comparators to compare the different ages, lengths or 
weights of the queues.

Several other algorithms with less complexity have 
been proposed and implemented in hardware. Matrix 
Unit Cell Scheduler (MUCS) [9] finds the optimal 
solution by computing a traffic matrix. Iterative 
algorithms, such iSLIP use multiple iterations to 
converge on a maximal matching [20]. Round Robin 
Matching (RRM) algorithm [28] affects a rotating 
priority 'round robin' to the different queues to avoid 
that some of them could be not served during a long 
time (since their lengths or weights are less 
competitive) and converge toward the optimal solution 
on average in O (log2N) iterations. 

The optimal solution can be also obtained by the 
algorithms based on simple heuristics, but without 
guarantee of an optimal throughput. A simple example 
of these algorithms is the next one: At every beginning 
of a cycle, the cells at the head of queues are in 
competition to be transmitted, those that loose, let the 
possibility to the cells that follow and so forth on the 
whole width W of a window. This process can be 
interrupted before, if the optimal solution is reached. 
No metrics are used. This algorithm based on the 
simple heuristic consume O (N . W) in sequential time 
[22].

5. Proposed Switch
Our solution is based on the use of Input buffers to 
queue the incoming cells. The general structure of the 
proposed switch is shown in Figure 2.

5.1. Cell Buffers
We consider a switch operating at maximum rate of 3,2 
Gb/s. The memory access time does not represent a 
major problem since the required memory access time 
in case of input buffers and single ported memory is 
estimated to L / (2 * R) = 10ns (with data word length 
L = 64 bits and line rate R = 3.2 Gb/s). Although, it 
corresponds to a faster access time than typical access 
time of DRAM memories (varying from 12 ns to 70 
ns), with the later development of SDRAM, more
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larger memory bandwidth becomes possible without 
cost increasing. The recent Double Data Rate 266-
DDR SDRAM with an 8 byte wide bus, offers a 
bandwidth of 266 MHz x 8 Bytes = 2.1GB/s. In case of 
dual ported memory (simultaneous read and write 
operations are possible), which is very attractive for 
input queuing systems, we can slow down the memory 
access rate by half and hence achieve more than the 
required bandwidth.

The logic to control the input queues is simple as 
only a read and write pointer need to be maintained for 
each queue. 

5.2. Selection Process 
The proposed solution is a deterministic window based 
algorithm. To determine the cells that can be self 
routed through the routing network, in one pass 
without conflicts, the algorithm searches a match in a 
window of W width. The algorithm describe in [22] 
establishes the optimal solution by consulting all the 
NxW cells.  Such policies, based on the search of the 
maximum matching, are not appropriated for high 
values of N (since an exhaustive search is time 
consuming). We opt for a solution with less time 
complexity, while looking just for cells destined to 
outputs not addressed by cells in the HOL vector 
which contains the destination addresses of cells to 
transmit during every cycle. 

The algorithm presents at the inputs of the routing
network the permutation or the partial permutation, 
where the maximum of outputs are solicited, to be then 
routed automatically. This objective is reached using a 
counter for every output, that indicates the number of 
the output occurrences in the HOL vector.

In a first time, an output with an empty counter (=
0) does not appear in the HOL vector. A cell addressed 
to this output is then looked for, in the queues on the 
width W of the window. If found, it will replace a cell 
destined to an output that appears more than once in 
the HOL vector. 

Our algorithm runs in O (W. (N2 - N)) sequential 
time in worst case (all the N cells are addressed to the 
same output), and O (N) sequential time in best case 
(all the outputs are addressed in the HOL vector).

The selection process operates in three steps. The 
principle is the following: 

1. The cells are directed (using AIG component) 
according to the highest weight bit of the destination 
address toward a buffer in high half (HM) if the bit 
is 0 (corresponds to outputs 0 to N/2-1), or toward a 
buffer in the low half (LM) if the bit is 1 
(corresponds to outputs N/2 to N-1).

2. Compose the vector HOL1 (in parallel, HOL2) from 
the N cells in the head of HM queues (respectively 
from cells in the head of LM queues). The number 
of occurrences of every destination Nocc (output i) 
is counted.  Verify that: ∀ i, 0 < i < N / 2 - 1, Si ∈

HOL1 (in parallel, ∀ i, N / 2 – 1 < i < N - 1, Si ∈
HOL2), that means there is no occurrence counter 
equal to 0 or all N/2 destinations exist in HOL1 
(respectively in HOL2). If this condition is satisfied, 
pass to step 3. Otherwise for each output i with 
Nocc = 0, search in W for a cell destined to an 
output of which Nocc (i) = 0, if it exists it will take 
a place in HOL1 (respectively in HOL2), in 
replacement of a cell addressed to an output of 
which Nocc (i) > 1.

3. Iteratively, constitute the HOL vector to transmit 
while selecting cells from HOL1 and HOL2. At 
each iteration, HOL1 (i) or HOL2 (i) are in 
competition to take place in HOL vector. The cell 
with the less counter Nocc in the HOL is selected, 
and its correspondent counter updated. If the two 
cells have been already selected, no cell will be 
transmitted from the input. A partial permutation is 
so obtained. 

Figure 2. Architecture of the proposed switch.

5.3. Example
Our algorithm is illustrated through the following 
example:

In case of this example, the permutation selected 
corresponds to the optimal solution. Yet, its research 
was not the objective of the algorithm. We noted 
through several simulations that on 100 permutations 
generated randomly, the solution obtained coincides 
with the optimal solution (maximum matching) in 
more than 20%. Figure 4 shows the bipartite graph 
corresponding to the cells of the window (W = 4). The 
bold edges correspond to the graph of the maximum 
matching. 
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Figure 3. An example of cell selection.

Figure 4. Bipartite graphe.

The permutation (6, 1, 7, 4, 3, 2, 0, 5) at the output 
of the selection circuit is submitted to the routing 
network. The permutation is routed using the algorithm 
defined in section 2.3.

6. Simulation and Evaluation
6.1. VHDL Simulation
The switch design is based on VHDL entries. We use 
the standard Very-high speed integrated circuits 
Hardware Description Language (VHDL) to describe 
and verify the good functioning of the proposed 
switch.

A recursive construction of Benes network is used. 
A 2x2 SE has been described according to the 
algorithm given in section 2.3; it performs differently 
depending on its physical emplacement, either in the 
first r-1 stages or in the r following stages. 

After that, we have specified the selection module in 
the architecture level as discussed in the previous 
section. We verify the functionality of each 
component, then we grouped all the components to 
form a complete switch including selection module and 
routing module. A functional simulation has been 
performed to verify the behaviour of the proposed 
switch. Examples of complete functioning have been 
verified via VHDL simulation with uniform arrivals. 

Figure 5.  Routing of P: (6, 1, 7, 4, 3, 2, 0, 5).

6.2. Experimental Results 
Extensive simulations have been conducted to evaluate 
the performance of the proposed switch. The 
evaluation is made for an 8x8 switch with different 
sizes of the window W = 2, W = 4, …, W = 10. The 
circuit operates at a frequency of 100Mhz, with a 64 
bit data bus. There is a maximum bandwidth of 3,2 
Gb/s. On 800 cells with uniform traffic and destination 
cells randomly distributed among all the outputs, a set 
of maximum N = 8 cells is delivered each cycle (= 
10ns). Different performance factors are measured.

The switch delay defined (for one cell) as the 
average time spent between a cell arriving at the input 
port and departing from the switch, is shown in Figure 
6. The throughput and cell loss simulation results are 
given in Figure 7. 

Figure 8 shows the latency at two different levels 
(selection circuit and routing network). We notice that 
the total latency is especially affected by the routing 
network latency. The selection procedure is more
faster. Thus, the research of the optimal solution could 
be done on larger widths of W, while exploiting the 
waiting times of the selection circuit. It results, an 
improvement of the throughput (Higher than 95% for 
W = 10). 
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6.3. Cost Evaluation
The cost of a switch is closely related to the hardware 
complexity. The cost of input buffer switch depends on 
the interconnection network cost, the size and the 
number of buffers that it uses, and the hardware 
complexity of the selection policy or scheduling 
algorithm. The cost of interconnection network is 

proportional to the number of switching elements and 
the number of links between them. Traditional 
techniques of finding the total cost of a chip, take for 
granted that the cost of interconnecting subsequent 
stages is negligible. This means that we can assume 
that the cost depends only on the number of switching 
elements. Therefore, the cost of Benes network 
expressed in number of 2x2 SE is estimated to Nlog2N-
N/2.

The switch cost remains relatively low since we 
adopted the following choices:

1. A Benes network that presents one of the lowest 
costs among the non blocking multistage 
interconnection networks. (Nlog2N – N / 2, against 
Nlog2N for Banyan networks and N2 for crossbar).

2. No global controller is needed. 
3. A simple selection policy that does not require some 

big comparators, or other complex circuits doing 
some operations on a big number of bits.

4. The number of queues or buffers used is limited to 
O (N), comparatively to O (N2) what it is used in 
other solutions adopting virtual queues (VOQ).

The throughput and time complexity of our solution 
are compared to others, especially FIFO, simple and 
optimal heuristics, and odd-even switch, because 
among the studied approaches in this paper, they 
present the minimum hardware and time complexity. 

The throughput results given in table 1, correspond 
to the solution using window based scheduling 
algorithms for w = 2, which is analogous to the Odd-
Even model where contention resolution also consists 
of two rounds (one for polling the odd and one for 
polling the even queues). With higher values of W, it is 
obvious that the obtained throughput applying these 
algorithms will be better.

Table 1. Comparison with other solutions.

Method Time Complexity Throughput

FIFO O (N) 0,586

Simple Heuristic O (WN) 0,68

Optimal O (WN3/2) 0.71

MWM O (N3log2N) 1.00

Odd-Even O (2N) 0,71

Our solution O (W(N2-N)) 0,877

The experimental results show that a throughput 
improvement of about 50% and 23% is achieved in 
comparison respectively with the FIFO strategy, Odd-
Even and optimal heuristics under uniform traffic. 
Future simulations are projected to study the 
functioning of the switch under other arrival models,
especially under burst traffic.
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7. Conclusion  and Future Work
In this paper, we have attempted to show that to design 
high performance packet switches, theoretical solutions 
related to buffering, selection, and routing switch 
functionalities could be defined. However, in practice 
many of these solutions providing 100% of throughput 
are not foreseeable.

In fact, the designer has to find the best compromise 
between actual implementation and performances. Our 
proposed switch has a better throughput comparatively 
to studied switches involving minimum hardware and 
time complexity. In our design, we avoided every 
choice that can improve throughput and switch delay, 
but will have a significant impact on cost. 

Finally and as future work, we plan to synthesise the
switch and implement it using FPGA technology.  The 
expected result will be a low cost high performance 
packet switch in a single chip.
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