
20 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Design and Implementation of a Two-Phase
Commit Protocol Simulator

Toufik Taibi1, Abdelouahab Abid2, Wei Jiann Lim2, Yeong Fei Chiam2, and Chong Ting Ng2

1College of Information Technology, United Arab Emirates University, UAE
2Faculty of Information Technology, Multimedia University, Malaysia

Abstract: The Two-Phase Commit Protocol (2PC) is a set of rules, which guarantee that every single transaction in a
distributed system is executed to its completion or none of its operations is performed. To show the effectiveness of 2PC, a
generic simulator is designed and implemented to demonstrate how transactions are committed in a safe manner, and how
data consistency is maintained in a distributed system with concurrent execution of randomly generated transactions. Several
possible failure cases are identified and created in the system to test its integrity, thus showing how well it responds to
different failure scenarios, recovers from these failures, and maintains data consistency and integrity. The simulator was
developed using Java Remote Method Invocation (RMI), which is particularly powerful in developing networking systems of
such scale, as it provides easy remote method calls without the need to handle low-level socket connection.

Keywords: 2PC, transaction coordinator, transaction manager, data manager, locking manager, failure recovery, RMI.

Received July 9, 2004; accepted December 17, 2004

1. Introduction

The world of computing is moving towards a trend
where tasks are performed in a distributed manner.
This is especially relevant in distributed transaction
processing systems used by financial institutions,
where a single transaction could result in significant
changes in other parts of the system. In a distributed
system, a transaction often involves the participation of
multiple sites and access of shared data in remote
locations. A failure of one site in committing its part of
the transaction could cause the entire system to be
inconsistent. Thus, some form of control is necessary
to ensure that concurrent execution of transactions in a
distributed environment does not jeopardize the
integrity of the system as well as its data consistency.
The Two-Phase Commit Protocol (2PC) is a set of
rules, which guarantee that every single transaction is
executed to its completion or none of its operations is
performed at all [8]. This is especially important in a
distributed environment, which requires atomic
updates. A concurrency control mechanism is also
applied to ensure synchronized access to shared data
and their replica by many concurrently running
transactions.

To show the effectiveness of 2PC, a generic
simulator is designed and implemented to demonstrate
how transactions are committed in a safe manner, and
how data consistency is maintained in a distributed
system with concurrent execution of randomly
generated transactions.

Several possible failure cases are identified and
created in the system to test its integrity, thus showing

how well it responds to different failure scenarios,
recovers from these failures and maintains data
consistency and integrity.

2PC is of prime importance to many distributed
transaction processing applications used by financial
institutions and other applications that fall within the
spectrum of enterprise computing. These types of
applications are increasingly being used to harness the
availability of commodity processing power scattered
in many sites of medium-to-large scale organizations.

The simulator was developed using Java Remote
Method Invocation (RMI) [6, 7], which is particularly
powerful in developing networking systems of such
scale, as it provides easy remote method calls without
the need to handle low-level socket connection. In
order to provide a standard documentation, Unified
Modeling Language (UML) [2] is used in modeling
and designing the simulator.

The rest of the paper is organized as follows.
Section 2 gives an overview of 2PC and how failure
and concurrency control are handled. Section 3
describes the system architecture of the simulator and
its software architecture, which includes all the UML
diagrams. Section 4 describes the implementation of
the simulator, while section 5 concludes the paper.

2. Overview of the Two-Phase Commit
Protocol

Atomicity is ensured when either all the operations
associated with a program unit are executed to

Design and Implementation of a Two-Phase Commit Protocol Simulator 21

completion, or none are performed. Ensuring atomicity
in a distributed system requires a transaction
coordinator, which is responsible for the following [8]:

 Starting the execution of the transaction.
 Breaking the transaction into a number of sub-

transactions, and distributing these sub-transactions
to the appropriate sites for execution.

 Coordinating the termination of the transaction,
which may result in the transaction being committed
at all sites or aborted at all sites.

The execution of 2PC is initiated by the coordinator
after the last step of the transaction has been reached.
When the protocol is initiated, the transaction may still
be executing at some of the local sites. The protocol
involves all the local sites at which the transaction
executed. Let T be a transaction initiated at site Si and
let the transaction coordinator at Si be Ci.

Phase 1 of 2PC is usually called “Obtaining a
decision”. The following are the actions performed
during this phase [3]:

 Ci adds <prepare T> record to the log.
 Ci sends <prepare T> message to all sites.
 When a site receives a <prepare T> message, the

transaction manager determines if it can commit the
transaction.

 If no: Add <no T> record to the log and respond to
Ci with <abort T>.

 If yes: Add <ready T> record to the log, force all
log records for T onto stable storage and transaction
manager sends <ready T> message to Ci.

 The Coordinator collects responses from all sites. If
all respond “ready”, the final decision is commit. If
at least one response is “abort”, the final decision is
abort. If at least one participant fails to respond
within a time out period, the final decision is abort.

Phase 2 of 2PC is usually called “Recording the
decision in the database”. The following are the
actions performed during this phase [3]:

 The coordinator adds a decision record <abort T>
or <commit T> to its log and forces the record onto
stable storage.

 Once that record reaches stable storage it is
irrevocable (even if failures occur).

 The coordinator sends a message to each participant
informing it of the decision (commit or abort).

 Participants take appropriate action locally.

Site failure in 2PC is handled in the following manner
[5]:

1. If the log contains a <commit T> record, the site
executes redo (T).

2. If the log contains an <abort T> record, the site
executes undo (T).

3. If the log contains a <ready T> record, consult Ci.
If Ci is down, site sends query-status T message to
the other sites.

4. If the log contains no control records concerning T,
the site executes undo (T).

Coordinator failure in 2PC is handled in the following
manner [5]:

1. If an active site contains a <commit T> record in its
log, the T must be committed.

2. If an active site contains an <abort T> record in its
log, then T must be aborted.

3. If some active site does not contain the record
<ready T> in its log then the failed coordinator Ci
cannot have decided to commit T. Rather than wait
for Ci to recover, it is preferable to abort T.

4. If all active sites have a <ready T> record in their
logs, but no additional control records, there is a
need to wait for the coordinator to recover.

5. Blocking problem – T is blocked pending the
recovery of site Si.

As for synchronizing access to shared data and their
replicas, we have chosen to use a centralized approach.
A single lock manager resides in a single chosen site,
all lock and unlock requests are made at that site. This
implementation is simple but there is a possibility for
the lock manager to become a bottleneck.

3. System and Software Architectures

The proposed simulation system consists of the
following components (Figure 1):

1. Transaction Manager: Coordinates (as a
coordinator) or executes (as a participant) atomic
transactions. A Transaction Manager can act as
coordinator and participant at the same time.

2. Data Manager: Manages data transfer between its
replica and other sites.

3. Locking Manager: Synchronizes access to the data
and updates data to replicas. There will be only one
Locking Manager in the system as discussed in
section 2.

TransactionManagers, Data Managers and Locking
Managers are shown as different sites in Figure 1. In
reality, a site may contain a combination of
Transaction Managers, Data Managers and Locking
Managers.

Figure 2 shows the use case diagram. There is only
one main use case, which is “Perform Two-Phase
Commit Protocol”. However, the use case contains
other sub-use cases: “Execute Transaction”, “Redo”
and “Undo”.

22 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Figure 1. Overall system architecture.

Figure 2. Use case diagram.

The software architecture of the simulator contains
3 packages as shown in Figure 3:

1. TwoPhaseCommit: Contains Transaction Manager,
Coordinator, Participant and other classes that help
to carry out 2PC.

2. DataLocking: Contains Locking Manager, Data
Semaphore and other classes that are related to
synchronization of access to shared data.

3. Data Storage: Contains Data Manager class that
manages data transfer and Data class which is an
abstraction of data.

Figure 4 shows the class diagram of TwoPhaseCommit
package. TransactionManager is the main class in the
TwoPhaseCommit package. Its main function is to
initiate Coordinator and Participant and to keep a list
of them when a transaction occurs. It contains an
instance of CoordinatorLog, which is referred by all
instances of Coordinator belonging to the

TransactionManager, an instance of ParticipantLog
and an instance of TransactionDataLog, which is
referred by all instances of Participant belonging to the
TransactionManager. Transaction Manager also
receives messages from Coordinator and Participant
of other TransactionManager and forwards the
messages to the corresponding Participant or
Coordinator.

The Coordinator thread coordinates a Transaction.
It carries out the proper procedures of the 2PC as
coordinator. It initiates Participants on other
TransactionManager by sending them their
corresponding SubTransaction. It logs the status of the
transaction to a CoordinatorLog. It also contains
recovery procedures to deal with failures.

The Participant thread will execute, redo or undo of
a SubTransaction. It carries out the proper procedures
of the 2PC as participant by following instructions
from Coordinator. It logs the status of the transaction
to a ParticipantLog. It also contains recovery
procedures to deal with failures.

The Transaction class stores a transaction ID, which
uniquely identifies a Transaction and an array of
SubTransaction. The SubTransaction class mainly
keeps the data that is needed to be read or updated, and
new values for data that are needed to be updated
during the execution of SubTransaction. This class also
contains the address of the coordinator and other
participants that are involved in the transaction.

The TwoPCLog is a parent class that contains
common functions and variables of CoordinatorLog
and ParticipantLog. It implements a remote interface,
LogQueryListener.

Figure 3. Package diagram.

The CoordinatorLog class reads from or writes to
stable storage the status of all Coordinators of a
TransactionManager. This class also replies to queries
about the log.

The ParticipantLog class reads from or writes to
stable storage the status of all Participants of a
TransactionManager. This class also replies to queries
about the log.

The LogQueryListener is an interface, which
extends from java.rmi.Remote. It contains a remote

Design and Implementation of a Two-Phase Commit Protocol Simulator 23

function for querying a TwoPCLog. This interface is
implemented by CoordinatorLog and ParticipantLog.
The TransactionDataLog class logs to stable storage
all the necessary information to redo or undo a sub
transaction.

The MessageDispatcher interface extends from
java.rmi.Remote. It contains remote functions, which
are implemented by TransactionManager. The
ParticipantMessage class is an abstraction of a
message sent by a Participant. It contains the address
of the sender, a transaction ID and the message status.
The CoordinatorMessage class is an abstraction of a
message sent by a Coordinator. It contains a
transaction ID and the message status. The
MessageConstant structure stores a list of constants
that is used as the message status.

Figure 4. Class diagram of TwoPhaseCommit package.

As shown in Figure 5, LockingManager is the main
class of DataLocking package.
It contains a list of DataSemaphore. Its main function
is to listen for LockRequest and UnlockRequest from
DataManager, and respond correspondingly. It
implements a Java RMI remote interface
(LockHandler) which listens to all remote RMI calls
made by DataManager. Requests to add or remove
DataManager (and its replicas) from dataList (data
member of LockingManager class) are also handled
here.

The DataSemaphore class contains a data ID that
uniquely identify data, and a list of replicas of the data.
It also contains functions and variables necessary to
synchronize access to the data. Lock and unlock of

data is handled separately for each read and write
operation.

Figure 5. Class diagram of DataLocking package.

The LockRequest class contains a data ID and a lock
type (READ or WRITE). It is sent by DataManager to
LockingManager to obtain a lock. The UnlockRequest
class contains a data ID and an unlock type (READ or
WRITE). It is sent by DataManager to
LockingManager to release a lock. If a write lock is
released, it contains a new data value. The
LockHandler is a Java.rmi.Remote interface that
handles lock and unlock requests as well as add or
remove data replica list requests from DataManager. It
is implemented in LockingManager. As shown in
Figure 6, DataManager is a Java.rmi.Remote interface
to read and write operations. It is implemented in
DataManagerImpl.

Figure 6. Class diagram of DataStorage package.

The DataManagerImpl class implements the
DataManager interface. Read and write operations on
data are handled here. Data are retrieved from an

DataLocking

TwoPhaseCommit

24 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

external file and stored back upon successful update of
that data.

It is to be noted that the application we developed is
a real implementation of 2PC, as the communications
between distributed nodes is not simulated, but actually
implemented using Java RMI. What is simulated is the
transactions and their sub-transactions and the data
they share, replicate and update.

4. Coding and Implementation

4.1. Remote Method Invocation

Remote Method Invocation (RMI) is a mechanism that
enables an object on one Java virtual machine to
invoke methods on an object in another Java virtual
machine (i. e., method invocation in distributed
environment).

Any object that can be invoked in this way must
implement the java.rmi.Remote interface and extends
java.rmi.server.UnicastRemoteObject. Remote object
can be bound or registered to RMI registry by using
java.rmi.Naming.rebind(String name, Remote object)
or java.rmi.Naming.bind (String name, Remote object),
where the name is in URL form: “rmi://host/name” and
object is the object to be bound. RMI registry must be
available on the host. For example, (referring to the
class diagrams):

Naming.rebind ("rmi://" + rmiHost + "/" + name +
"/CoordinatorLog", coordinatorLog);

To obtain references for a remote object
java.rmi.Naming.lookup(String name) is used.
For example, (referring to the class diagrams):

LogQueryListener logQueryListener =
(LogQueryListener) Naming.lookup("rmi://" +
rmiHost + "/" + coordinatorAddress +
"/CoordinatorLog");

Below is a list of remote objects in the 2PC
simulator:

 CoordinatorLog, ParticipantLog.
 TransactionManager, DataManagerImpl.
 LockingManager, TimerImpl.

SimulationEventHandler, NewTransactionHandler.
 SimulatorServerImpl.

Simplicity and availability of RMI package in Java
SDK 1.4 Standard Edition are the main drivers behind
the use of RMI in the 2PC simulator.

4.2. Extensible Markup Language

Extensible Markup Language (XML) is a simple and
flexible language to keep data as text string in file. In
our project, TransactionDataLog, CoordinatorLog,
ParticipantLog and DataManagerImpl store these data
as XML documents. Classes for processing XML

documents, which are available in Java SDK 1.4
Standard Edition provided us with an easy means to
create and edit XML documents and to transform XML
documents between file stream and Document Object
Model (DOM), which is a structural form of XML in
system memory [4]. In additon, data in XML document
can be displayed in any XML browser by applying an
Extensible Stylesheet Language - Transformations
(XSLT) stylesheet to the XML document. Packages
used in this project for processing XML documents are
javax.xml.parsers and javax.xml.transform.

4.3. Timing

To control the speed of the simulation, a timer is
needed to be referred by Coordinator and Participant
threads as the central clock. Delays and timeouts of the
threads are based on the central clock. The timer,
called TimerImpl is a remote object that implements a
remote interface Timer, that contains one remote
function, getTime() which returns the time in
milliseconds of the central clock. The timer is started
when the simulation is started and the speed is
adjustable through the user interface.

4.4. Unique ID Generator

Every transaction must have a unique ID for the
simulator to run properly. A class called
UniqueIDGenerator is designed to generate a unique
ID, which is the concatenation of date and time of the
moment the ID is generated and a string of 4
characters, which are randomly generated separately.
For example: 07/03/04 01:12:10 AGKq.

4.5. Implementation Process and Results

A Graphical User Interface (GUI) has been developed
to clearly show the transaction of 2PC, failure
injection, and failure recovery. The GUI consists of a
main page that includes a menu for setting and
controlling the simulation processes, and a panel that
shows the status of Data Manager and Transaction
Manager. It also contains a list of generated
transactions and allows end-users to inject failures.

The simulation starts by setting up the server as
shown in Figure 7-a. When the simulation server is
initiated, it is ready to receive connection from any
remote or local simulation client that can be configured
and started as in Figure 7-b. Once the simulation server
and client are set, transactions can be configured to be
started as shown in Figure 7-c. An Initial Transaction
has to be selected. A simulation will be created for
each of the transactions specified in the Initial
Transaction. Depending on whether random
transaction is Disabled or Enabled, transactions will be
randomly generated according to the minimum time
between each occurrence of a new transaction (in
millisecond) and the probability of spawning a new

Design and Implementation of a Two-Phase Commit Protocol Simulator 25

transaction (in percentage) specified as shown in
Figure 7-d. Otherwise, transactions have to be created
manually. Once the OK button is clicked, a number of
pop-up transaction window(s) will appear depending
on the number of Initial Transactions specified, as
shown in Figure 7-e. Each transaction has a unique ID.

a) Starting the simulation server.

b) Starting the simulation client.

c) Configuring the simulation client.

d) Configuring random transactions.

e) A running simulation.

Figure 7. The 2PC simulator.

Coordinator Log, Participant Log, and Transaction
Data Log files can be displayed in any Internet
browser using XSLT as the example shown in Figure
8.

Figure 8. Transaction data log file.

For a better view of the simulation process, a user
can control the overall simulation speed of the front-
end GUI without affecting the 2PC algorithm actual
speed in the back-end of the simulator as shown in
Figure 9-a.

Transaction Manager and Data Manager’s down
(failure) time can be generated randomly or manually.
The user can set the down time for both Transaction
Manager and Data Manager, usually in the range of
seconds as shown in Figure 9-b.

Moreover, the user can inject failures on transaction
manager or data manager by clicking on the button
next to each Transaction Manager or Data Manager
respectively. The circled red icon shows a failed
transaction manager as shown in Figure 9-c. If the user
set the failure time while configuring the failure
injection, the transaction manager will recover after an
amount of time as specified in Figure 9-b. Otherwise,
the transaction manager will be recovered after a
random amount of time determined by the simulator.

The 2PC statistics can be viewed in the window
shown in Figure 9-d. The statistics window gives
details on the number of participants and availability of
data replicas, as well as different portions of read and
write operations on a set of data. The statistics show
the Transaction ID, number of participants, number of
Data Managers, total number of data access, number
of read-only data, number of write-only data and
elapsed time. The elapsed time shows the time taken
for the specified transaction to complete.

5. Conclusion

This work was mainly centered on the simulation of
the 2PC for ensuring atomicity in distributed
transactions. RMI was used in our message-passing
and communication model, instead of using socket to
handle communication. Some other considerations
related to this protocol are also taken into account and
improved upon in order to construct an optimized
simulation. In our implementation, a generic system is
simulated in a distributed environment to represent the
real world scenario more vividly. This topic deserves
research due to the fact that distributed transaction
processing systems are widely used in many different
organizations of varying size, as well as the nature of

26 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

task distribution in a networking environment. In the
coming future, this generic 2PC package can be further
improved and enhanced [1] to be as an excellent
solution for any distributed transaction systems.

a) Failure injection.

b) Setting the simulation speed.

c) Failure recovery.

d) Simulation statistics.

Figure 9. Different options of the simulator.

References

[1] Attaluri G. K. and Salem K., “The Presumed-
either Two-phase Commit Protocol,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 14, no. 5, pp. 1190-1196, 2002.

[2] Booch G., Jacobson I., and Rumbaugh J., The
Unified Modeling Language User Guide,
Addison-Wesley, 1998.

[3] Boutros B. S. and Desai B. C., “A Two-Phase
Commit Protocol and its Performance,” in
Proceedings of the 7th International Workshop on

Database and Expert Systems Applications, pp.
100-105, 1996.

[4] Goldfarb C. and Prescod P., XML Handbook, 5th

Edition, Prentice Hall, 2003.
[5] Liu M. L., Agrawal D., and El Abbadi A., “The

Performance of Two-Phase Commit Protocols in
the Presence of Site Failures,” in Proceedings of
the 24th International Symposium on Fault-
Tolerant Computing, pp. 234-243, 1994.

[6] Oberg R., Mastering RMI: Developing
Enterprise Applications in Java and EJB, John
Wiley & Sons, 2001.

[7] Pitt E. and McNiff K., Java.rmi: The Remote
Method Invocation Guide, Addison-Wesley,
2001.

[8] Silberschatz A., Galvin P. V., and Gagne G.,
Operating Systems Concepts, 6th Edition, John
Wiley and Sons, 2001.

Toufik Taibi is an associate
professor at the College of
Information Technology of The
United Arab Emirates University,
UAE. He holds a BSc, MSc, and
PhD in computer science. He has
more than 8 years of teaching and

research experience in Malaysia. His research interests
include formal specification of design patterns,
distributed object computing, object-oriented methods,
and component-based software development.

Abdelouahab Abid is a lecturer at
the Faculty of Information
Technology of Multimedia
University, Malaysia. He holds BSc
in mathematics, MSc in IT, and
is currently pursuing a PhD in IT at
Multimedia University. He has more

than 7 years of teaching, research and industry
experience including a consultancy work for Telecom
Malaysia. His research interests include designing
networking protocols and e-commerce applications.

Wei Jiann Lim was a BSc student in information
technology majoring in software engineering at the
Faculty of Information Technology of Multimedia
University, Malaysia. Currently, he is working as
software developers in different Malaysian companies.

Yeong Fei Chiam was a BSc student in information
technology majoring in software engineering at the
Faculty of Information Technology of Multimedia
University, Malaysia. Currently, he is working as
software developers in different Malaysian companies.

Design and Implementation of a Two-Phase Commit Protocol Simulator 27

Chong Ting Ng was a BSc student in information
technology majoring in software engineering at the
Faculty of Information Technology of Multimedia
University, Malaysia. Currently, he is working as
software developers in different Malaysian companies.

