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Abstract: Recently data communication spread to the mobile wireless world. The complexity of medium and large speech & 
speaker recognition systems are beyond the memory and computational resources of the small portable devices. Moreover, the 
most common approach to speaker recognition today is the use of global Gaussian Mixture Models (GMM) which ignores 
knowledge of the underlying phonetic content of the speech, so it does not take advantage of all available information. In this 
paper we address the solution of these two problems by investigating the phoneme effect on speaker recognition system. We 
used YOHO database for speaker identification task. We found that some phonemes have strong effect on speaker 
identification. Segmenting the most effective phoneme for speaker recognition task from a speaker utterance and send this 
phoneme only through the wireless communication system will decrease the complexity of medium and speed up the 
authentication process though mobile communication system. We have applied different approaches on YOHO corpus, several 
of these approaches were able outperform previously published results on the speaker ID task. One of our approaches could 
achieve 0.7% error rate by using only an average segment of 4.45% of the testing utterance for recognition.
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1. Introduction
There are two ways to perform vocal authentication on 
telecommunication area: The processing can be 
performed either locally or remotely. Remote 
authentication may be appropriate for high security 
transactions over a telecommunications link. 
Implementation of security services in general for 
Universal Mobile Telecommunication System
(UMTS), and mutual authentication of user and 
network, in particular, includes the authentication 
protocols of the network and also the authentication of 
a user to the network based on face and/or speech of 
the user [15]. But for embedded environments, such as 
cell phones, it is desirable to have small speaker 
models and low computational complexity to decrease 
use of memory and increase battery life. For server 
environments, scalability is highly desirable. More 
transactions per unit time and small speaker models 
help maximize throughput and decrease server cost [2]. 
Speaker recognition is the process of automatically 

recognizing who is speaking by using speaker-specific 
information included in speech signal. Speaker 
recognition can be classified into identification and 
verification. Speaker identification is the process of 
determining which registered speaker provides a given 
utterance. Speaker verification, on the other hand, is 
the process of accepting or rejecting the identity claim 
of a speaker. Speaker recognition methods can also be 
divided into text-independent, text-dependent and text-
prompted methods. In a text-independent system, 

speaker models capture characteristics of somebody’s 
speech which show up irrespective of what one is 
saying. In a text-dependent system, the recognition of 
the speaker’s identity is based on his or her speaking 
one or more specific phrases, like passwords, card 
numbers, PIN codes, etc. In text-prompted systems the 
user is asked to repeat a phrase. In this paper we 
addressed text independent and text-prompted speaker 
identification task since it is very beneficial when 
dealing with robots. It is convenient that the robot 
identifies the person who talks to with any utterance.
The use of Gaussian Mixture Models (GMM’s) for 

speaker identification was shown to provide superior 
performance compared with several existing 
techniques [3, 5, 7, 12]. For example, Reynolds D. 
could achieve error rates as low as 0.7% using YOHO 
corpus [13], while Pellom B. L. reported the same error 
rate with reduction of the time to identify a speaker by 
a factor of 140 [11]. All previous mentioned researches 
could not achieve 0.0% Error Rate (ER). Moreover 
these researches used all speaker utterance for speaker 
recognition task which increased the recognition time 
and increased the transmitted data in the case of 
wire/wireless communication systems. 
Some other researchers used different techniques for 

speaker recognition. Genoudy, used neural-network 
acoustic models of a hybrid connectionist-HMM 
speech recognizer to adapt a speaker-independent 
network by performing a small amount of additional 
training using data from the target speaker, giving an 
acoustic model specifically tuned to that speaker [6]. 
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Thyes et al. [14], used “eigenvoice” approach, in 
which client and test speaker models are confined to a 
low-dimensional linear subspace obtained previously 
from a different set of training data. He reported 5% 
ER for Eigenvoice dimension of 70 using YOHO 
database. Wan et al. [16], reported identification error 
rate of 4.5% using polynomial order of 10 for Support 
Vector Machines approach when applied on YOHO 
corpus [16]. Campbell, used Polynomial Classifiers for 
Text-Prompted Speaker Recognition. His best 
identification error rate was 0.38% using second order 
Polynomial Classifiers for YOHO database [15]. 
However the different techniques used for all previous 
mentioned researches, it is strongly required to achieve 
as low ER as possible and also decrease the required 
speaker utterance part for recognition.
André et al. [1], segmented speech to 5 classes. 

Unvoiced segment class in addition of 4 different 
classes based on rising and falling of energy and 
fundamental frequency (f0). Park et al. [10], 
segmented speech to eight phonetic classes and used 
several approaches for speaker identification task 
based on YOHO corpus. His best identification error 
rate was 0.25% when he used multiple classifiers 
(phonetically structured GMM + speaker adaptive) 
[10]. However André and Park segmented the speech, 
they did not take the advantage of the whole effect of 
all phonemes in it.
Although the goal of text independent speaker 

recognition has led to an increased focus on global 
speaker modeling, it is well known that some phones 
have better speaker distinguishing capabilities than 
others [4, 9]. For instance, in [4] vowels and nasals 
were found to be most discriminating phoneme groups. 
Global speaker modeling techniques like the GMM 
approach are not able to take optimal advantage of the 
acoustic differences of diverse phonetic events. No 
doubt that taking the advantage of speech segmentation 
is enhancing the identification error rate as well as 
decreasing the required speech segments for speaker 
identification task. This advantage was not taken into 
account for the traditional speaker recognition models. 
   In this paper we investigate the phoneme effect on 
speaker recognition task. Our targets are: 

1. Decreasing the identification error rate. 
2. Decreasing the required speech segment for speaker 
identification task to decrease the system 
complexity and speed up the speaker identification 
process.

In order to achieve the above targets, we conducted 
several experiments using different approaches. First 
we used the traditional GMM for speaker identification 
then we investigated the speaker phonemes effect on 
the speaker identification task using different 
techniques. Our results outperform previously 
published results on the speaker ID from the precision 
point of view as well as minimum speech segment 

required for identification process. Section 2 describes 
YOHO database, section 3 illustrates the proposed 
system, section 4 illustrates the proposed system 
implementation in detail, and section 5 presents 
conclusions and future work. 

2. YOHO Database
The data consists of 138 speakers - 106 males and 32 
females - recorded in a span of 3 months. To record the 
data, a high quality telephone handset was used. For 
each speaker, both training, also referred to as 
enrollment, and testing, or verification, sessions have 
been created. The enrollment sessions consist of four 
sessions each containing 24 utterances while the 
verification data has 10 sessions of 4 utterances each. 
Each speaker has the same training data set where 
testing data are different for each speaker. Each 
utterance consists of “combination lock” phrases which 
are each a set of three doublets of digits, for example 
“23-42-91” pronounced as (twenty three, forty two, 
ninety one). The sampling rate for the speech files is 8 
kHz, and the sample coding is 12-bit linear (stored as 
16-bit words). The total number of pronounced 
phoneme types in YOHO database is 18 phoneme 
types. Figure 1 illustrates the training data phoneme
frequencies for each speaker. Figure 2 shows testing 
data phoneme average frequencies for each speaker 
utterance.

Figure 1. Training data phoneme frequencies for each speaker.

Figure 2. Testing data phoneme average frequencies for each 
speaker utterance.
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3. The Proposed Approach
Our target is to decrease the speaker identification 
error rate and decrease the speech segment periods 
required for speaker identification process. To achieve 
these targets, we proposed the following approach: 

• Feature extraction process for the training and 
testing data occurred as a pre-processing step. 

• Use all speakers training data to construct Speaker 
Independent (SI HMM) phoneme model. 

• Use the constructed SI HMM phoneme model to 
segment all training data to phoneme segments. 

• Construct phoneme based speaker dependent model 
for each speaker.

• Segment testing data, and use each phoneme 
segment for speaker identification task.

• Select the most effective phonemes on speaker 
identification task, and use them for wire/wireless 
communication systems.

4. Implementation
The following sections describe the above proposed 
approach in detail. First we introduce the traditional 
Gaussian Mixture Model (GMM) approach which is 
the most common approach for speaker recognition 
task, and then we describe the proposed approach.

4.1. Traditional Gaussian Mixture Model 
Background

The most widespread paradigm for statistical acoustic 
modeling in speaker recognition involves the use of 
Gaussian mixture model. With this approach, the 
probability density function for a feature vector zr  is a 
weighted sum, or mixture, of K class-conditional 
Gaussian distributions. For a given speaker, s, the 
probability of observing zr  is given by:
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Where n is the size of zr . We used ∑ as diagonal 
covariance matrices to reduce computation. Given a set 
of training vectors of a certain speaker, an initial set of 
means is estimated using the k-means clustering. The 
mixture weights, means, and covariances are then 
iteratively trained using the Expectation Maximization 
(EM) algorithm.

4.2. Implementation Using Gaussian Mixture 
Model

Before making GMM speaker model, we have to 
choose a certain feature parameter to be extracted from 
the speaker speech. Linear Predictive Cepstral 
Coefficient (LPCC) was the first choice as a speaker 
feature parameter since LPC parameters in general 
have the following characteristics:

• For the quasi steady state voiced regions of speech, 
the all-pole model of LPC provides a good 
approximation to the vocal tract spectral envelop. 
During unvoiced and transient regions of speech, 
the LPC model is less effective than for voiced 
regions, but it still provides an acceptably useful 
model for speaker recognition purposes.

• The way in which LPC is applied to the analysis of 
speech signals leads to a reasonable source-vocal 
tract separation. As a result, a parsimonious 
representation of the vocal tract characteristics 
becomes possible.

A low (4-8) order LPC analysis captures the gross 
features of the envelope of speech spectrum. Speaker 
Information (SI) may be lost in such a representation 
[8]. So, 14 order LPCC + power were used as features 
to characterize the identity of speakers. The speech is 
first pre-emphasized (0.97); then, a sliding Hamming 
window with a length of 25ms and a shift of 10ms was 
positioned on the signal. Cepstral mean normalization 
also performed. Delta LPCC was used. So the feature 
vector size was 30. 
After extracting the feature vectors from training 

and testing data, we have constructed speaker 
independent HMM phoneme model of 3 states, 16 
mixtures for the 18 phones plus “sil” (silence) and “sp” 
(short pause) using all YOHO training data. The 
constructed HMM phoneme model was used to 
segment all training data. Then we represented each 
utterance as (sil + X + sp + X + sp + X + sil), since 
“X” is the voice segment, “sil” is the silence segment, 
and “sp” is the short pause segment. After that we used 
YOHO training data to construct a model for each 
speaker as follows:

• HMM of 3 states, 16 mixtures for “sil”.
• HMM of 1 state (GMM), 16 mixtures for “sp”.
• GMM of 64 mixtures for “X”.

Then we combined “sil”, “sp”, and “X” in one model 
to represent each speaker. We could achieve 
identification error rate of 1.68% when we used 
maximum likelihood of segment “X” for testing data. 
Segmentation of each utterance as voice (X) and 
silence (sil, sp) enabled the system to use only “X” 
which is useful for speaker identification and discard 
silences which do not have any speaker information. 
However this GMM approach is not able to take
optimal advantage of the acoustic differences of
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diverse phonetic events. One of the disadvantages of 
the GMM’s global model is that the acoustic variability 
of phonetic events in the test utterance is not taken into 
account when comparing different speakers. Although 
it has been shown that some phonetic classes have 
higher speaker distinguishing capabilities than others 
[4], much of this information is lost when all 
enrollment data is mapped to a single acoustic model. 
To overcome this problem, Park A., in [10] segmented 
speech to eight phonetic classes to take the 
contribution of each phonetic class for speaker 
recognition task. No doubt that segmentation of speech 
to phonemes instead of phonetic classes will decrease 
the identification error rate. But phone level speaker 
modeling techniques may exhibit poor performance 
due to insufficient training data at the phone level. 
However, speech corpus like YOHO database contains 
suitable amount of data for most of its phonemes 
(except “r” and “er” phonemes, see Figure 1) that are 
suitable to construct phoneme based GMM model.

4.3. Phonemes Effect on Speaker Identification
The probability density function for a feature vector zr

is a weighted sum, or mixture, of K class-conditional 
Gaussian distributions. For a given phone of a certain 
speaker, ps , the probability of observing zr  is given 
by:
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Where ks p
w , , ∑ ksks pp ,, ,µr are the mixture weight, 

mean, and covariance matrix, respectively, for the i-th 
component, which has a Gaussian distribution given by 
equation (2).
Using equation (3), we have constructed the same 

speaker model as in section (4.2) but instead of 
combining all phonemes as a speech segment (X), we 
constructed phoneme model for each speaker. So each 
speaker utterance was represented as: (sil < 
($phonemes) > (sp) < ($phonemes) > (sp) < 
($phonemes) > sil). Since ($phonemes) is some 
phoneme combination of the 18 phonemes of YOHO 
database represented as:

$phonemes = ah | ao | ay | eh | er | ey | f | ih | iy | k |n | 
r |s | t |th | uw | v | w;

Using this approach, we constructed speaker dependent 
model for each phoneme except 2 phonemes which are 
(“r” and “er”) since the system failed to construct them 
for some speakers because the frequencies of these 2 
phonemes are low as shown in Figure 1 and their 
training data duration times are low too. After that we 
used each phoneme model for each speaker to test each 
separate speaker phoneme for speaker identification 

task. Table 1 and Figure 3 illustrate the identification 
error rate for each speaker phoneme.
From Table 1 and Figure 3, ER depends on 

phoneme type and the frequency of the phoneme in the 
training data. ER is inversely proportional to the 
phoneme frequency of the training data since as the 
phoneme frequency increases the GMM phone based 
model accuracy increases too. ER is low in the case of 
vowels. A diphthong phone like “ay” has good 
identification results where as “ey” does not have good 
results since “ey” frequency is low. Mid vowel 
phoneme like “ao” has good identification result 
however it does not have high frequency, whereas “ah” 
does not have good result. A front vowel “eh” has 
strong effect on speaker recognition where “ih” and 
“iy” do not have that effect. The effect of voiced 
fricative consonant “v” is stronger than “th” because of 
the frequencies difference between them. Unvoiced 
fricative consonants (“f” and ”s”) and unvoiced stop 
consonants (“k” and ”t”) have weak effect on the 
identification task in general however the phoneme 
model of “t” has better results because it has the 
highest frequency over all phonemes.
The achieved results in Table 1 and Figure 3 are 

calculated for each separate phoneme of the utterance. 
It is common for speaker identification task to 
calculate the ER using the whole utterance. In the next 
section, we take the contribution of all phonemes of the 
same type for a certain utterance to calculate the 
identification error rate.

Table 1. Speaker identification results using separate phones.
Phoneme ay ao eh ah

ER 1% 1.6% 1.6% 5.9%
Phoneme n t ey th
ER 11.9% 14.7% 20.1% 20.6%

Phoneme v ih w iy
ER 6.1% 8.7% 10% 10.1%

Phoneme f s uw k
ER 21.7% 24.1% 25.9% 37.5%

Figure 3. Speaker identification results using separate phones.
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4.4. Identification Error Rate Using the 
Contribution of Utterance Phonemes of the 
Same Type 

We conducted the above experiment, but we took the 
contribution of all phonemes of the same type in each
utterance into account to calculate the ER. Table 2 and
Figure 4 illustrates the identification error rate for each 
speaker phoneme when taking all utterance phonemes 
of the same type into account.

Table 2. Speaker identification results using contribution of 
utterance phones of the same type.

Phoneme ay eh ao iy
ER 0.7% 1.1% 1.4% 1.7%

Phoneme ih w s f
ER 7% 8.2% 14.4% 15%

Phoneme n v t ah
ER 4.2% 4.3% 4.8% 5.8%

Phoneme th ey uw k
ER 19.4% 20.1% 25.6% 36.7%

Figure 4. Speaker identification results using contribution of 
utterance phones of the same type.

It is clear that the ER improved in general. The 
effect of testing data phoneme frequencies on speaker 
identification task is very strong as shown in Table 2, 
and Figure 2. Phonemes “iy” and “t” have the highest 
frequencies over all phonemes of training and testing 
data so the ER values are lower than that of Table1. 
Phoneme “t” is an unvoiced stop consonant which does 
not have a strong effect on speaker identification task. 
However the ER associated with phoneme “t” is not 
bad because of its high frequency. It leads us to say 
that phoneme frequencies in testing data have the 
strongest effect on speaker recognition. The ER of 
phoneme “ay” is less than that of all phonemes because 
phoneme “ay” frequency is higher than most of the rest 
vowel frequencies in testing data.
   For wire/wireless communications purposes, it is 
convenient to extract all “ay” phones from the speaker 
utterance at client terminal then send only these phones 
for speaker recognition purposes. Figure 5 shows an 
example of one speaker utterance containing 1 segment 
of phoneme “ay”.  This segment may be sent through 
wire/wireless system media. We have estimated the 

average duration time of all “ay” segments in the 
whole YOHO testing database and we found that:
(“ay” segments duration time in all testing phrases)/ 
(total testing data time) = 4.45%. So we can achieve 
speaker identification error rate = 0.7% by sending 
only 4.45% of the speaker utterance through 
wire/wireless communication system.

Figure 5. An example of one speaker utterance containing one
segment of phoneme “ay”.

Taking the contribution of all phonemes of the same 
type of each utterance into account improved ER. 
We have conducted the same experiment taking all 

utterance phonemes contribution into account and we 
achieved 0.29% identification error rate. 
All the above results were obtained using text-

prompted approach in order to be able to segment 
speaker testing speech. It is strongly required to 
conduct text-independent experiment.

4.5. Text-Independent Identification Error 
Rate Using the Contribution of All 
Utterance Phonemes

Applying the approach of section (4.3) on text 
independent YOHO testing data, we could achieve ER
= 0.94%. Table 3 shows a summary of the whole 
utterance speaker identification results.

Table 3. Summary of the whole utterance speaker identification 
results.

Approach Traditional
GMM

Text-Prompted ER 
Using the 
Contribution of All 
Utterance 
Phonemes

Text-Independent 
ER Using the 
Contribution of 
All Utterance 
Phonemes

ER 1.68% 0.29% 0.94%

5. Conclusions
In this paper we have investigated the phonemes effect 
on the speaker recognition task. We found that ER is 
inversely proportional to the frequency of the phoneme 
in the training and testing data and it depends on the 
phoneme type too. In general vowel phonemes contain 
a lot of speaker dependent features so they are very 
beneficial for speaker recognition task. Phoneme 
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segmentation of a speaker utterance before recognition 
is strongly enhancing speaker recognition results. For 
YOHO database we found that the phoneme “ay” gives 
0.7% identification error rate. We can pick up the “ay” 
phone segments from speaker utterance and send it 
through the wire/wireless communication system for
speaker identification process to decrease the system 
computations and increase the system speed. Taking 
the contributions of “ay” segments into account when 
calculating ER, we could achieve 0.7% identification 
error rate using 4.45% of the speaker utterance only.
In the future work we will investigate the rest 

phonemes effect on speaker recognition using other 
speech corpora.
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