
134 The International Arab Journal of Information Technology,   Vol. 3,   No. 2,   April  2006

Protocols for Committing Mobile Transactions
Nadia Nouali1&2, Habiba Drias2&3, and Anne Doucet4

1Mobile Computing Department, CERIST, Algeria
2Faculté du Génie Electrique, Université Houari Boumediene, Algeria

3Institut National d’Informatique, Algeria
4LIP6 Laboratory, Université Pierre et Marie Curie, France

Abstract: Mobile computing has attracted attention of intensive researches during the recent years. Many papers revisit the 
conventional implementation of distributed computing paradigms for use in this new environment. A key paradigm of the 
transaction processing is the transaction commitment. A commitment mechanism such as Two Phases Commit (2PC) protocol, 
a fundamental asset of transactional technology (and its variants), ensures consistent effects of a distributed transaction. This 
paper surveys the solutions proposed for mobile transaction commitment and outlines how the conventional commit protocols 
are revisited in order to fit the needs of a mobile environment. The different approaches try to deal with the slow and 
unreliable wireless links, the lightweight devices and their limited resources, the frequent disconnections and the movement of 
mobile devices. 

Keywords: Mobile transaction commitment, disconnection, mobility, resources constraints, wireless communication.

Received November 3, 2004; accepted February 21, 2005

1. Introduction
In distributed systems, an Atomic Commitment 
Protocol (ACP) is needed to terminate distributed 
transactions. A transaction is a paradigm designed as a 
data access consistency mechanism and its use is 
widespread in many different kinds of computing 
systems. A transaction is defined as a set of operations 
that form a logical unit of work. The essential idea of a 
transaction is indivisibility, i. e., either all the 
operations of the transaction are permanently 
performed or none of them is, and its partial results are 
not visible to other transactions. Traditionally, a 
transaction semantic is defined by the ACID 
properties: Atomicity, consistency, integrity and 
durability. In a distributed environment a transaction T 
may involve multiple parties, namely resources servers 
(generally data base servers) where its operations are 
executed. To preserve data consistency, the all or 
nothing effect of the transaction (namely A and D 
properties) is usually enforced at the commit time of 
the transaction [3]. The most commonly used 
mechanism to deal with the commitment problem is 
the Two-Phase Commit (2PC) protocol that allows the 
involved parties to agree on a common decision to 
commit or abort the transaction even in the presence of 
failures. Some well known standards such as ISO [12], 
X/OPEN [29] and CORBA [21] include the 
specification of services that provide the 2PC protocol 
semantics. Much has been written about this protocol 
and its variants. The most popular variants, i. e., 
Presumed Commit (PrC) [19], Presumed Abort (PrA) 
[19], Early Prepare (EP) [26], etc, attempt to minimize 

execution overhead, in terms of message traffic and log 
writes. The abundant literature about 2PC protocol and 
its continuing refinements until recently shows the 
importance of this topic for distributed systems [28] 
and encouraged us to take it as a basis for the study of 
the effects of mobile environment by the transaction 
commitment. In mobile environment earlier researches 
have generally focused on the design of new 
transaction models mostly relaxing ACID properties 
[5, 6, 7, 8, 16, 17, 18, 20, 23, 24, 27], in this paper we 
precisely focus on the ACP mechanisms.

Like many other protocols in distributed computing, 
the 2PC protocol assumes that all the communicating 
partners are stationary hosts, equipped with sufficient 
computing resources and power supply, exchanging 
messages over wired networks with a permanently 
available bandwidth. These assumptions are no longer 
valid in the new wireless environment where hosts may 
be portable devices equipped with more or less 
resources (CPU, memory, and power) and 
communicating over wireless links. Wireless 
communication induces much lower bandwidth, higher 
latency and error rates and more expensive cost. The 
objective of this paper is to prospect about the 
problems faced to insure transaction commitment in 
the new mobile wireless environment and to highlight 
the key issues to deal with in the design of ACP 
protocols for mobile distributed transactional systems. 

The remainder of this paper is organized as follows. 
Sections 2 and 3 present the mobile environment 
characteristics and their impact on the 2PC protocol 
execution. Section 4 reviews papers related to the 



Protocols for Committing Mobile Transactions 135

commitment topic in mobile environment. In section 5,
we highlight the principal ideas which emerge from 
this study. Section 6 concludes the paper.

2. System Architecture  
We adopt the system model depicted in Figure 1 that is 
a largely accepted architecture in the literature of 
mobile computing research [4, 8, 11, 14]. A mobile 
system is a distributed one that supports mobility. The 
global architecture consists of two distinct sets of 
entities: Mobile Hosts (MH) and Fixed Hosts (FH). A 
MH is a computer that can move while maintaining its 
network connection through wireless links.  MHs are 
connected to the fixed part of the network via a special 
type of FH called Base Stations (BS) or Mobile 
Support Stations (MSS). A BS is a computer 
augmented with a wireless interface to communicate 
with mobile hosts. BSs communicate with the other 
fixed hosts via wired links. Each BS covers a 
geographical area called a cell. A mobile host can 
directly communicate with one base station, the one 
covering the geographical area in which it moves. Due 
to its mobility, a MH may cross the border between 
two different cells while being active, this process is 
called handoff. The handoff process is under the BS 
responsibility. We assume that certain FHs are 
equipped with public databases and that certain MHs 
may also be equipped with personal databases. For 
simplicity purposes, we also assume that BSs have 
some processing capability such as interpreting MHs 
and FHs requests. 

Figure 1.  Mobile system architecture.

There are differences between a traditional 
distributed system and a mobile system. First, MHs 
have limited capabilities compared with those found in 
the fixed case like slow CPU speed, little memory, low 
battery power, small screen size. Type of connectivity 
is a major second difference. In a distributed system 
fixed hosts are connected to the network through 
continuous high-bandwidth links, while in a mobile 
system devices are connected via wireless links (i. e., 
GSM network, satellite, WaveLan, HiperLans, 
Bluetooth) characterized by a very lower bandwidth 
and big latency. In the fixed system the hosts are rarely 

disconnected. In the mobile scenario; the units are 
frequently disconnected involuntarily while roaming   
or because of a damage, or voluntarily, for example, to 
save battery power. The mobility of portable devices 
adds new difficulties to deal with such as handoff 
situations. In the next section we will show how these 
new characteristics impact the ACP paradigm.

3. Executing 2PC Protocol in Mobile 
Environment 

The operations of a distributed transaction Td can 
execute on different sites (hosts) widespread over the 
network. The subsets of operations executed on the 
different sites are called transaction branches. The 2PC 
protocol follows two steps or phases (see Figure 2): A
voting phase and a decision phase. In the first phase, 
the site where the transaction was originally initiated 
(generally called the coordinator) asks all the sites 
involved (participants) in the transaction to prepare to 
commit the transaction (prepare message). If, for any 
reason, including a concurrency control problem or a 
storage failure, any of the participants responds No, the 
coordinator decides to rollback the local branch of 
transaction and sends Abort messages to all 
participants. If all the received responses are Yes, the 
coordinator then decides to commit the local 
transaction branch and informs all the participating 
sites by commit messages. A Yes vote indicates that the 
local operations have been successfully executed and 
the updates could be made permanent or durable even 
if a failure occurs. A participant that votes No can 
unilaterally abort its transaction branch, whereas a 
participant that votes Yes must wait for the coordinator 
decision to abort or commit its branch. The participants 
acknowledge the coordinator decision. During the 
protocol execution, the coordinator and the participants 
keep, in stable storage, private logs which contain 
transaction control (prepare, commit, abort, end-
transaction) and data manipulation records (updates, 
undo and redo information). The coordinator’s log 
contains in addition to control and data manipulation 
records, the identities of all the participants. The logs 
are used during failure or crash recovery. Since failures 
may occur at any time, some records are force-written
(written by blocking I/O) to a reliable stable storage. 

In this paragraph, we analyze the main features of 
2PC protocol and identify the problems they raise in 
mobile context. We assume that a mobile transaction 
Tm is issued by a mobile client executing on an MH. If 
we follow the 2PC scenario described above, the 
mobile client would play the role of coordinator. The 
responsibility of the coordinator means that some 
processing and storage capabilities are needed. But, 
MHs are generally lightweight and do not have 
sufficient resources. In addition, the number of 
messages to be exchanged between the coordinator and 
the participants over the wireless link will be too large. 

DB FH

( ( ( ( (

MH

BS

) ) ) ) )

) ) ) )

    Fixed Network

Cell

BS: Base Station
MH: Mobile Host
FH: Fixed Host
DB: Data Base



136 The International Arab Journal of Information Technology,   Vol. 3,   No. 2,   April  2006

This may lead to an unbearable cost in terms of 
communication and energy consumption. The 
messages will all transit by the BS the client is attached 
to, thus increasing the latency of the protocol. In 
addition, keeping logs on a mobile client is unreliable 
because MHs are more prone to loss, damage or theft. 
Even if the logs are stored on the fixed part, this still 
leads to unnecessarily and costly messages overhead in 
the case the coordinator is kept on the MH. 

 Write Log. Vote: Yes or No.

 Force Write Log. Decision: Commit  or Abort.

Figure 2 . The 2PC protocol.

The first intuitive modification that comes to mind 
is to change the coordinator location: Send the 
transaction in batch to be executed on the fixed part of 
the network and execute the coordinator on the BS 
[20]. The mobile client may act just as a participant. 
Thus the number of messages exchanged over the 
wireless network, especially in up-stream, is 
significantly reduced and the logs will be kept more 
safely. Communication between participants and the 
coordinator do not transit via a BS. The scarcity of the 
MH resources does not affect the commit process. 
However, this schema does not take into account the 
mobility of client MHs. When a MH moves from one 
cell to another, it will not be able to communicate with 
the BS (where the coordinator is homed) of the cell it 
has just left. This may impact more severely failure or 
crash recovery situations where the coordinator and the 
client may need to get in touch to terminate the 
transaction. Furthermore, batch execution of a 
transaction is not suitable for interactive applications 
when user intervention is needed to either introduce 
data or get intermediary results necessary for decision 
making. Say for example, a certain itinerant salesman 
at the house of a client needs to know the state of the 
stocks for a set of components of an item. He launches 
a transaction that in its first phase gets information 
from a central database server and outputs it on the 
portable device screen. Then the salesman decides, 

according to his client’s desire, on whether to execute 
or not the second part of the transaction by submitting 
the command and eventually payment information. 
The same need of interactivity may exist in the case of 
a doctor present bedside of a patient (be it at the 
latter’s home or in a room at the hospital) interacting 
with the hospital central DB to get more details about 
the treatment the patient received during its last stay at 
the hospital and eventually fix and record the next 
appointment of medical control at the hospital and the 
examinations to have according to his state. 

Similarly to mobility, MH disconnection is an 
intrinsic characteristic of the mobile environment that 
impacts the 2PC protocol execution. Disconnections 
may occur voluntarily for a variety of reasons, for 
example, when the user deliberately cuts 
communication to not being disturbed while in a 
meeting, to reduce cost or power consumption or to 
save battery life. Disconnection may also occur 
involuntarily and unpredictably for example when the 
MH enters a non covered area (while in a train entering 
a tunnel), if battery runs out of power, because of a 
device damage or theft. It is important to note that 
disconnection of the MH can result in a failure if a FH 
tries to communicate with it without success. In other 
words, if the traditional 2PC is executed in mobile 
environment, disconnections will increase the number 
of, may be unnecessary, abortion decisions of 
transaction. As frequent are disconnections, as 
transaction abortions are. Things can be worse if these 
disconnections are long. This is not acceptable in 
mobile environments because frequent disconnections 
are not exceptions but rather are part of the normal 
mode of operation, so they should not be treated as 
failures. 

In the more general case where Tm involves mobile 
servers the same analyse can be done. Preserving 
scarce resources, handling disconnections and mobility 
are to be considered for the same reasons as above. 
The papers reviewed in the next section have adopted 
different ways to deal with the problems described 
above we compare their approaches and try to show 
their advantages and limits.

4. A Survey of Commit Protocols for Mobile 
Environment

Much literature concentrate on studying ACP 
especially 2PC protocol [9, 10] and its variants PrA
[19], PrC [19], EP [26], Coordinator Log (CL) [26], 
Implicit-Yes Vote (IVY) [2] in the distributed 
environment. A survey and analysis of ACP problem 
in the traditional environment can be found in [1] and 
interesting experiment results are also given in [15]. In 
the mobile computing literature, two main approaches 
are followed when it comes to the ACP problem. One 
approach focuses on the fact that strict atomicity is not 
adequate and rejects the 2PC mechanism, thus new 

Vote 

Ack

Ack

Decision

Vote

Prepare
Prepare

End

Begin

Coordinator Participant Participant 

Decision

Log

Log

Log
Log

Log

Wait

Wait

Wait

Wait



Protocols for Committing Mobile Transactions 137

protocols are especially designed to meet the mobile 
environment requirements [13, 22]. These protocols 
follow an optimistic approach and sometime tolerate 
weak or semantic atomicity by admitting the concept 
of compensation as in [13, 25]. The other approach 
tries to adapt the 2PC or its variants to mobile 
environment. For example, [4, 14] adapt the 2PC and a 
variant of 1PC (one-phase) ACP respectively. Perron et 
al. propose M-2PC (mobile-2PC) in [22] and compare
it to a new time stamp based protocol called Optimistic 
Concurrency Control with Update Time Stamp (OCC-
UTS). Kum et al. in [13] propose M2PC protocol and 
compare it to a completely new timeout based 
commitment protocol called Timeout-based mobile 
Transaction Commitment Protocol (TCOT). But, these 
papers do not really concentrate on optimising the 2PC 
protocol to make it work with adequate performance in 
mobile. They show the drawbacks of executing it in 
mobile environment and focus on proposing a new way 
of committing a mobile transaction.

4.1. Mobile 2PC Protocol
In [22], authors’ objective is to minimize the number 
of messages exchanged between mobile clients and a 
fixed server. They propose the Mobile 2PC (M-2PC) 
protocol an optimization of the traditional 2PC to send 
transactions in batch from the MH to the current BS 
which becomes the coordinator. The initiating MH acts 
as a participant. The control of transaction hands-off 
when the MH hands-off. That is, the uncompleted part 
of the transaction is sent along with the state 
information to the new BS which becomes the new 
coordinator. With each change in geographical location 
the MH will send a message to inform the BS that a 
handoff needs to be performed. By launching a 
transaction in batch the user interactivity with the 
transactional application is severely limited. Some 
applications may need this interactivity. Maintaining 
the MH as a participant means that the coordinator will 
continue to send messages to it (prepare downlink, 
vote uplink, decision downlink). In effect, all the BSs 
that participated in a transaction are also involved 
during commitment decision. 4h additional wired 
messages are needed if h is the number of hands-off. 
For n participants including the transaction MH 
initiator (4n + 4h) wired messages are generated.
Another limit of this protocol resides in its assumption 
that if a MH fails in one cell it will recover in the same 
cell. This means that it does not manage the situation 
where disconnection and handoff occur 
simultaneously.

4.2. Optimistic Concurrency Control with 
Update Time Stamps

The second protocol proposed in [22] is called 
Optimistic Concurrency Control with Update Time 

Tamp (OCC-UTS) which basic idea is to verify that a 
transaction is serializable before deciding if it should 
be committed or aborted [22]. The protocol assumes 
the existence of a local cache at the client site and that 
the transaction executes locally offline before 
committing at the server. The protocol uses a backward 
validation of serializability by checking if a
committing transaction is invalidated by any 
transaction that has already committed. Timestamps 
are associated with data items and used to compare the 
client data stamp with the last update stamp maintained 
at the server. To validate its data, a transaction checks 
invalidation reports that are broadcast periodically by 
the server. If the client locates a data item it has 
updated in this report, it can roll back the transaction 
without exchanging messages over the wireless link. 
Otherwise, a request to commit message is sent to the 
server. 

This protocol is suitable for PDAs or portable 
computers relatively well equipped in order to provide 
local application execution (offline execution). It 
provides a way of minimizing the number of abortions 
by verifying serializability at the client side before 
attempting to commit the transaction at the server. 
However, in data base servers with a heavy load, the 
MHs may wait for a long time and timeout before 
having their messages processed. The clients are MHs, 
no mobile server is taken into account in this schema. 
OCC-UTS is analytically superior in terms of wireless 
messages. But, it is also concluded that M-2PC could 
be further optimized and could not be discarded. Its 
most advantage is its possible uses in hybrid mobile 
networks, i. e., networks where both mobile and static 
nodes interact with the same database. Because the 
implementation of the protocol on the database servers 
is no different from classical 2PC, it should not be too 
difficult to have the two working together. 

4.3. Timeout-Based Mobile Transaction 
Commitment Protocol 

Reference [13] proposes a new protocol for 
commitment, the protocol TCOT that was compared 
with M2PC protocol. M2PC is an adapted version of 
2PC protocol to mobile environment. The 
modifications applied to 2PC protocol make it work in 
a similar way as TCOT, but M2PC is not studied in 
depth. The authors show that their protocol commits 
transactions in mobile database systems with minimum 
number of uplink (client to server direction) messages 
compared to M2PC. Contrary to [22], they envision a 
system offering a connectivity mode called mobile 
connectivity that allows clients to remain connected all 
the time to the network through the wireless channel 
irrespective of their states (mobile, static, dozing, etc.) 
and location in opposition to the intermittent 
connectivity mode where a client voluntarily decides 
when to connect/disconnect to/from the network. 



138 The International Arab Journal of Information Technology,   Vol. 3,   No. 2,   April  2006

TCOT is an optimistic approach that assumes that 
well defined timeouts may lead to fragments
completing and committing within it at each 
participant site with a minimum risk for abortion [3]. 
The authors have proposed to calculate the timeout as a 
function of many system and communication variables 
(workload, I/O rate, cache hit rate, etc.). In TCOT a 
transaction Tm is split into fragments that will be 
executed on different sites (the first fragment is 
executed at the initiating MH). The BS coordinator 
sends the fragments to the relevant DBSs for update of 
the primary copy. The participant sites take a local 
commit/abort decision about their fragments and 
inform the coordinator. MH sends its log and updates 
to the coordinator which forwards them to the relevant 
DBS once it takes the final decision about Global 
commit/abort. Let Et being an upper bound of the 
execution time, i. e., just long enough to allow a 
fragment to successfully finish its entire execution on a 
participant site and St the upper bound of data shipping 
time from the MH to the DBS. The Global commit is 
decided by the coordinator if it receives the updates log 
from the MH before St (shipment delay) expires and 
commit messages from all other participants. 
Otherwise, if the total time found by summing all Et
(execution time at the participant site) values and the St 
value expires, or an abort message is received then a 
Global abort is decided and all participants are 
informed. If a participant receives the abort message 
after local commit is performed then a compensating
transaction is needed. In the case of handoff the 
authors propose either to choose the coordinator 
statically or dynamically. In the later case, when the 
MH moves, it informs the BS about its previous 
coordinator and participant Database Servers (DBS) 
during registration. The new BS informs all DBSs 
about this change with no additional traffic on wireless 
links.

Correctness and performance analysis of TCOT [13] 
shows that in normal execution only 2 messages are 
required whereas 3 messages are needed with M2PC. 
However, in the case of a fast moving and frequent 
disconnecting MH, TCOT increases the abort 
probability and consequently the number of wireless 
messages also increases exponentially. The Et formula 
of TCOT was obtained from an analytical analysis, 
however empirical analysis is needed to provide more 
realistic verification. In addition little attention has 
been taken concerning the choice of St timeout and its 
effects on the protocol performance. This is an 
important factor because it is a function of networking 
parameters of wireless links that are extremely varying. 
The important assumption is that mobile hosts remain 
connected all time over wireless links which seems 
unrealistic in today mobile environments. TCOT may 
perform well in an environment where communication 
over wireless links is highly available and reliable; 
otherwise, the abortion rate may be unbearable for 

many application domains. Furthermore, the 
compensation may not satisfy certain applications 
where strict global ACID properties are required. 
Another issue to consider is how TCOT will behave if 
certain DBSs are mobile.

4.4. Unilateral Commit for Mobile 
The goals of Unilateral Commit for Mobile (UCM) 
protocol [4] are to support off-line processing of 
transactions, lightweight and moving client and 
servers. A transaction executing offline can commit as 
soon as its log has been transferred on the BS without 
waiting for acknowledgement of the fixed servers 
because all the verifications take place before commit 
time. During the UCM execution some servers can 
disconnect, legacy systems (which do not export a 
standard 2PC interface) are accepted and UCM uses a 
single message round thereby saving wireless 
communications. UCM protocol is based on the idea of 
One-phase Commit that has been suggested in [9] and 
taken up in many variations such as the Early Prepare 
protocol, the Coordinator Log protocol [26] and the 
Implicit Yes-Vote protocol [2]. 1PC eliminates the 
Voting phase of 2PC, during which the coordinator 
verifies whether or not the participants can locally 
guarantee the ACID properties, by having these 
properties guaranteed at commit time at every 
participant site, i. e., during the execution phase of the 
transaction [4]. 

The paper is based on a network infrastructure 
similar to that depicted in Figure 1 with the possibility 
of including smart card based devices (for example a 
cellular telephone equipped with a SIM card) as a case 
of the lightweight servers. Five types of software 
components interact in the execution and termination 
phases of a transaction, namely the Application
initiating the transaction operations, the LogAgent that 
logs each operation before execution, the Participants
that execute these operations, the Coordinator that 
pilots the termination protocol and the PAgents that 
represent the participants during the termination 
protocol and are used during recovery. The 
Coordinator is always located on the fixed network 
while the other components can be hosted by a MH. 
During the execution phase, the LogAgent registers 
each operation before it is sent to the participant for 
execution by a non force-write. Each operation is 
acknowledged up to the application. At termination 
time, the application issues a commit request after 
receiving all the acknowledgements. At this point, the 
ACI properties are locally verified by the participants. 
The Durability property is insured by the Coordinator
which gets the log from the LogAgent and force-writes 
it before broadcasting the decision to the participants.

Disconnections are treated by adopting the 1PC 
approach in which some sort of local pessimistic 
concurrency control and immediate integrity control is 



Protocols for Committing Mobile Transactions 139

required to maintain the ACI properties before the 
commit time. This does not cause any problem in the 
case of lightweight servers such smart cards or cellular 
phones that are not likely to support parallelism (one 
user at a time). However, this is not always possible if 
the participants are not capable of providing such 
mechanisms. Recovery procedure accounts on the 
coordinator logs to re-execute a branch. This limits, to 
some extent, the autonomy of the participants, thus the 
availability of the coordinator logs is crucial to the 
success of the protocol. Moreover, the vulnerability 
window (or uncertain period), during witch a failure 
requires special recovery action, is longer than in 2PC 
as now it stretches from the beginning to the end of the 
transaction. The mobility/handoff problem was not 
explicitly treated by UCM. 

4.5. Two-Phase Commit Protocol for Low-
Powered Mobile Clients

Authors of [14] present a schema that we call in short 
L-2PC as an adaptation of the traditional 2PC protocol 
for mobile computing. It is designed to support 
location-dependent information access by dynamically 
allocating the most-fit service supplier for the on-the-
move client. In summary, the protocol is designed for 
the commitment of a set of services executing on a set 
of servers which are spread over IP-like network. An 
m-commerce application on mobile Internet is an 
appropriate example. Four main modules are involved 
in the protocol: The client is the issuer of the commit 
request, the current proxy is the BS of the cell within 
which the mobile client is currently located, the 
coordinator is the BS who first receives the commit 
request and the worker is the server providing needed 
service in the commit request. Upon receiving the 
commit request, the coordinator tries to find and 
allocate qualified workers who physically supply the 
needed service. If it finds them and all promise to 
finish the job, the coordinator decides to really commit 
the transaction and inform all the participating
workers. Otherwise, if the coordinator can not find a 
worker for a specific service, it informs all the workers 
to abort and rollback their jobs. After receiving the 
ACKs from all the workers, the coordinator finds the 
current proxy of the mobile client and forwards the 
result to it. Then the proxy delivers the result to the 
client which also sends an ACK to the proxy. The 
latter sends ACK to the coordinator who releases the 
resources.

In the L-2PC protocol, when the client moves to a 
new cell, a proxy handoff takes place. Disconnection 
handling is simplified as after submission of the 
request the coordinator takes over all succeeding job, 
so the client can disconnect during the service session. 
Power of mobile clients is saved by shifting the most 
workload to the fixed hosts and freeing them from 
staying connected during all the commit process. In 

our opinion the particularity of this protocol is the way 
it deals with the handoff problem as it embeds the 
mobile-IP concept at the application level. However it 
is clear that this is done at the price of introducing an 
additional messages cost to the original protocol. 

4.6. Semantic Atomicity CO2PC Protocol
The CO2PC protocol [25] provides semantic atomicity 
by allowing participants to perform either optimistic 
local commit (locally committed results are shared) or 
non-optimistic commit. The authors attempt to increase 
the flexibility of participants (particularly MHs), thus 
compensable transactions can be committed locally in 
an optimistic manner, whereas non-compensable ones 
have to wait for the global decision. CO2PC protocol is 
a Combination of an Optimistic approach and 2PC. 
The CO2PC coordinator must be a participant FH. If 
there is no FH participant then an Agent will play this 
role. A participant making optimistic commit (called 
opt-participant) executes its transaction branch and 
commits/aborts it unilaterally. Then, it sends its vote to 
the coordinator. If the global decision is commit, opt-
participants are done; if it is abort they have to launch 
compensating transactions. A participant making non-
optimistic commit (called non-opt-participant) 
executes the 2PC protocol locally with the underlying 
DBMS. Each DBMS sends its vote to the Client/Server 
which forwards it to the CO2PC coordinator. If the 
vote is abort, the participant aborts the transaction 
branch unilaterally; otherwise the branch enters into a 
prepared state. When the decision of the CO2PC 
coordinator arrives to participants, the corresponding 
commit/abort is executed on the underlying DBMS. 
Notice that the 2PC part of the protocol is made on the 
same host and does not require messages through the 
wireless network. Only vote and decision messages are 
transmitted over the wireless network (2 messages per 
participant).

In order to tolerate MH disconnections, to limit 
undefined blocking and to break eventual deadlocks, 
CO2PC uses timers. Commits must be done before 
timeouts expire. When a participant votes commit, it 
deactivates its timer and has to wait for the global 
decision. If the timeout expires before the coordinator 
has all votes, abort or compensation is used. 2PC is 
used by CO2PC because – for non-compensable 
transactions – resources must be retained until a global 
commit/abort. Notice that 2PC is not used for the 
global coordination of atomicity. Thus, CO2PC is 
proposed to address several kinds of transactions (non-
compensable as well as compensable ones) and 
different types of MHs (with limited and unlimited 
resources).

To provide recovery, CO2PC records its progressing 
steps in the coordinator and participant logs. Since 
failures and disconnections can occur at any moment, 
logging information should be forced to be written (i.



140 The International Arab Journal of Information Technology,   Vol. 3,   No. 2,   April  2006

e., flushed into a stable storage) before sending 
messages. For MHs, CO2PC information will be 
logged in the Client log as well as in the corresponding 
Agent. In order to preserve DBMS heterogeneity, the 
authors make no assumptions about the recovery 
policy used by underlying DBMS. To preserve 
autonomy, recovery information (e. g., logs) is not 
required. Once compensating transactions are initiated 
they should complete successfully. This characteristic 
is called persistence of compensation [GAR 87] and is 
ensured by resubmitting compensating transactions 
until they commit. If persistence of compensation is 
guaranteed there is no need to use an atomic commit 
protocol to obtain the atomicity of the set of 
compensating transactions. 

In CO2PC, after the vote is sent, an MH may 
disconnect temporally. In that case, the coordinator 
decision is logged in an Agent and sent to the MH 
when reconnection occurs. In the same way, the 
timeout assigned to each component transaction allows 
the MH to disconnect provided that the vote is sent 
before the timeout expires. Both opt and non-opt-
participants may disconnect. Nevertheless resources of 
non-opt-participants will remain blocked until 
reconnection (because their 2PC phase is not finished).

5. Discussion
Table 1 and 2 summarize the principal properties of the 
protocols studied above. To commit a transaction, the 
best protocol in terms of wireless messages is UCM. 
However this is obtained at the price of making strong 
assumptions about the local concurrency and recovery 
mechanisms and this may limit its usability in arbitrary 
heterogeneous systems. TCOT and OCC-UTS adopt 
new approaches completely different from 1PC or 2PC 
protocols. The other protocols conserve 2PC principles 
and try to optimize it to fit mobile environment 
requirements. The number of wireless messages of 
M2PC and TCOT proposed in [13] do not indicate the 
superiority of TCOT. However, this superiority is 
important when the overall performance (including 
total number of messages on wired and wireless links) 
is considered; this is explained in more details in [13]. 
Note that Table 1 summarizes the message complexity 
in the case of mobile clients as besides UCM and 
CO2PC all the protocols studied do not consider the 
case of mobile servers. 

UCM does not indicate how to address the handoff 
situations. With TCOT, if a client moves from a cell to 
a new one, it sends the identity of its coordinator in the 
registration process at the new BS which then becomes 
the new coordinator. The new coordinator gets the 
state information from the old one to take over the 
remaining job. This is mandatory if the coordinator 
changes. Otherwise, no transfer of information is 
needed; only a classical registration of the MH is 
assumed. L-2PC and CO2PC use also a similar schema 

as TCOT in the case the latter uses dynamic 
coordinator transfer (that is the coordinator migrates as 
the MH does). However L-2PC clearly separates the 
handoff that physically transfers MH connection 
between the old and the new BSs from the ongoing 
commitment service. Thus it defines the notion of 
proxy handoff as a solution to mobility management at 
higher layer and CO2PC uses Agent handoff. M-2PC 
protocol also takes into account the mobility 
management at the higher level in the absence of 
underlying mechanisms to take over this task. An 
important conclusion that comes from Table 1 is that 
the handoff process do not increase the number of 
wireless messages when it is assumed that the needed 
information are transferred from the MH to the BS as a 
part of the registration process. Otherwise, if the MH 
does the transfer then one additional wireless message 
is needed at each handoff (see M-2PC). Concerning the 
power and other resources constraints, the general idea 
is to shift the workload to the fixed part of the network 
except when off-line execution is desired, then the MH 
must be well equipped.

Table 1. The protocols performances.

Pr
ot
oc
ol

No. of Wireless 
Messages to 
Commit a

Transaction (Only 
the Client is
Mobile)

Site of
Transaction
Execution

Mobility
Management

Impact of  
Frequent

Disconnection

M
-2

PC
[2

2]

2 U + h U + 1 D
h: No. of hands off
U: No of upstream  

 msg.
D: No of downstream  
     msg.

FH At the protocol
level

Increase the 
number of 
transaction 
abortions

M
2P

C
[1

3] 2 U + 1 D MH &FH

O
C

C
-U

TS
[2

2]

1 U + r D
r: No of invalidation 

reports
MH

Reception of
invalidation 

reports

TC
O

T
[1

3]

2 U + e U
e: No. of timeout

extensions
MH &FH

Registration 
level &

protocol level

Increase the 
number of 
transaction 
abortions

U
C

M
[4

] 1 U + 1 D MH &FH

Delay local 
transactions as 
resources are 
not released

L-
2P

C
[1

4] 2 U+ 1 D FH
At the protocol

level

Results must be
kept on behalf 

of MH

C
O

2P
C

[2
5] 1 U + 1 D MH&FH

Registration 
level &

protocol level

Results must be
kept on behalf 

of MH



Protocols for Committing Mobile Transactions 141

UCM, OCC-UTS and CO2PC support off-line 
execution and minimize the risk of abortion at 
reconnection time. Frequent disconnections augment 
the abortion risks of TCOT and drop its performance. 
Because a mobile environment is failure prone and 
disconnections are frequent and unforeseeable and may 
last for long periods of time we claim that even though 
the timeout mechanism is well accepted in traditional 
distributed systems as a means to deal with the 
network or site failures detection; in mobile 
environment it is more reliable to not rely   on any 
assumption about message and/or process scheduling 
delays. Thus, if necessary, a timeout mechanism can be 
acceptable only on the fixed part of a protocol 
execution.

Table 2. The protocols usability.

Pr
ot
oc
ol

Consistency
approach

Mode of
connection

Type of 
network

Legacy 
system

integration

M
-2

PC
[2

2] Strict Continuous May be hybrid Not
possible

M
2P

C
[1

3] Strict Continuous Mobile clients,
 IP- like

O
C

C
-U

TS
[2

2] Optimistic
Strict

Intermittent Mobile clients,
 IP- like

Not 
possible

TC
O

T
[1

3] Optimistic
Semantic Continuous

Mobile clients
GPRS-like

Not 
possible

U
C

M
[4

] Pessimistic
Strict

Continuous 
&

Intermittent

May be hybrid mobile 
clients and servers 
(even lightweight)

Possible

L-
2P

C
[1

4] Strict
Continuous 

&
Intermittent

Mobile clients
IP-like hybrid Possible

C
O

2P
C

[2
5] Optimistic

Semantic

Continuous 
&

Intermittent
May be hybrid Possible

6. Conclusion
Mobile database processing will be quite diverse with 
probably many different transaction models and 
processing modes. Some will follow the traditional 
ACID requirements while others may not. Semantic 
based commit protocols eliminate the uncertainty 
period of transaction termination and the blocking 
effects [13]. Such protocols are proposed as 
alternatives to 2PC. The principal of these alternative 
protocols is to allow a participant to unilaterally 
commit a transaction and release the resources it holds. 
If the final decision is global abort, compensation is 
used to semantically undo the aborted transaction 
effects. These protocols do not provide strict atomicity 
as it was defined in traditional ACID transactions but 
they provide a semantic atomicity. The problem that 
arises from this is that compensation has limited 

applicability and in many applications it is necessary to 
ensure the strict atomicity. Needs of future applications 
will certainly vary and both ACP types of protocols 
strict or weak must be developed. 

This paper addresses the transaction commitment 
problem in mobile environment. It describes the 
challenges faced in the new environment and surveys 
papers dealing with this topic. The principal techniques 
or mechanisms adopted to solve the problems are 
highlighted. This study represents the first step of our 
ongoing research which consists of the design and 
experiment of a commitment protocol that satisfies as 
many requirements of the mobile environment as 
possible. 

References
[1] Abdallah M. and Pucheral P., “Validation 

Atomique: état de L’art et Perspective,” Revue 
Ingénierie des Systèmes d’Information (ISI), vol. 
5, no. 6, 1998.

[2] Al-Houmaily Y. and Chrysanthis P., “Two-Phase 
Commit in Gigabit-Networked Distributed 
Database,” in Proceedings of the 8th International 
Conference on Parallel and Distributed 
Computing Systems (PDCS), pp. 554-560, 1995. 

[3] Bernstein P. A., Hadzilacos V., and Goodman N., 
Concurrency Control and Recovery in Database 
Systems, Addison Wesley, USA, 1987.

[4] Bobineau C., Pucheral P., and Abdallah M., “A 
Unilateral Commit Protocol for Mobile and 
Disconnected Computing,” in Proceedings of the 
12th International Conference on Parallel and 
Distributed Computing Systems (PDCS), Las 
Vegas, USA, August 2000.

[5] Chrysanthis P. K., “Transaction Processing in 
Mobile Computing Environment,” in 
Proceedings of the IEEE Workshop on Advances 
in Parallel and Distributed Systems, Princeton, 
New Jersy, USA, pp. 77-83, 1993.

[6] Dirckze R., Gruenwald L., “A Pre-serialization 
Transaction Management Technique for Mobile-
Multi-Databases,” Special Issue on Software 
Architecture for Mobile Applications, vol. 5, no. 
4, pp. 311 - 321, 2000.

[7] Dunham M., Hellal A., and Balakrishan S., 
“Mobile Computing and Databases: Anything 
New?,”  in Proceedings of the ACM SIGMOD 
record, vol. 24, no. 4, December 1995.

[8] Dunham M., Hellal A., and Balakrishan S., “A 
Mobile Transaction Model that Captures both the 
Data and Movement Behaviour,” Mobile and 
Networks Applications, vol. 2, pp. 49-162, 1997.

[9] Gray J., Notes on Database Operating Systems. 
Operating Systems: An Advanced Course, LNCS, 
vol. 60, Springer Verlag, 1978. 



142 The International Arab Journal of Information Technology,   Vol. 3,   No. 2,   April  2006

[10] Gray J. and Reuter A., Transaction Processing: 
Concepts and Techniques, Morgan Kaufman, 
1993.

[11] Imielinski T. and Badrinath B. R., “Mobile 
Wireless Computing,” Communication of the 
ACM, vol. 37, no. 10, pp. 19-28, 1994.

[12] ISO, Open System Interconnection- Distributed 
Transaction Processing (OSI-TP) Model, ISO IS 
100261, 1992.

[13] Kumar V., Dash K., Dunham M. H. and Seydim 
A. Y., “A Timeout-Based Mobile Transaction 
Commitment Protocol,” in Proceedings of 
ADBIS-DASEAA 2000, Advances in DB and 
Information Systems, In cooperation with ACM 
SIGMOD, Prague, Czech Republic, September 
2000.

[14] Lin Y. W. and Wu H. U., “Commit Protocol for
Low-Powered Mobile Clients,” IEICE 
Transactions on Information and System, vol. 
E82-D, no. 8, pp. 1167-1179, August 1999.

[15] Liu L., Agrawal D., and El Abbadi A., The 
Performance of Two-Phase Commit Protocols in 
the Presence of Site Failures, Technical Report 
TRCS94-09, University of California at Santa 
Barbara, April 1994.

[16] Lu Q. and Satyanaranyanan M., “Isolation-Only 
Transactions for Mobile,” Operating System 
Review, pp. 81-87, 1994.

[17] Madria S. K. and Bhargava B. K., “A 
Transaction Model for Mobile Computing,” in 
Proceedings of the International Database 
Engineering and Application Symposium
(IDEAS), 1998.

[18] Mazumbar S. and Chrysanthis P. C., “Achieving 
Consistency in Mobile Databases through 
Localization in PRO-MOTION,” in Proceedings
of the DEXA International Workshop on Mobility 
in DB and Distributed System, Italy, pp. 82-89, 
1999.

[19] Mohan C., Lindsay B., and Obermarck R., 
“Transaction Management in the R*Distributed 
Data Base Management System,” ACM 
Transactions on Database Systems, vol. 11, no. 
4, pp. 378-396, 1986.

[20] Narasayya V. R., Distributed Transactions in
Mobile Computing System, draft, submitted as 
part of the requirement for CSE552, March 1994.

[21] OMG, Object Management Group, Object 
Transaction Service, OMG Document 94.8.4, in 
OMG (Ed), 1994.

[22] Perron M. and Bai B., “Low Cost Commit 
Protocol for Mobile Computing Environments,”
available at: http://www.cs.Ualberta.ca, 
December 1999.

[23] Pitoura E. and Bhargava B., “Data Consistency in 
Intermittently Connected Distributed Systems,” 
IEEE Transactions on Knowledge and Data 
Engineering, vol. 11, no. 6, pp. 896-915, 1999.

[24] Pitoura E. and Bhargava B., “Revising 
Transaction Concepts for Mobile Computing,” in 
Proceedings of the IEEE Workshop on Mobile 
Systems and Applications, Santa Cruz, CA, 1994.

[25] Serrano-Alvarado P., Roncancio C., Adiba M., 
and Labbé C., “Adaptable Mobile Transactions 
and Environment Awareness,” in Proceedings
19th Journées Bases de Données Avancées, BDA 
2003, Lyon, France, October 2003.

[26] Stamos J. and Christian F., “A Low Cost Atomic 
Commit Protocol,” in Proceedings of the 9th

Symposium on Reliable Distributed Systems, 
1990.

[27] Walborn G. D. and Chrysanthis P. K., 
“Promotion: Management of Mobile 
Transactions,” in Proceedings of The 11th ACM 
Annual Symposium on Applied Computing, 
Special Track on Database Technology, Van 
Jose, CA, pp. 101-108, 1997.

[28] Weikum G. and Vossen G., Transactional 
Information Systems Theory, Algorithms, and the 
Practice of Concurrency Control and Recovery, 
Morgan Kaufmann, USA, 2002. 

[29] X/Open, CAE Specification, Distributed 
Transaction Processing: Reference Model,
X/Open Guide, version 3, G307, X/Open
Company Limited, 1996.

Nadia Nouali obtained her 
engineering degree in computer 
science from Houari Boumediene 
University of Algiers and her 
magister degree from the Centre of 
Advanced Technologies of Algiers, 
Algeria. She has been a member of 

the scientific and research staff. Since 2001 she is the 
head of the Mobile Computing Department of the 
Research Centre in Scientific and Technical 
Information of Algeria (CERIST). Her research 
interests include internet architecture and protocols, 
wireless networks, distributed computing, mobile 
computing, ad hoc networks, mobile databases and 
transactions, and security. 

Habiba Drias received her master 
degree in computer science from 
Case Western Reserve University, 
Cleveland OHIO, USA, in 1984, and 
the doctorate degree prepared at 
ParisVI University from Algiers 
USTHB University in 1993. She has 

directed the Computer Science Department of USTHB 
and then the laboratory of research in AI for many 
years. She has over fifty published papers in the 
domain of artificial intelligence, e-commerce, 
computational complexity, and the satisifiability 
problem. Currently, she is the principal of the Algerian 
National Institute of Computer Science.



Protocols for Committing Mobile Transactions 143

Anne Doucet started as an assistant, 
then lecturer at the Paris XI-Orsay 
University. She is a professor at 
Paris VI-Pierre & Marie Curie 
University since 1994. She is the 
head of the database research team 
of the Computer Science Laboratory 

of Paris VI. Her research field is mainly in databases.  
Her first work concerned the object databases; she took 
part in particular in the design of the O2 Object 
DBMS. Then she worked on the coherency of object 
and distributed data bases.  Her research interests 
include integration of heterogeneous and distributed 
data.


