
The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 89

The Development of a Simplified Process
Model for CBSD

Hazleen Aris1 and Siti Salwah Salim2

1College of Information Technology, Universiti Tenaga Nasional, Malaysia
2Faculty of Computer Science and Information Technology, University of Malaya, Malaysia

Abstract: This study introduces the MyCL process model, a simplified Component-Based Software Development (CBSD)
process model that is clear and easy to be understood and hence, applied. It is motivated by the fact that even though many
CBSD process models have been proposed, a clear and step-by-step guidance is still lacking. They vary from one another and
some are even complicated and difficult to be applied. The MyCL process model is therefore derived by retaining the strengths
and overcoming the impracticality causes of these existing CBSD process models. Evaluation of the model, which was carried
out by interviewing the experts in this field has shown that this model has a good potential to be applied by software
developers, especially those who are new to CBSD.

Keywords: Software methodology, component-based software development, software engineering, process model.

Received April 6, 2005; accepted June 30, 2006

1. Introduction

As being practiced nowadays, most of the software
applications in use are not developed from scratch [1,
14]. Designs and codes from previously developed
software applications within the same domain are
being reused, unsystematically however, with
appropriate modifications done to suit their intended
purpose. If systematic reuse of the previous designs
and codes is practiced instead, the benefits gained can
be greatly increased. Systematic software reuse can be
accomplished by considering reuse from the very early
stage of the software development process where the
related software units are grouped together for later
reuse [14]. These software units are called components,
the fundamental ingredient for the Component-Based
Software Development (CBSD).

CBSD brings together with it a range of benefits,
from enhancing individual programmer’s productivity
to providing effective cost analysis on the software
developed. These benefits of CBSD can be
summarized as increased programmers’ productivity
[4], increased reliability [23], standards compliance
[4], improved efficiency [4], effective use of specialists
[6, 23] and effective cost analysis [4]. With these
benefits, everybody will surely expect it to have taken
off with a blast. However, in actuality, it is very much
a work in progress and there are still many on going
research being carried out on the various areas of
CBSD. This non exhaustive list of research areas
includes component definition and specifications [24,
25], CBSD process models [1, 2, 5, 7, 9, 13, 26],
configuration management in CBSD [15, 16, 27],

component repository [11, 22] and CBSD framework
[20, 27].

The main objective of CBSD is to reduce the overall
cost of a software development [14]. In other words,
the software has to be less expensive to produce and
maintain. Secondly, CBSD is also required for faster
delivery of software product [12, 14]. The software has
to meet the market window set by competing
organisations. Finally, CBSD also aims at producing
high quality software [8, 12]. This means that the
software has to serve the requirements of the process
that it is going to support and when serving the
process, it has to be done with minimum failures.

2. Resistances

Resistances that have delayed the progress towards
CBSD emerge from various aspects, ranging from the
technical to social problems. They can be generally
divided into three major categories; engineering,
management and ethics [14]. This study focuses on
finding the solutions to the problems in the engineering
category. As far as the engineering perspective is
concerned, the obstacles come from the deficient
opportunities to encourage reuse in the current
software development process, the lack of means to
clearly identify the elements of the existing CBSD
process model, and the differences that exist between
these CBSD process models [4, 14].

Firstly, the conventional software development
process is deficient in opportunities to encourage reuse
in that there is no specific place in the development
process where the developers can sit together and think
about parts of the system that can be separated out and

90 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

substituted with the reusable components [14]. In other
words, there is no specific place during the
development where the developers can consider
reusing existing components. Secondly, the lack of
means to clearly identify the elements that constitute a
CBSD process model that describe requirements,
architecture, analysis, design, test and implementation
along the development stream also makes the current
models complicated to be used [14]. Furthermore, the
differences that exist between these existing models
are adding to the complexity even more. Finally,
inherent complexities in the existing CBSD process
models as well as the differences across them have
therefore become a hindrance for the software
developers to apply the CBSD.

Obviously, a clear and easy-to-follow CBSD
process model is definitely required. This study will try
to resolve the above mentioned confusion by coming
out with such a process model. To achieve that, the
following series of tasks will be performed:

1. Deriving a simplified CBSD process model that is
clear and easy to be understood and hence, followed
especially by the software developers who are new
to CBSD. These developers may have heard of and
understand CBSD, but have never developed a
software application using the CBSD approach.
Hence, the process model to be derived will be
geared to suit small-scale system development, the
kind of software development that most likely will
be ventured by this group of developers. It is
important to mention here that the main focus of this
study will be on the processes that constitute the
model and not on the components construction.

2. Evaluating the proposed process model. This
evaluation will indicate to what extent that the
model has managed to acquire its intended features.
This should therefore be able to indicate whether or
not the overall research objectives have been
achieved.

The development of the model was also motivated by
the fact that even though many CBSD process models
have been developed, not many of them are currently
being applied by the software developers [1]. Thus, the
development of the MyCL process model began by
reviewing the strengths and weaknesses of the existing
CBSD process models, which was summarised in [3].
A study on the impracticalities of these process models
were then performed and also presented in [3], and as a
result, the MyCL process model was proposed.

3. Review of the Existing Process Models

The derivation process begins with a review on the
existing CBSD process models. The aim of this review
is to find out the strengths and weaknesses of each
model, which serve as the basis for the development of
the proposed CBSD process model. The summary of

this comparative study is presented in Table 1 below.
The details of this comparative study are presented in
[3].

Table 1. Comparison between existing models with respect to the
development processes.

 Models

 Process
 Descriptions B

ro
w

n
an

d
W

al
ln

au
 [

5]

E
nt

er
pr

is
e

So
ft

w
ar

e
[2

]
C

rn
ko

vi
c

[9
]

C
O

T
S-

B
as

ed

[1
3]

C
he

es
m

an
an

d
D

an
ie

ls
 [

7]
C

IS
D

 [
26

]

T
w

in
T

ra
ck

-B
as

ed

P
at

te
rn

 [
1]

Analysing Requirements to
Define System Vision

Determining Component
Specifications and
Architecture

Acquiring Qualified
Components from the
Component Market

Selecting Qualified
Component Creation
Processes

Understanding Known Bugs
to be Avoided in Selected
Components

Adapting and Removing
Mismatches Between
Selected Components

Customising Application
Design Based on
Components

Composing Adapted
Components According to
an Architectural Style

Deploying the Components
Using a Specified
Framework

Testing the Integrated
Components

Testing the Developed
System

Updating Components after
System Development

As we have seen so far, a number of CBSD process
models have been proposed. However, not many of
these models are currently being practiced by the
software developers. This is further supported by the
fact that, throughout our review made on these models
and their applications in the industries, there is only
one software company encountered as clearly adopting
one of these models in their software development
process. This software company is the microTOOL
GmbH [18], who is using the Cheesman and Daniels
model in the software development with slight
modifications. Amongst the reasons, at stated by Allen
[1] is that most current processes are too
overwhelmingly detailed to be applied in practical
enterprise.

As such, a comparative analysis is performed on
each model to find out the reasons for their low
usability. As a result of the analysis, the following
reasons have been identified as the possible causes for
the low usability:

1. Models such as Aoyama, COTS-based and CISD
were originated from the actual software project

The Development of a Simplified Process Model for CBSD 91

developments undertaken by the company involving
the researchers who are proposing the models.
Hence, the processes and activities that form the
process models are closely oriented to those projects
and are not general enough to be applied to other
software project development.

2. Reuse of the components from the previous
development cycle, even though mentioned in all
model descriptions, cannot be explicitly seen from
the models. With the exception of Twin track-based
model, the other models are open-ended (open-loop)
and do not incorporate component repository in
their models. For the CBSD to be successfully
applied, the process of depositing components into
the component repository has to be explicitly
shown. In other words, there must be a dedicated
link from the component updates process to the
component repository. Models that have such a link
are called the close-ended or close-loop models.

3. Models are too general to the extent that much
customisation is required in order to put them into
practice. This is especially obvious in Aoyama,
Crnkovic and COTS-based models. In these models,
the expected deliverables for each process are not
described, let alone the activities or steps required in
producing them.

4. On the contrary, some models are too detailed and
complicated that developers become discouraged to
apply. Models that bear this characteristic are
Brown and Wallnau, Cheesman and Daniels and
Twin track-based pattern models. In Cheesman and
Daniels model for example, the diagram
specifications to be produced are too detailed as if
the application is to be developed from scratch. The
aim of CBSD is to keep the components as general
as possible [23] and detailed specifications are
against this.

5. Strong emphasis is not given to the core
development activities, but rather, to other aspects
such as staffing and development environment.
COTS-based and Twin track-based models exhibit
this characteristic. In COTS-based model, the
organisation of staff is given more attention while in
Twin track-based model, different groups of people
with differing interests will trigger the process
model from different points. These will further
complicate the models. In order to promote CBSD
as the preferred approach in software development,
the process model should be kept simpler by paying
attention to the core development activities, rather
than focusing on the non-critical ones.

6. Activities to be performed in each process are not
clearly described and examples of implementing the
process are not provided [3]. With the exception of
Cheesman and Daniels model, all models reviewed
in section 3 do not incorporate examples on how the
processes in the models are performed. They simply
describe what the processes are and the deliverables

out of each process without explaining how these
deliverables can be produced.

7. Supporting documentations that will guide the
software developers in applying the models are not
included. This characteristic is true for almost all
models. Even if the documentations provided are
considerably extensive, they did not explain how the
activities in each process can be realised, let alone
relating it to the actual implementation tasks. When
the realisation of the implementation cannot be
seen, the model will fail to catch the attention of the
potential developers.

When the problems pertaining to the usability of the
models have been listed, the next step is to come out
with the possible solutions to each problem. For each
problem, the corresponding solutions are suggested, as
listed below:

 Reserved place for reuse, where a specific place in
the model that will allow the developers to consider
reuse in the process of developing the system will
be included. This resolves the second impracticality
cause.

 Unique process, where for each process included,
detailed explanation and necessary examples will be
provided that will guide the developers in applying
this model. Unimportant processes will be left out to
avoid confusion. This resolves the third, fourth and
fifth impracticality causes.

 Step-by-step demonstration, where each activity to
be performed in each process will be shown to
further enhance developers’ understanding. This
resolves the sixth and seventh impracticality causes.

 Clear inputs and outputs, as the inputs expected for
each process and the outputs generated from each
process in terms of work products will be stated.
This also resolves the third and fourth impracticality
causes.

 Closed-Loop (CL) model, where components
resulted from the previous development cycle are
explicitly fed back to the model to populate the
repository. Due to this closed-loop feature, the
proposed model will be called the MyCL process
model. This resolves the second impracticality cause
as well as to emphasise the reuse of components
produced from the previous development lifecycle,
which is the main objective of CBSD.

Therefore, in this study, a simplified CBSD process
model, which is clear and easy-to-follow, is proposed.
This model is derived mostly from the existing CBSD
process models studied before by retaining their
strengths and improving their weaknesses. The process
model which incorporates the features that will solve
the low usability problems of the existing process
models is what we mean by a process model that is
clear and easy-to-follow, as stated at the very
beginning of this article and referred to at several

92 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

places throughout. These features will be the
guidelines for the development of the MyCL process
model that will be explained in the next section.

4. MyCL Construction

The first step in deriving the model is to determine the
processes to be included in the model. It involves two
types of grouping done on each process in the existing
models studied as described below:

 Firstly, processes in the existing models are grouped
according to the fundamental software development
phases. For this purpose, the five fundamental
phases of software development are used as shown
in Table 2 [19, 21, 23].

 Secondly, these processes, which have been
grouped according to their respective phases, are
further refined according to their descriptions. The
differences and similarities are determined before a
distinct set of processes can be identified. Processes
that describe similar set of activities will be
substituted with a name that reflects the activities
that it supports. This summary will serve as the
basis for determining the processes to be included in
the MyCL process model.

The justifications on the groupings will be elaborated
in subsection 4.1. The second step is to determine the
deliverables from each process, which will act as the
input to the process that comes next. This step will be
discussed in subsection 4.2.

4.1. Process

As can be seen from Table 2, what is being done in the
requirements analysis process for CBSD is the same as
in conventional software development. Therefore, this
process is retained. Next, it can be concluded based on
their descriptions that processes which fall under
design phase are actually part of the domain
engineering process [10, 17, 23], which is a research
topic on its own and will not be discussed in detail
here. In the MyCL model, these processes are placed
under the domain engineering process. A wide range of
tasks from searching for appropriate components to
composing the selected components to build a working
system falls under the implementation phase.

Searching for components and adapting them for
integration with other components are placed together
under component development process. The process of
composing the adapted components is the focus of the
component composition process. Therefore, in the
MyCL model, the implementation phase is replaced by
the component development and component
composition processes. Testing phase mainly covers
integration testing and system testing, removing unit
testing from the development lifecycle. This removal is
obvious, as the system is no longer built from scratch,

but from composed components. Component-based
system testing is a broad research topic and will not be
discussed in detail here. The process will be included
in the model to indicate that testing is required before
the application software is delivered to the customer.

Finally, the processes that fall under the
maintenance phase are substituted by the component
updates process. It concerns with fixing errors and
adding new functionalities, replacing the old version of
a component with an improved version [5, 9]. The
tasks involved are the same as the maintenance tasks
performed in conventional software development, just
that they are made simpler as the component can be
plugged in and out to accommodate changes. In
addition to these processes, architectural design
process, which is missing in almost all models, is
included. It is placed right after the requirements
analysis process and concerns with producing
component specification architecture that enables
component selection.

4.2. Deliverables

Determining the deliverables from each process is a
more complicated task than determining the processes
themselves due to their diversity across existing
models. The main aim is that, the developer should not
be overwhelmed with the production of
documentations unimportant to the development
process. To begin with, Cheesman and Daniels model
[7] is closely followed as this model provides the most
complete listing of deliverables from each process.
Then, unneeded documentations are removed and new
ones that are tailored to the component framework
applied are added. One distinguishing feature of the
MyCL model is that updated components are fed back
to populate the component repository. It is indicated by
an arrow connecting the component updates process to
the repository. The whole of the MyCL process model,
including the deliverables attached to each process is
shown in Figure 1.

As can be seen below, the MyCL process model is
triggered when requirements definition is received
from the user. These requirements are then analysed
using any existing requirement elicitation technique
before an architectural design is established. Then, a
group of domain engineers will perform a series of
domain engineering activities based on the preliminary
requirements analysis result. When the architectural
design is established, each component will be
implemented according to their specifications, which
includes the development of the interfaces offered by
each component. Next, these components will be
individually tested prior to their composition using a
selected framework to produce a working system. A
series of tasks to test the system produced will follow
before it is delivered to the user as application
software. Finally, the repository will be updated with

The Development of a Simplified Process Model for CBSD 93

the new components, which may include the new
version of the reused components that have been

improved or fixed. The whole process will be repeated
when a change request or new requirements definition
is received.

Table 2. Description of each process and its grouping.

Phase Process Description

Requirement
Analysis

System Requirement,
Requirements, Analysis

 Customer and developer agree on what the system should do
 Understand system requirements and partition the requirements into various applications

and domains

Design
Product Identification,
Information Gathering

 Collect information on candidate COTS components and group them
 Gather information on components from web or other similar projects

Qualification, Find,
Specification

 Search for appropriate components
 Determine components to build and buy
 Understand component descriptions, attributes, aspects of their performance, reliability,

usability and so on
Component Acquisition,
Provisioning

 Acquire the appropriate components from COTS component market
 Build and buy identified components

COTS Understanding, Product
Identification

 Review all candidate COTS to generate prioritised list for further evaluation
 Understanding chosen COTS components in detail

Business Process Improvement Used for software project reassessment based on previous experience

Adaptation, Compositional
Design, Select, COTS
Evaluation, COTS
Understanding, Product
Evaluation, Solution
Assembly, Component
Provisioning

 Make the components work together by means of wrapping
 Tailor and customise components
 Select components that meet the requirements
 Create prototype software for temporary integration and testing of candidate COTS

components
 Compare and identify optimum set of collaborative COTS components for the final

integrated system
 Searching for available components and where necessary, raising requirements for new

components from the provisioning track
Architecture Planning Used for component reassessment in a process of progressive refinement

Implementation

Composition, Component
Integration, Adapt, Deploy,
Integration, Deployment,
Product Integration/
Enhancement, Integration,
Assembly

 Compose components using visual composition environment
 Integrate assembled components through some well defined infrastructure
 Integrate with existing systems
 Compose and deploy components using a framework for components
 Integrate/interconnect different selected COTS products into a single integrated system
 Integrate components together with existing assets and suitable user interface
 Produce, package and distribute complete software

Testing Integration Test
 Ensure that the composed components are working as expected
 Inspect composed product for any overlooked bugs
 Verify the proper integration of all components of the software

Maintenance Evolution, Replace, Debug
 Fix errors or add new functionality in components
 Replace earlier version of a component with a new one

Figure 1. The MyCL process model.

Component Repository

Domain

Engineering

Requirements

Analysis

Architectural

Design

Component

Updates

Requirements Definition/
Change Request

Domain Models

Component
Specification

Component
Specification
Architecture

Components

Working Program

Updated Components Application Software

Testing

Tested Components

Tested
Program

Specific languages,
Application generators,
Candidate components

Design Models

Component Development

Componen
tSelection

Componen
tAdaptation

 Requirements
Met?

Component

Testing
Requirements

Met?

Componen
tEngineering

No

Yes

No

Yes

Component

Composition

94 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

5. Evaluation

Evaluating the MyCL process model is not a
straightforward process. The best way to evaluate the
feasibility of the model with respect to its desired
features is to gather a group of people with a good
understanding on the CBSD and ask them to develop
an application system using the model. However, this
approach is impractical due to the following
constraints:

 Looking for suitable candidates to evaluate the
model is difficult. This is due to the fact that the
CBSD is still an ongoing research and its
development and progress are currently constrained
to a very limited group of people within this field.

 Even if suitable candidates can be found, asking
them to apply the model in developing an
application system is even more difficult. Not many
of these candidates would agree to do this as they
are also occupied with their own work.

 Furthermore, to understand the model before
applying it will require the candidates to read the
whole of this dissertation, which is not practical due
to the time constraint.

In addition to this, assessing on the acceptability of the
MyCL process model may require the model to be
applied and tested in the actual software development
environment industries, which is time consuming and
beyond the scope of this study.

Unidirectional evaluation approach such as
questionnaires distribution on the other hand, will not
be suitable for this kind of evaluation. This is because,
in the process of understanding the model, questions
will need to be asked and examples need to be shown
to provide proper understanding on the model. Even
though supplementary information on the model can be
placed on the web pages, it is found that these web
pages are hardly referred to. Therefore, it has been
decided that the most suitable evaluation approach is
through interview and discussion sessions with the
experts in this field. Five interview sessions have been
conducted. The interviewees are chosen amongst those
who have adequately high level of knowledge on
CBSD.

As expected, all of the interviewees agree that the
best way to evaluate this model is to apply it, but at the
same time acknowledge the impracticality of
implementing such evaluation. Therefore, they have
agreed to provide feedbacks on the model based on the
explanation given and the answers provided during the
interview session. These comments are stated below
followed by the action taken to avoid the possible
problems addressed by them.

1. Notes need to be attached to the inputs and outputs
of each process in the MyCL process model for
better description.

2. Misleading step with respect to the link from
domain engineering process to architectural design.

3. Domain engineering process shown is not very
descriptive.

4. Explanation on how the link between requirements
analysis and design and implementation is
established for newly created components needs to
be given.

5. Need to mention that the focus is on the processes
and not on the components, to avoid confusion.

The first comment made on the model is referring to
the inputs to and outputs from each model. It suggests
that notes should be added to better describe each input
and output. Since the description on how to produce
each input and output will be too lengthy to be
incorporated in the model, it has been decided at first
that the purpose of each input and output will be
attached as notes instead. Unfortunately, the addition
of notes attached to each input and output cannot be
made because they will clog up the model’s figure and
make it more complex. Complexity in the model is
against the objective of this study.

The second and third responses comment on the
domain engineering process that is part of the model.
They state that the process is not descriptive enough
and that the link from this process to the architectural
design process is misleading. However, domain
engineering is a very broad research discipline on its
own and to extensively cover this topic is beyond the
scope of this study. The fourth comment points out that
the explanation on how the link between requirements
analysis and design is established for newly created
components is not given. Again, to engineer a new
component will require a more detailed study on
component characteristics and model, which is beyond
the coverage as this study focuses only on the
processes that constitutes the process model and not
the components. This is also applicable in answering
the last comment made.

6. Conclusion

In this study, a review has been made on a number of
existing CBSD process models which are not really
being applied. Reasons for them not being applied,
together with their strengths and weaknesses are
derived out of the review and used as a basis to come
out with the MyCL process model that is clear and
easy-to-follow. A group of experts have been
interviewed to evaluate and give feedbacks on the
simplicity and feasibility of the MyCL process model.
This simplified process model can encourage software
developers, especially those who are new to the CBSD
to apply the CBSD in developing software. Research
effort of this kind will be a significant contribution to
fostering the transition towards software development
based on components.

The Development of a Simplified Process Model for CBSD 95

References

[1] Allen P., “Ebiz Components,” Objective View,
no. 6, pp. 12-20, 2003.

[2] Aoyama M., “Process and Economic Model of
Component-Based Software Development: A
Study from Software CALS Next Generation
Software Engineering Program,” in Proceedings
of the 5th International Symposium on Assessment
of Software Tools and Technologies, Pittsburgh,
USA, pp. 100-113, June 1997.

[3] Aris H. and Salim S. S., “Component-Based
Software Development (CBSD) for Web-Based
Applications,” Technical Report, University of
Malaya, 2004.

[4] Brian W. H. B., “CBD: Is There a Point?,”
Surprise 2001: Component Based Development,
Article 2, available at: http://infoeng.ee.ic.ac.uk/
~malikz/surprise2001/hbw99e/article2/, Imperial
College, London.

[5] Brown A. W. and Wallnau K. C., “Engineering
of Component-Based Systems,” in Proceedings
of 2nd IEEE International Conference on
Engineering of Complex Computer Systems,
Canada, pp. 414-422, October 1996.

[6] Cann S., Rossi A., and Pilgrim P., “Frameworks
for Building Component Based Applications,”
available at: http://www.jcorporate.com/econtent/
content.do?state=template&template=2&resource
=636&db=default, April 2003.

[7] Cheesman J. and Daniels J., UML Components:
A Simple Process for Specifying Component-
Based Software, Addison-Wesley, 2001.

[8] Cox P. T. and Song B., “A Formal Model for
Component-Based Software,” in Proceedings of
IEEE Symposia on Human-Centric Computing
Languages and Environments, Italy, pp. 304-311,
2001.

[9] Crnkovic I., Component-Based Software
Engineering: New Challenges in Software
Development, Software Focus, John Wiley and
Sons, December 2001.

[10] Curfman B., Lewis S., Reddy J., Wallnau K., and
Martin L., “Informal Technical Report for the
Software Technology for Adaptable, Reliable
Systems (STARS),” STARS Informal Technical
Report STARS-VC-B005/001/00, Unisys
Corporation, October 1993.

[11] Guo J. and Luqi, “A Survey of Software Reuse
Repositories,” in Proceedings of the 7th IEEE
International Conference and Workshop on the
Engineering of Component Based Systems,
Scotland, UK, pp. 92-100, 2000.

[12] Haines G., Carney D., and Foreman J.,
“Component-Based Software Development/
COTS Integration,” Software Technology
Review, available at: http://www.sei.cmu.edu/str/
descriptions/cbsd_body.html, January 2003.

[13] Hirai C. and Nobuo S., “A Proposal of an
Internet-Based Software Development Process
Model for COTS-Based Systems Development,”
available at: http://sern.ucalgary.ca/~maurer/
ICSE98WS/Submissions/Hirai/Hirai.html, April
2003.

[14] Jacobson I., Griss M., and Jonsson P., Software
Reuse Architecture, Process and Organization
for Business Success, Addison-Wesley, 1997.

[15] Larsson M. and Crnkovich I., “Component
Configuration Management,” in Proceedings of
the Workshop on Component Oriented
Programming in ECOOP Conference, France,
June 2000.

[16] Larsson M. and Crnkovic I., “New Challenges
for Configuration Management,” in Proceedings
of the System Configuration Management SCM-
9, Toulouse, August 1999.

[17] Nilson R., Kogut P., and Jackelen G.,
“Component Provider’s and Tool Developer’s
Handbook Central Archive for Reusable Defense
Software (CARDS),” STARS Informal Technical
Report STARS-VC-B017/001/00, Unisys
Corporation, pp. 27-33, March 1994.

[18] ObjectiF, MicroTOOL GmbH, “Mastering the E-
Business Challenge: A Process for Component-
Based Development with ObjectiF® and the
UML,” ObjectiF® Special, available at:
http://www.microtool.de/objectif/en/sp_cbd.html,
April 2003.

[19] Pfleeger S. L., Software Engineering Theory and
Practice, Prentice Hall, Inc., 2001.

[20] Praehofer H., Sametinger J., and Stritzinger A.,
“Component Frameworks: A Case Study,”
Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS'1999),
USA, pp. 148-157, August 1999.

[21] Pressman R. S., Software Engineering a
Practitioner’s Approach, McGraw-Hill
International Edition, 2001.

[22] Seacord R. C., “Software Engineering
Component Repositories,” in Proceedings of the
International Workshop on Component-Based
Software Engineering, USA, 1999.

[23] Sommerville I., Software Engineering, Addison-
Wesley, 2001.

[24] Szyperski C., Component Software: Beyond
Object-oriented Programming, Addison-Wesley,
1998.

[25] Teschke T. and Ritter J., Towards a Foundation
of Component-Oriented Software Reference
Models, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, pp. 70-84, 2001.

[26] Tran V., “Component-Based Integration Systems
Development: A Model for the Emerging
Procurement-Centric Approach to Software
Development,” in Proceedings of the 22nd Annual
International Computer Software and

96 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

Application Conference, Austria, pp. 128-135,
1998.

[27] Wallnau K., Bachman F., Bass L., Buhman C.,
Comella-Dorda S., Long F. Robert J., and
Seacord R., “Component Models and
Frameworks,” Technical Concepts of
Component-Based Software Engineering, SEI
Technical Report CMU/SEI-2000-TR-008, vol.
2, 2000.

Hazleen Aris obtained her Master
degree in software engineering from
the University of Malaya, Malaysia
and Bachelor of computer
engineering (Hons) from the
University of Southampton, UK.
Currently, she is a lecturer at the

Department of Computer Science, College of
Information Technology, Universiti Tenaga Nasional.
Her research interests include the development of
Component-Oriented Programming (COP) language
and its compiler, and components composition at a
higher level of abstraction.

Siti Salwah Salim obtained her PhD
in computer science from the
University of Manchester Institute
of Science and Technology
(UMIST), United Kingdom.
Currently, she is an associate
professor at the Faculty of Computer

Science and Information Technology, University of
Malaya. Her research interests include computer
supported collaborative learning, human computer
interaction, software requirements engineering, and
animated pedagogical agents.

