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Abstract: Ramsey numbers are known to be hard combinatorial problems that have many important applications including 
number theory, algebra, geometry, topology, set theory, logic, ergodic theory, information theory, and theoretical computer 
science.  The evaluation of Ramsey numbers using intelligent algorithms has been extensively studied in the last decades and 
only few numbers are currently known. Almost all of these methods failed to find the exact value of Ramsey numbers as they 
are over constraints problem. They have succeeded only to improve some upper and lower bounds of these numbers. In this 
work, we have tested the following intelligent algorithm: Backtracking, local search, tabu search and simulated annealing on 
some extremely hard instances of Ramsey numbers namely R (5, 9) - 120 and R (6, 8) - 121. As we failed to solve these hard 
instances using the previous techniques, we decided to combine them together in a hybrid metaheuristic algorithm and 
succeeded to generate the expected solutions. This new hybrid algorithm seems efficient and promising. It can be applied also 
on different combinatorial problems even if deep mathematical properties of the problems' domain are not on hand.
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1. Introduction
Ramsey-type theorems have roots in different branches 
of mathematics and computer science and the theory 
developed from them influenced such diverse areas as 
number theory, set theory, geometry, ergodic theory, 
complexity, algorithms, parallelism, logic, and 
networking. Ramsey F. P. (1930) stated his 
fundamental theorem in a general setting and applied it 
to formal logic. Vera Rosta, published in [27] an 
excellent paper about the applications of Ramsey 
numbers. The finite version of this theorem is as 
follows. For all t, n, k in N, there exists R in N so that, 
for m ≥ R, if the k-tuples of a set M of cardinality m are 
t-colored, then there exists M’ included in M of 
cardinality n with all the k-tuples of M’ having the 
same color. In other simplified terms, Ramsey-type 
theorems are showing that if a large enough system is 
partitioned arbitrarily into finitely many subsystems, at 
least one subsystem has a particular property. Also, 
every irregular structure, if it is large enough, contains 
a regular substructure of some given size and thus total 
disorder is impossible. Erdös and Szekeres defined the 
Ramsey numbers in an elegant way using graph terms 
as follows. For the graphs G1, G2, …, Gt, the graph 
Ramsey number R (G1, G2, …, Gt) is the smallest 
integer R with the property that any complete graph of 
at least R vertices (i. e., graph of order R) whose edges 
are partitioned into t color classes contains a 
monochromatic sub-graph isomorphic to Gi in the i-th 
color for some i, 1 ≤ i ≤ t. We talk about classical 
Ramsey numbers or simply Ramsey numbers when all 
Gi graphs are complete graphs. These numbers have 

many applications in different fields, for instance in 
theoretical computer science, to obtain lower bounds 
for parallel sorting, in information theory, applications 
of Ramsey theory mostly involve finding maximal 
independent sets for various graphs, which correspond 
to information channels meaning that to obtain a lower 
bound on the capacity of unions of channels, 
constructing lower bounds of Ramsey numbers were 
used, while density results in number theory are 
essential in harmonic analysis applications.

Evaluating Ramsey numbers has been extensively 
studied since 1955, and only few numbers are currently 
known as their evaluation problems are effectively 
over constrained problems and their space searches are 
extremely large. Many heuristic algorithms have been 
proposed to solve combinatorial problems in general 
and to determine the values of Ramsey numbers in 
particular [1, 13, 14, 17, 18, 19, 28, 31], and almost all 
of them failed to find the exact values of these 
numbers. They have succeeded only to associate with 
particular Ramsey numbers, some upper and lower 
bounds. The following table shows the known values 
till now. 

Table 1. Known non-trivial values of binary Ramsey numbers since 
1955 till 2005.

R (3, 3) R (3, 4) R (3, 5) R (3, 6) R (3, 7)
6 9 14 18 23

R (3, 8) R (3, 9) R (4, 4) R (4, 5) R (3, 3, 3)
28 36 18 25 17

In this work, we have tested some well-known 
heuristic search techniques on some extremely hard 
instances of Ramsey numbers namely R (5, 9) - 120 
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and R (6, 8) - 121. These methods are, local search, 
simulated annealing, tabu search and backtracking. As 
we couldn’t solve the previous hard instances with the 
mentioned techniques, we combined them together in a 
meta-heuristic algorithm and succeeded to generate the 
expected solutions. This hybrid algorithm seems 
efficient and promising. It can be adapted easily to 
solve different combinatorial problems even if deep 
mathematical properties of the problems' domain are 
not on hand. 

The paper is organized as follows. Section 2 
presents the intelligent algorithms that we have tested 
on hard instances of Ramsey numbers. Section 3 
discusses our hybrid metaheuristic algorithm, while 
section 4 discusses our experiments. Finally, section 5 
concludes the paper.

2. Intelligent Algorithms
In this section, we discuss and present the following 
intelligent algorithms: Greedy algorithm, local search, 
simulated annealing, tabu search and backtracking.  

2.1. Optimization Problem and Search Space
An optimization problem is generally formulated as 
follows:

minimize or maximize f (x)
subject to x in D

We call f the objective function, D the feasible region
that satisfies all the given constraints, and a solution x
in D a feasible solution. If D has combinatorial 
features, then the problem is called a combinatorial
optimization problem. The set of solutions of an 
optimization problem, which may be potentially visited 
in a local search algorithm, is called the search space. 
If generating feasible solutions is relatively easy (like 
the traveling salesman problem [9]), then we may 
define the feasible region D as the whole search space.

On the other hand, if generating feasible solutions is 
not easy (i. e., searching solutions in D is difficult, like 
the graph coloring problem [20]), we may take the 
problem structures into account and define an 
appropriate search space D*. If we adopt a search 
space different from D, we need also to modify the 
objective function f to ƒ*, so that we can evaluate the 
amount of unfeasibility of given solutions as well. 
Consequently, the appropriateness of D* and ƒ* 
depends on the structure of the given problem.

2.2. Greedy Algorithm
The greedy method is a one-path algorithm that 
constructs a feasible solution or a pseudo-solution step 
by step, on the basis of the local effectiveness. The 
algorithm should have a list of possible candidates, a 
predicate solution to test whether a given set of 

candidates give a solution (not necessarily optimal), a 
predicate feasible to test if a set of candidates can be 
extended to a solution (not necessarily optimal), a 
selection function, select, which chooses a candidate 
which has not yet been used. The algorithm is 
presented in Figure 1.

Greedy (C: Set of Candidates)
Begin
S = {}
While (Not Solution (S)) and (C ≠ {}) do 

  Begin
x = SelectCandidat (C)
C = C \ {x}
 If FeasibleSolution (S U {x})
 Then S = S Union {x}

  End
Return S

End
Figure 1. Greedy algorithm.

2.3. Local Search
The general idea of local search approach consists of 
performing a search by iteratively changing a complete 
assignment of variables. For each iteration, a 
neighborhood of potential successor states is 
considered. A state's quality can be computed by a cost 
function called objective function. The basis for the 
selection of a successor state is mostly the expected 
improvement with respect to the current state's costs. 
So, the central issue in local search is the transition 
from one state to the successor state. As it is quite 
uncertain what kind of change improves a current state, 
a whole bunch of neighbor states may usually analyzed 
to find the next successor state. However, There are no 
general rules to follow, the kind of neighborhood and 
successor selection being a heuristic matter. The term 
heuristic implies the existence of some domain 
knowledge for guidance. Many successful applications 
of local search gain their power from sophisticated 
updates rather than from re-computations. For this 
purpose, additional structures may be maintained. 
Figure 2 shows the process of the local search 
algorithm.

To select which variable to change its value in each 
step, the effect of changing a variable’s value is 
assessed. Note that, changing the value of a variable,
may make some unsatisfied constraints satisfied, and 
some satisfied constraints unsatisfied. The numbers of 
constraints that will be made unsatisfied by changing a 
variable’s value is called the break-count of the 
variable at the current assignment. Local search 
algorithms attempt to change a variable’s value with 
zero break-count, trying to make the next assignment 
no worse than the current one. To find a variable with 
zero break-count, a local search algorithm first selects 
an unsatisfied constraint C, uniformly randomly, from 
all unsatisfied constraints. This is called constraint 
pick. If there is a variable of zero break-count, local 
search then picks such a variable, uniformly randomly, 
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from the ones that qualify (called flat pick). If no zero 
break-count variable exists in C, local search then 
makes a random choice. With probability p it chooses, 
uniformly randomly, a variable from all the variables 
involved in C (called noise pick); or with probability 1 
- p it selects a variable with the least break-count, 
breaking a tie arbitrarily if multiple choices exist 
(called greedy pick). The algorithm takes three 
parameters to run: Number of tries, maximal number 
of flips in each try, and a probability for noise pick, 
which is commonly referred to as the noise ratio of the 
algorithm.

Change the Value of the Chosen 
Variable

Pick a Variable of Least Break-
Count In C (Greedy Pick)

Pick a Variable in C
(Noise Pick)

Initial Assignment Generation

Pick an Unsatisfied Constraint C
(Constraint Pick)

Exist a Variable in C With
Zero Break-Count?

Pick a Variable of 
Zero Break-Count in C

(Flat Pick)

Yes

Flip a Coin

No

1-p p

Figure 2. The Process of local search algorithm.

The simple local search algorithm starts from an 
initial solution or configuration x, generated randomly 
or by a greedy algorithm, and repeat replacing it with a 
better solution x’ (i. e., f (x’) < f (x)) in its 
neighborhood N (x) until no better solution is found in 
N (x), where N (x) is a set of solutions obtainable from 
x by slight perturbations. The algorithm is presented in 
Figure 3.

LocalSearch()
Begin

x = Initial Solution
Repeat

x’ = SelectSolution(N (x))
 If (f (x’) < f (x)) then x = x’

Until Stopping Criterion is met
Return x

End
Figure 3. Simple local search algorithm.

The main problem of heuristics methods is local
optima. In fact, when searching for a solution of a 
given optimization problem, a local search algorithm 
may often get into a region of the search space 
containing poor solutions that cannot be improved 
whatever the number of iterations carried out. This 
region is called local optima zone. To overcome this 
problem and escape from poor locally solutions, many 
metaheuristic algorithms have been proposed. Those 

metaheuristics include random multi-start local search
[24], genetic algorithm [7, 23], simulated annealing 
[2], tabu search [13], and so on. Among variants of the 
previous methods, are genetic local search [9], greedy 
randomized adaptive search procedure [8], guided 
local search [29, 32, 33], ant systems [5] and so on. 
These metaheuristic algorithms are based on the 
iteration of the following two steps:

1. Search new solutions on the basis of the previous 
history.

2. Evaluate the solutions generated in Step 1, and 
extract necessary information for the future search.

Therefore, metaheuristics can be considered as the 
collection of ideas of how to use the search history to 
generate new solutions and how to extract the 
necessary information from the generated solutions.

From a theoretical point of view, the use of the 
previously mentioned heuristics methods has not yet 
been justified. For example, a few convergence 
theorems for simulated annealing and tabu search exist 
[6] but they are useless in practice. These theorems 
simply state that the search has a very high probability 
of ending with an optimal solution if a disproportionate 
computing time is allowed (larger, in fact, than the 
time needed for a complete enumeration of the solution 
space). Practically, these heuristics methods are very 
competitive. In this race for competitiveness, the most 
efficient methods hybridize two or more heuristic 
algorithms as each one may help the others in the 
resolution process as we will show in this work.

2.4. Simulated Annealing
The simulated annealing method was proposed by 
Kirkpatrick et al. in 1983 to solve the traveling 
salesman problem [21]. The method is a variant of the 
local search method, in which test solutions are 
randomly chosen from the neighborhood N (x), and 
accepted with probability that is 1 if the test solution is 
better than the current one x, and positive probability 
even if the test solution is worse than x (only in the 
beginning of the search). By assigning a positive 
probability to a move to a worse solution, the search is 
normally able to avoid getting into poor locally 
solutions' zone. The probability is controlled by a 
parameter t called temperature, whose idea stems from 
the physical annealing process. Temperature t is set to 
an empirical large value in the beginning of the search 
to allow the acceptance of worse neighborhood 
solutions with a high probability. The temperature is 
gradually decreased as the search proceeds to reduce 
the probability of acceptance of worse neighborhood 
solutions. When t = t0, only better neighborhood 
solutions are accepted and the behavior of the 
algorithm becomes the same as that of simple local 
search algorithm. The algorithm is shown in Figure 4.
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SimulatedAnnealing()
Begin

x = Initial Solution
t = Initial Value
Repeat

x’ = SelectSolution (N (x)) randomly
∆  = f (x’) – f (x)
If (∆ ≤ 0) then x = x’
Else 
accept x’ with a certain

probability e-∆/t

Decrease t
Until Stopping Criterion is met
Return x

End
Figure 4. Simulated annealing algorithm.

2.5. Tabu Search
The tabu search is a metaheuristic method proposed by 
Glover [13] in 1986. The overall approach is to avoid 
getting into cycles by forbidding or penalizing moves 
which take the solution, in the next iteration, to points 
in the search space previously visited (hence tabu). So, 
the main idea of the method is to locally and repeatedly 
modify a solution while memorizing these 
modifications to avoid visiting the same solutions a 
second time or in a cyclic manner. Consequently, 
modifications are stored in a short (or eventually long, 
depending of the treated problem) list T, called tabu 
list, which forbids their use for a certain number of 
iterations. Basically, at each iteration the best solution 
in the neighborhood N (x) \ ({x} Union T) is chosen as 
the next possible candidate solution. At initialization,
the goal is to make a coarse examination of the 
solution space, known as diversification, but as 
candidate locations are identified the search is more 
focused to produce local optimal solutions in a process 
of intensification. A basic tabu search algorithm is 
shown in Figure 5.

Generate an initial solution x, and initialize the list T
While a Stopping Criterion is not met Do

Begin
x’ = Select Best Solution

    N (x) \ ({x} Union T)
 If (f (x’) – f (x) ≤ 0) then x = x’
Update T

End
Figure 5. Simple tabu search algorithm.

2.6. Backtracking Algorithm
Backtracking technique has long been used as a 
strategy for solving combinatorial hard problems and 
has been extensively studied [4, 11, 12, 22, 26, 30]. 
The method is a refinement of the brute force 
approach1, which systematically searches for a solution 
to a problem among all available options. It does so by 

1The brute force approach for any combinatorial problem is to 
enumerate all possible solutions, testing each in turn and rejecting 
those, which fail to meet the required conditions.

assuming that the solutions are represented by vectors 
(v1, ..., vm) of values and by traversing the domains of 
the vectors, in a depth first manner, until the solutions 
are found. When invoked, the algorithm starts with an 
empty vector. At each stage, it extends the partial 
vector with a new value. Upon reaching a partial vector 
(v1,..., vi) which cannot represent a partial solution, the 
algorithm backtracks by removing the trailing value 
from the vector, and then proceeds by trying to extend 
the vector with alternative values. The algorithm is 
shown in Figure 6.

TrySolve (v1,...,vi)
Begin

If (v1,...,vi) is a solution 
Then return (v1,...,vi)

For each v do 
If (v1, ..., vi, v) is acceptable vector then
 Begin

solution = TrySolve (v1, ..., vi, v)
If solution ≠ {} 
Then return solution

End 
End

End
Figure 6. Backtracking algorithm.

If Si is the domain of vi, then S1 x … x Sm is the 
solution space of the problem. The validity criteria 
used in checking for acceptable vectors determines 
what portion of that space needs to be searched, and so 
it also determines the resources required by the 
algorithm. The traversal of the solution space can be 
represented by a depth-first traversal of a tree. The tree 
itself is rarely entirely stored by the algorithm in 
discourse; instead a path toward a root is stored, to 
enable the backtracking. The backtracking algorithm 
may be improved by some filtering techniques, which 
aim at pruning the search space in order to decrease the 
overall duration of the search. Many new backtracking 
algorithms have been proposed to solve successfully 
some combinatorial problems [22, 25]. However, when 
the size of the problem instance is relatively large, 
backtracking methods become totally inefficient due to 
the exponential nature of the algorithms.

3. Hybrid Metaheuristic Algorithm
In this section, we present and discuss the hybrid meta-
heuristic optimization algorithm that combines tabu 
search, simulated annealing, and backtracking 
algorithms to solve combinatorial hard problems in 
general and Ramsey numbers instances in particular.

The algorithm starts by generating an initial solution 
x of the treated problem using a greedy procedure. The 
solution quality is then improved repeatedly by a local 
search procedure, in which, we use a FIFO list T of 
short length (i. e., a tabu list of n locations, with 5 ≤ n 
≤ 8) to forbid visiting the same region of the search 
space in a cyclic manner. At each iteration, either the 
best solution in the neighborhood N (x) \ ({x}Union T) 
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or a random solution (not in T) is chosen as the next 
possible solution according to the value of the choice 
variable which, in turn, selected randomly. To avoid 
getting rapidly into a poor locally solutions' zone, we 
accept moves to worse solutions, only in the beginning 
of the search. For this purpose, we use two parameters 
t and threshold that should be carefully tuned to get 
good performance. The value of t is gradually reduced 
as the search proceeds to decrease the probability of 
acceptance of worse solutions. The stopping criterion 
is met either whenever f (x’) ≥ f (x) for all x’ in N (x), 
or after a certain number of iterations without 
improving the quality of the current solution. At this 
stage, we use a systematic search algorithm to try to 
improve the quality of the current solution. The 
algorithm is shown in Figure 7.
Generate an initial solution x using a greedy algorithm
Initialize the tabu list T, and the parameters, t and the threshold

Repeat
choice = random(1)
If (choice == 0) then
x’ = SelectSolution (N (x))
 (randomly with x’ not in T)

Else 
x’ = BestSolution (N (x)) (for all

    x’ in N (x) and x’ not in T)
If (f (x’) ≤ f (x)) then x = x’
Else accept x’ if t > threshold
Update the FIFO tabu list T
Decrease t.

Until Stopping Criterion is met
If Solution is not yet found and
 (Stopping criterion ≠ expected
solution) then
Begin

Construct a partial solution xp by removing from x all 
variables in conflict v1, v2, ..., vk
Sort v1, v2, ..., vk according to their degree of conflicts
Use a backtracking algorithm to place correctly v1, v2, 
..., vk 

End
Figure 7. Hybrid metaheuristic algorithm.

4. Experiments
We have tested all the previous algorithms on some 
extremely hard edge-coloring Ramsey graphs problems 
namely R (5, 9) - 120 and R (6, 8) - 121 using the 
heuristics given in our research paper [17]. We 
succeeded only to solve these instances using the 
hybrid meta-heuristic algorithm, and failed to get a
solution using a backtracking, a local search, a tabu 
search, and a simulating annealing alone. 

Note that, R (k1, k2) - n, denotes a complete graph of 
order n, for which it exists a bi-coloring of its edges 
(let's say red and blue) that doesn't contain neither a 
monochromatic red clique of order k1 nor a 
monochromatic blue clique of order k2. 

Our experimental shows that local minima from 
local search techniques (simulated annealing and tabu 
search) reside close to one another, forming clusters in 

configuration landscapes. Thus, a backtracking 
technique at this stage may play an important role to 
reach the expected solution. In fact, the local minima 
reached by the algorithm must share many parts of the 
solution structures with the optimal solutions. If we 
extract some of the structure information from the local 
minima, we can then use it to adjust the local search in 
such a way that it attempts to fix the parts of the 
current state which are not compatible with optimal 
solutions, so as to guide the search toward the regions 
of the search space containing high quality solutions.

When implementing the hybrid algorithm, one must 
determine, the strategy of generating the initial solution 
x, the objective function f, the neighborhood solutions 
N (x), the search space, the stop criterion, the length of 
the tabu list T, and the values of the parameters t and 
threshold. In our case, for constructing simple Ramsey 
graphs of the following instances R (5, 9) - 120 and R
(6, 8) - 121 we have used the following:

• Initial Solution: The initial solution consists of 
coloring the edges of the simple complete graph Kn
using a greedy algorithm that minimizes the number 
of monochromatic blue cliques of order k1, and the 
number of monochromatic red cliques of order k2.

• Objective Function: The objective function f is the 
sum of blue monochromatic cliques of order k1, and 
the number of red monochromatic cliques of order 
k2.

• Neighborhood: Two simple Ramsey graphs are 
neighbors Iff we can obtain one of them from 
another by changing only the color of one edge.

• Stopping Criterion and Tabu List: The stopping 
criterion is met whenever f (G) = 0. The tabu list T
of short length keeps the indices of recently 
modified edges.

• Space Search: The space search is the set of all 
colorable Ramsey graphs.

• Parameters t, Threshold: The values of these two 
parameters are adjusted experimentally with each 
iteration.

4.1. Heuristics
A problem of fundamental interest and practical 
importance is how to utilize problem structural 
information, in a search algorithm to cope with the 
high computational cost of difficult problems, as well 
as to improve the performance of the algorithm. Thus 
much research is needed to exploit problem structural 
information in order to demonstrate the viability of 
incorporating such information in search algorithms. 
One of the challenges in utilizing structural 
information of a problem, in a search algorithm, is to 
make the algorithm not only work on random problem 
instances, but also perform well on individual problem 
instances, especially those from real-world 
applications.
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Let G be a simple Ramsey graph of order n, then it 
exists a bi-coloring (red, blue) of the edges of  G, in 
which, all edges of the same length have the same 
color, such coloring is called cyclic coloring or 
symmetric coloring. The length of the edge {vi, vj} is 
equal to:

|i - j|,  
If  |i - j| < [n / 2]

 or to
|i - j + n|, otherwise.

So, the lengths of the edges of G vary from 1 to [n / 2]. 
Table 2 shows the solution of the Ramsey numbers 

instances R (5, 9) - 120 and R (6, 8) - 121.

Table 2. Solutions for the Ramsey numbers instances R (5, 9) - 120 
and R (6, 8) - 121.

Blue Edges

2, 3, 6, 7, 13, 15,
17, 18, 19, 20, 22,
23, 28, 29, 31, 33,
41, 42, 43, 45, 48,
52, 53, 54, 60

R (5, 9) - 120

Red Edges

1, 4, 5, 8, 9, 10,
11, 12, 14, 16, 21,
24, 25, 26, 27, 30,
32, 34, 35, 36, 37,
38, 39, 40, 44, 46,
47, 49, 50, 51, 55,
56, 57, 58, 59

Blue Edges

2, 4, 5, 7, 11, 12,
13, 14, 15, 18, 20,
28, 30, 31, 34, 35,
40, 41, 44, 46, 47,
48, 49, 53, 56, 60

R (6, 8) - 121

Red Edges

1, 3, 6, 8, 9, 10,
16, 17, 19, 21, 22,
23, 24, 25, 26, 27,
29, 32, 33, 36, 37,
38, 39, 42, 43, 45,
50, 51, 52, 54, 55,

57, 58, 59

5. Conclusion
We have tested some well known intelligent and 
efficient algorithms on extremely hard instances of 
Ramsey numbers, namely R (5, 9) - 120 and R (6, 8) -
121 without succeeding to find the solutions due to the 
extreme combinatorial search spaces of these instances 
where the numbers of attempts is between 25886 and 
27381. We have then proposed and implemented a 
hybrid metaheursitic algorithm that uses a tabu search 
and simulated annealing in their simplest way along 
with a backtracking technique and we generated 
successfully the expected solutions of these hard 
instances. The algorithm is flexible and can be adapted 
to solve efficiently other combinatorial hard problems 
like the satisifiability problem, the multiple sequence 
alignment, the traveling salesman problem, etc.

References
[1] Aarts E. H. L. and Lenstra J. K., Local Search in 

Combinatorial Optimization, Wiley, 1997.

[2] Aarts E. H. L., Korst J. H. M., and Van 
Laarhoven P. J. M., “Simulated Annealing,” in 
Aarts E. H. L., and Lenstra J. K. (Eds), Local 
Search in Combinatorial Optimization, Wiley,  
pp. 91-120, 1997.

[3] Bollobás B., “Extremal Graph Theory,” in 
Graham R. L., Grotshel M., and Lovasz L. (Eds), 
Handbook of Combinatorics, Volume II, MIT 
Press, Cambridge, Mass., 1995.

[4] Butler G. and Lam C. W. H., “A General 
Backtrack Algorithm for the Isomorphism 
Problem of Combinatorial Objects,” Journal of 
Symbolic Computation, vol. 1, no. 4, pp. 363-
381, 1985.

[5] Colorni A., Dorigo M., and Maniezzo V.,
“Distributed Optimization by Ant Colonies,” in 
Proceedings of the First European Conference 
on Artificial Life (ECAL-91), pp. 134-142, 1991.

[6] Faigle U. and Kern W., “Some Convergence 
Results for Probabilistic Tabu Search,” ORSA 
Journal on Computing, vol. 4, pp. 32-37, 1992.

[7] Falkenauer E., Genetic Algorithms and Grouping 
Problems, Wiley, 1999.

[8] Feo T. A. and Resende M. G. C., “Greedy 
Randomized Adaptive Search Procedures,”
Journal of Global Optimization, vol. 6, pp. 109-
133, 1995.

[9] Freisleben B. and Merz P., “A Genetic Local 
Search Algorithm for Solving Symmetric and 
Asymmetric Traveling Salesman Problems,” in 
Proceedings of IEEE International Conference 
on Evolutionary Computation, pp. 616-612, 
1996.

[10] Garey M. R. and Johnson D. S., Computers and 
Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

[11] Gerhart S. L. and Yelowitz L., “Control Structure 
Abstraction of the Backtracking Programming 
Technique,” IEEE Transaction on Software 
Engneering, SE 2, pp. 285-292, 1976.

[12] Ginsberg M. L., “Dynamic Backtracking,” 
Journal of Artificial Intelligence Research, vol. 
1, pp. 25-46, 1993.

[13] Glover F. and Laguna M., Tabu Search, Kluwer 
Academic Publishers, 1997.

[14] Gu J., “Efficient Local Search for Very Large-
Scale Satisfiability Problems,” SIGART Bulletin, 
vol. 3, no. 1, pp. 8-12, 1992.

[15] Graham R., Rothschild B. L., and Spencer J. H.,
Ramsey Theory, Wiley, 1990.

[16] Hattingh J. H. and Henning M. A., “Bipartite 
Ramsey Theory,” Utilitas Math., vol. 53, pp. 
217-230, 1998.

[17] Jaam J. M., “Ramsey Numbers by Stochastic
Algorithms with New Heuristics,” in Deza, Euler
R., and Manoussakis I. (Eds), Combinatorics 
and Computer Science, Selected Paper, LNCS 
1120, pp. 161-181, 1995.



Experiments of Intelligent Algorithms on Ramsey Graphs 167

[18] Jaam J. M., Fliti T., and Hussain D., “New 
Bounds of Ramsey Numbers Via a Top-Down 
Algorithm,” in Proceedings the International 
Workshop on Studying and Solving Really Hard 
Problems, pp. 110-118, 1995.

[19] Jaam J. M., “Coloriage Cyclique pour les 
Hypergraphes Complets Associes Aux Nombres 
de Ramsey Classiques Ternaires,” Bulletin of 
Symbolic Logic, vol. 1, no. 2, pp. 241-242, 1995.

[20] Jensen T. R. and Toft B., Graph Coloring 
Problems, Wiley-Interscience Series in Discrete 
Mathematics and Optimization, Wiley, 1995.

[21] Kirkpatrick S., Gelatt C. D., and Vecchi M. P., 
“Optimization by Simulated Annealing,” Science, 
vol. 220, no. 4598, pp. 671-680, 1983.

[22] Kondrak G. and Van Beek P., “A Theoretical 
Evaluation of Selected Backtracking 
Algorithms,” Artificial Intelligence, vol. 89, pp. 
365-387, 1997.

[23] Muhlenbein H., “Genetic Algorithms, Local 
Search in Combinatorial Optimization,” in Aarts 
E. H. L. and Lenstra J. K. (Eds), Wiley, pp. 137-
171, 1997.

[24] Papadimitriou C. H. and Steiglitz K.,
Combinatorial Optimization: Algorithms and 
Complexity, Dover Publications, 1998.

[25] Prosser P., “Hybrid Algorithms for the Constraint 
Satisfaction Problem,” Computational 
Intelligence, vol. 9, no. 3, pp. 268-299, 1993.

[26] Roever W. P., “On Backtracking and Greatest 
Fixpoints, in Formal Description of Programming 
Constructs,” in Neuhold E. J. (Ed), North-
Holland, pp. 621-636, 1978.

[27] Rosta V., “Ramsey Theory Applications, The 
Electronic Journal of Combinatorics, DS13, pp. 
1-40, January 2005.

[28] Selman B., Kautz H., and Cohen B., “Local 
Search Strategies for Satisfiability Testing,” in 
Johnson D. S. and Trick M. A. (Eds), in 
Proceedings of the 2nd DIMACS Challange on 
Cliques, Coloring, and Satisfiability, vol. 26, pp.
521-532, 1996.

[29] Voudouris C. and Tsang E., “Guided Local 
Search and its Application to the Traveling 
Salesman Problem,” European Journal of 
Operational Research, vol. 133, pp. 469-499, 
1999.

[30] Walker R. J., “An Enumerative Technique for a 
Class of Combinatorial Problems, in Proceedings 
of Symposia in Applied Mathematics 10, 1960.

[31] Walser J. P., “Solving Linear Pseudo-Boolean 
Constraint Problems with Local Search,” in 
Proceedings of the Fourteenth National 
Conference on Artificial Intelligence (AAAI-97), 
pp. 269-274, 1997.

[32] Zhang W., Rangan A., and Looks M., “Backbone 
Guided Local Search for Maximum 

Satisfiability,” in Proceedings of IJCAI-03, 
Acapulco, Mexico, pp. 1179-1184, 2003.

[33] Zhang W., “Configuration Landscape Analysis 
and Backbone Guided Local Search, Part I: 
Satisfiability and Maximum Satisfiability,”
Artificial Intelligence, vol. 158, pp. 1-26, 2004.

Jihad Mohamad AlJaam obtained
his Bachelor degree in 1998, a 
Master degree in 1990, and a PhD 
degree in 1994 in computer science 
and mathematics of computing from 
France South Universities and the 
National Council of Scientific 

Research (CNRS), France. Currently, he is an 
associate professor of computer science and 
engineering (and candidate to a full professorship rank) 
at the College of Engineering, Department of 
Computer Science and Engineering, Qatar University. 
He is the author and co-author of 12 national textbooks 
in information technology and around 70 research 
papers published in different international scientific 
journals and conferences proceedings. His research 
interests include stochastic algorithms, artificial 
intelligence, logic and mathematics of computing, 
satisfiability, problem solving, graph theory, 
combinatorics, and information retrieval.



The International Arab Journal of Information Technology,   Vol. 4,   No. 2,   April 2007 168


