
168 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

A Framework to Build Quality Models
for Web Applications
Alessandro Marchetto and Andrea Trentini

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, Italy

Abstract: This paper describes an approach to build and apply a quality model useful to analyze a web application through
an object-oriented model and to evaluate the structural software qualities using the built model. The constructed quality model
is focused on a set of software metrics and uses a prediction system based on software analogies analysis. In particular, the
paper focuses on model construction, customization and interpretation. The proposed approach uses a combination of
traditional web and object-oriented metrics to describe structural properties of web applications and to analyze them. These
metrics are useful to measure some important software attributes such as complexity, coupling, size, cohesion and defects
density. Furthermore, the presented quality model uses these metrics to describe applications in order to predict some
software quality factors (such as test effort, reliability, error proneness) through an instance-based classification system. The
approach uses a classification system to study software analogies and to define a set of information usable as the basis for
applications quality factors prediction and evaluation.

Keywords: Software metrics, test effort, quality factors prediction, classification systems.

Received November 28, 2005; accepted April 13, 2006

1. Introduction
Web applications quality, reliability and functionality
are important factors because software glitches could
block entire businesses and cause major
embarrassment. These factors have increased the need
for methods, tools, and models to improve web
applications (design, analysis, testing, and so on). This
paper focuses on analysis of legacy web applications
where business logic is embedded into web pages. The
applications analyzed are composed of web documents
(static, active or dynamic) and web objects.

Software metrics may be very useful to increase the
quality of software analysis, reengineering, and testing
through prediction or analysis systems. For example,
software size or complexity measures may be used to
predict software testing effort, or coupling and
cohesion measures to analyze software structure, and
so on. Moreover, the use of metrics in web software
may be very useful because the applications are more
and more dynamical. Often, they are built via server
side code, such as for PHP, ASP.NET, Java, JSP, and
so on. Software developed with these languages may
be very complex, structured, and may be very useful to
model applications via Object-Oriented (OO) meta-
models. Furthermore, the use of metric-measurements
is very “web-adequate”, because web software is often
developed in very compressed life cycle (three to six
months), without a formalized process, and web
documents and objects are directly coded in
incremental way (often new software is obtained by
duplicating via “copy & paste inheritance”).

Techniques for automatic (or more formalized)
application analysis, understanding, and testing are
badly needed.

In our Web Applications Analysis and Testing
(WAAT) project, we define an approach to extract an
OO model from existing web applications, and use it as
the basis for the application analysis and testing. In
particular, the meta-model lets developers use some
traditional web and OO metrics to describe existing
software and to analyze the impact on software quality
factors.
This paper analyzes the WAAT quality model based

on a metrics suite to help the user (e. g., software
developers) define a quantitative system to measure
web software and to evaluate/predict quality factors
through structural properties. Nowadays, the existing
metrics-based systems for web applications measure
several structural properties, but often, they measure
specific web assets, such as navigation paths length,
pages click-stream distances, and so on (see [12] for
web metrics roadmap). In our model, we focus not
only on web specific measures, but, more generally, on
measures related to software in general (such as OO,
web, AOP, etc.) but applied to web applications.

Several techniques exist in literature to design web
application through OO approaches (see next section).
These approaches are used to increase software quality
in software modelling (i. e., using UML, see [10]),
testing [22, 23], and analyze of existing software. This
paper introduces a new framework to build quality
models for web applications modelled via OO
techniques. Moreover, this paper presents our WAAT

A Framework to Build Quality Models for Web Applications 169

quality model built using this framework. In fact, the
WAAT quality model is an instance of the meta-
model. The quality models that may be built through
our framework let the user analyze a web application
using a set of software metrics and quality rules. The
aims of this paper are to describe (step-by-step) a
system used to build and customize quality models (in
particular, in order to study web application testability
through several structural properties of the software)
and to describe a system to use and evaluate the results
on the usage of our quality models. Furthermore, this
paper proposes the use of a genetic algorithm to
increase the quality and the automation of the analysis
performed in WAAT project using our quality model.
The use of an optimization-function based analysis to
cluster the prevision data computed through the use of
a prediction system let us decrease the manual
interaction of the user and increases the effectiveness
of the clustering-based approach suggested through our
framework to analyze the predicted data quality.

This paper is organized as follows. Section 2
presents the state of the art. Section 3 summarizes our
applications modelling and reverse engineering
approach. Section 4 summarizes the WAAT
framework for quality model construction. Section 5
presents our quality model built through the
framework. Moreover, sections 4 and 5 contain several
references with more detailed information. Section 6
introduces the used clustering algorithm. Finally,
section 7 concludes the paper and describes future
works.

2. State of the Art
Several web modeling methodologies are available in
literature, and some of these methods are OO-based or
UML-based. For example, see: UML Conallen’s
extensions [10], the reverse engineered model used by
ReWeb [23], and the Object-Oriented OOHDM [25].
Moreover, [3] contains a review of OO modeling
techniques used in web software and related to the
model used in our WAAT project (Figure 1 shows the
our UML class meta-model used in WAAT).
Generally speaking, software engineer metrics are

very useful to analyze software applications or models,
to study structural software quality, and to define
prediction about software effort, such as for design
effort, testing effort, and so on. However, there is no
consensus within the community on which metrics to
use or how to calculate metrics. In particular, there are
many empirically validated metrics suite and metrics.
There are many papers describing different types of
metrics involved in the different measurements,
metrics definition, and analysis process. In this related
works section, we have selected some paper studying
metrics in OO design and web software, but it’s
important to know that in this area the scientific
community is nowadays very expansive. The goal of

several metrics-papers is to define and validate a set of
high-level design metrics to evaluate the quality of the
application design of a software system (for example
see [7, 9]). Other papers (for example see [7]) focus on
empirical validation of the relationships between
design measurement in OO systems (coupling,
cohesion, and inheritance) and the quality of the
software (the probability of fault detection in system
classes during testing). [16] defines a software metrics
roadmap for OO systems. [5, 18] study web metrics
definition and analysis, while [12] proposes a web
metrics roadmap. Some papers study metrics for
specific software quality aspects. [20] defines a
metrics-based approach for detecting design problems
(well-known design flaws). [24] defines metrics to
promote and assess software reliability. [11] studies the
correlation between fault-proneness of the software
and the measurable attributes of the code, while [1]
studies the metrics as predictors of fault-prone classes.
[15] proposes a Bayesian Belief Networks approach
for software defect prediction. [21] and [27] define
approach to the estimation of metrics based software
testing efforts. [26] proposes an approach to estimate
the cost of a software project, while [4] studies
machine learning models applied to software effort
prediction. [14] introduces an approach to software
reliability prediction based on Markov chains.

3. Model Recovery
Our approach to model recovery is composed of
application behavior analysis, application model
building, and model validation as follows:

• Application Behavior Analysis: We use static
(scanner/parser applied on source code) and
dynamic (mutation-based analysis applied on
software executions) analysis to extract information
from an existing web applications [3].

• Model Building: With the information extracted by
the previous phase, we build an application OO
model (such as described in [13, 23]) using UML
class and state diagrams. In particular, we have
defined an UML meta-model (see [3]) usable to
describe legacy/traditional web applications. Class
diagrams are used to describe structure and
components of a web application (e. g., forms,
frames, Java applets, input fields, cookies, scripts,
and so on), while state diagrams are used to
represent behavior and navigational structures
(client-server pages, navigation links, frames sets,
inputs, scripting code flow control, and so on).

• Model Validation: The reverse engineered model
may contain more information than what is needed.
In particular, it may contain “not valid” information,
such as not valid dynamically generated client-side
pages. A client-page is “valid” if it is reachable in
the original application via an execution path. Since

170 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

our reverse engineering technique may define a
model with a superset of behaviors we need a
pruning technique. Our proposed approach is
essentially based on web server log files analysis
validation and “visual navigation validation” with
the user help (see [3] for more details).

Figure 1. UML class diagram meta-model.

4. The Framework
This section describes our framework to build a quality
model for web applications modelled via OO
techniques. In particular, the framework phases are
subdivided into two different types based on their
usage, for model administrator (i. e., user building,
customizing and maintaining the quality model) and
for model user (i. e., user using the built quality model
in a web application to analyze it).

The quality model administrator may build or
customize the model through the following steps:

1. Construction of a meta-model (e. g., see previous
section) that maps the web concepts to OO
concepts.

2. Quality model construction. In this step, the use of a
system such as the Goal-Question-Metrics [2]
(GQM is a human-driven method to incrementally
build quality models, starting from a set of limited
goals then iterated and refined through questions)
may be very useful to help the administrator to
select the factors that they need to analyze software.

a. Definition of a set of interesting quality factors to
analyze the applications (e. g., testability,
reliability, and so on).

b. Definition of a set of testing metrics strictly
related to the quality factors (e. g., test effort,
reliability rate, defect density, and so on). We
need to define a set of testing metrics because it
is impossible to directly calculate the quality
factors on software, thus these factors are always
expressed in terms of testing metrics and/or their
combination.

c. Definition of a set of software metrics (e. g., lines
of code, coupling between objects, and so on).

d. Theoretical and empirical (statistical) analysis of
the relationships among software and testing
metrics (e. g., Pearson’s correlation analysis on
testing/software metrics in a large set of existing
web applications).

3. Prediction system construction:

a. Definition of prediction system using the built
quality model. The use of more than one
complementary (e. g., algorithmic, such as
regression and software analogies based) method
is suggested. In fact, the quality factors of the
model (via testing metrics) may be considered as
dependent variables of the prediction system,
while the software metrics may be considered as
independent variables used to estimate the
dependent.

b. Statistical validation of the prediction system
constructed through a large dataset of
applications and the use of predictions accuracy
methods (e. g., two different usable measures of
accuracy may be the MMRE -mean magnitude of
relative error- which represents the mean of
absolute percentage errors and the Pred25 which
represents the percentage of predictions that fall
within 25 percent of the current value).

c. (Optional) in case of more than one method used
in the prediction system, the definition of results
analysis or grouping policy may be needed.

4. Quality rules definition:

a. From literature analysis, definition of the quality
rules describing the relationships between quality
factors and testing metrics used to measure them.

b. From literature analysis, definition of the quality
rules describing the relationships among quality
factors itself (grouped in a final application
quality index).

The output of this administrator layer of the
framework is a quality model composed of the
following:

1. The correlation of the software/testing metric.
2. The prediction system that uses software metrics to

predict the values of testing metrics.
3. The set of quality rules that tie testing metrics to

quality factors and that tie quality factors itself. This
set of elements may be used by the user (i. e.,
quality model user) to analyze an existing web
application performing the following steps:

1. Selection of web application to analyze (source
code and execution environment may be needed).

2. Measurement of sof tware metrics (defined in step
administrator_2.c) on web application source
code and executions.

3. Computation of the testing metrics (defined in
step administrator_2.b) using the measured

A Framework to Build Quality Models for Web Applications 171

software metrics and the prediction system built
by administrator (this step is named Level 1 -L1).

4. Computation of the quality factors (defined in
step administrator_2.a) using the predicted
testing metrics and through the use of the quality
rules defined by the administrator (this step is
named Level 2 -L2).

5. Computation of the quality index (defined in step
administrator_4.b) using the calculated quality
factors (this step is named Level 3 -L3).

6. Analysis of the results obtained for every level of
values (i. e., L1, L2, L3).

a. Clustering of the values calculated/predicted.
b. Interpretation of the values grouped in the

previous step using the quality rules (defined
in step administrator_4.a/ .b) expressed as if-
then-else expression in order to analyze the
“border values” and define the set of software
components that need to be analyzed with
more precision (e. g., with specific testing,
reengineering, refactoring, source code
inspection, and so on).

Therefore, input of the user layer is the set of the
quality model components and the web application to
analyze (source code and executions). While the output
is composed of a set of software components that the
quality model classifies as “components with low
quality” and that need to be re-analyzed through
specific techniques by the web application
developers/testers.

5. Applying the Framework to a Case
Study: The WAAT Quality Model

In our WAAT project, we have applied the described
framework to define a quality model based on OO
metrics and focused on the analysis of testability (and
other strictly related quality factors). In the rest of this
section, we show the WAAT administrator task
performed to build the WAAT quality model and a
typical case study in which the model is used by the
quality model user to analyze an existing application.

5.1. Administrator Layer
The WAAT quality model administrator has
performed the following steps (in this sub-section we
summarize some results, for more details see [19]):

1. We have built our UML meta-model (described in
section 3) to analyze web applications as traditional
OO software.

2. Through the use of a ad-hoc GQM system, we have
built our quality model focused on testability
analysis from the OO point of view.

a. From literature analysis, we have defined the
interesting quality factors such as: Testability,

error proneness, reliability, and fault tolerance.
The aim of our quality analysis is to study the
values trend of these factors.

b. From literature analysis, we have selected a small
group of testing metrics to directly calculate the
quality factors on software. In particular, our
metrics are: Test Effort (TE), Test coverage
(Tcov), Feature coverage (Fcov), Defect Density
(DD), Unit DD (DDu), and Reliability rate (Rr).

c. From literature (and from previous experiments),
we have defined about 25 OO/web metrics to
measure essential software attributes such as
coupling, cohesion, separation of concerns,
software size and complexity (e. g., metrics are
coupling between components, response for a
module, number of methods/attributes, operation
for concern, and so on).

d. We have studied the relationships between
software and testing metrics through an empirical
experiment based on statistical analysis of a
dataset containing several web applications. In
particular, we have measured software metrics on
the source code of the application under analysis
(or using its UML model). Then, we have
performed traditional web testing and measured
our set of testing metrics. Then, we have
performed the statistical analysis of metrics using
the Pearson’s correlation analysis to evaluate the
empirical correlation between metrics (for
example lines of code influences test effort and
feature coverage, while degree of separation of
concerns influences test coverage, reliability rate,
feature coverage, and defect density, and so on).

3. Through the built of quality model, we have built a
prediction system to predict the values of the testing
metrics (i. e., representing the quality factors) based
on the software metrics.

a. We have used two different approaches to predict
the values, the first is an algorithmic approach
and is the regression based (i. e., a statistical-
based approach), while the other is a non-
algorithmic approach based on software
analogies used in a classification system (i. e.,
nearest neighbour classifier). We use the testing
metrics as dependent variables and the software
metrics as independent variables of our
prediction system. We define a system to
calculate the testing metrics using the values of
software metrics (i. e., we may know the values
of the testing metrics without performing a
testing phase of the application under analysis).

b. We have performed a statistical analysis using a
set of applications in order to validate the
prediction system and define its accuracy. To this
aim, we have used two different measures of
accuracy, the MMRE-mean magnitude of relative
error-which represents the mean of absolute

172 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

percentage errors and the Pred25 which
represents the percentage of predictions that fall
within 25 percent of the current value. We
naturally think that the choice of accuracy
evaluation is strictly related to the goals of the
prediction system. For example, Pred25 is a very
fast method to identify a system with high
percentage of good predicted values but it may
not identify a system that is occasionally
inaccurate. In our case, to compare the two
systems (statistical and analogies based) we
decide to use both MMRE and Pred25 in order to
define a comparison result more accurate and
comparable. Generally speaking, the predictions
by analogies tend to be more accurate but
occasionally it may be wildly inaccurate, while
prediction by regression may be less accurate but
it is more conservative with a bias against
overestimates. For example, reliability is
composed of defects density and reliability-rate
metrics. In particular, we know that in a software
system the reliability-rate metric has more
influence on software reliability than defects
density. Generally speaking, this is due to the
type of errors/bugs differently considered in
metrics.

4. We have selected a set of quality rules defining the
relationships among quality model elements. These
quality rules let us interpret the results of software
measurements and predictions.

a. We have defined the set of quality rules
describing the relationships between quality
factors and testing metrics. Our quality rules are
the following:

Testability = (0.6 (1 - TE) + 0.2 Tcov + 0.2
Fcov) / 3

 Error Proneness = (0.6 (1 - DD) + 0.4 (1 -
Ddu)) / 2

Reliability = (0.4 (1 - DD) + 0.6 Rr) / 2
Fault Tolerance = (0.5 (1 - DD) + 0.5 (1 -
 Ddu)) / 2

Where the testing metrics are normalized in
order to define the factors as ∈[0, 1].

b. We have studied the relationships among quality
factors and defined a relationship that groups
them in a final application quality index that may
be used as general value to define a structural
quality of a web application from testability point
of view. Our quality index rule is:

Quality = (0.38 Testability + 0.15 (1 - Error
Proneness) + 0.32 Reliability + 0.15
Fault Tolerance) / 4

5.2. User Layer
To show the step-by-step user layer of our framework
applied in the WAAT project, we have used our quality
model with an existing web application (we use the
quality model so we are quality model user) in order to
study its structure from the testing point of view. Thus,
we have performed the following steps:

1. MailSending is the application selected as case
study to applying the WAAT quality model. It is a
small web application written in PHP that consists
in a web interface to send mail.

2. From web application source code and its reverse
engineered UML model, we have measured
software metrics (Table 1 shows fragments of
measured results). Thus, every software component
(unit or group of them -named concerns-) is
represented through its specific measured value.

3. (L1) through the prediction system based on
software analogies, we have calculated the values of
testing metrics for every software component (Table
2 shows fragments of the calculated values). We
compute these values without performing the testing
phase, these are predicted values.

4. (L2) through the predicted testing metrics and the
quality rules of the model, we have calculated the
quality factors value for MailSending. Then we
have classified software components using these
calculated factors to define a set of colour-based
tables similar to the one in Figure 2. These tables
show the trend of factors on MailSending
components and let us identify components with
low quality from testability-related point of view
(components that needed to be analyzed again). For
example, Figure 2 shows that the component named
CO3 (corresponding to a group of software units)
has low value in term of test-effort, while CO2 has
high value of test-effort.

5. (L3) through the calculated quality factors and the
quality index rule defined in the model, we have
computed the quality index for every component or
group. These indexes may be considered the general
values defining the structural quality level of the
MailSending software components. (Table 3 shows
fragments of the calculated indexes with their
colour-map).

6. We have analyzed the calculated values obtained for
every level (i. e., L1, L2, L3) to evaluate the quality
of the application through the defined quality
factors.

a. For every level, we have grouped the application
components based on their calculated values (i.
e., for L1 based on testing metrics, for L2 based
on quality factors, and for L3 based on quality
index). In this step, we have used a clustering
algorithm (see the next section for more details
about the algorithm) that helps us to define

A Framework to Build Quality Models for Web Applications 173

groups of components based on their different
LX-related values (i. e., distance among
components). We are interested in these clusters
because the “border” clusters (generally, the first
and the last ones) contain components with low
and/or high quality values (that are the most
interesting software components for us). Table 4
shows fragments of the clustering results. In
particular, the table contains the values calculated
for test-effort metrics, for testability quality
factors and for two different types of quality
indexes (in fact, the second is an alternative
version composed of a set of sub-terms of the
first one).

b. We have analyzed the trend of the grouped
components using the quality rules expressed in
term of if-then-else rules in order to analyze the
“border” clusters and define the contained set of
Software components that need to be analyzed
again (via testing, reengineering, refactoring,
source code analysis, and so on). Table 5 shows
fragments of clusters interpretation. For example,
we may consider the testability (at unit level).
Quality rules for testability are the following:
Software quality increases if testability increases,
thus (rule1) high testability is desirable; high
testability (rule2) is based on high testing
coverage measures (Tcov and Fcov testing
metrics) and (rule3) low test effort (TE metric).
Moreover, the clusters centroids are calculated
as: For cluster cl1centroids = 0,143 while for
cl2centroids = 0,577. Thus, considering the quality
rules for testability, we may analyze the centroids
evolution using rule1. In this case, we have
cl1centroids < cl2centroids thus we have found cluster
named cl2 as cluster with high quality, while cl1
as low quality. Therefore, in this case
components associated with cluster cl2 needed to
be analyzed in more detail (e. g., through more
accurate testing, or via redesign, and so on) in
order to increase their quality. Furthermore, for
example, we may focus MailSending analysis on
application components that needed more test
effort. Thus, at unit level, components in clusters
named cl1 (composed of C1i and C3s) need high
effort (i. e., more attention in testing); while at
concern level, components in cl2 (composed of
CO1 and C02) need high effort. For another
example, we may analyze the total quality of
components (qI in Table 5, it is composed of the
entire set of metrics and quality factors). In this
case (considering qI), components with low level
of quality are grouped in cluster named cl2,
units-level, and cl1, at concerns-level.

Table 1. Software metrics statistics for MailSending.
Metric Type Aver. Std.Dev Min Max
InC Unit 1,333 0,816 0 2
dPC Unit 5,667 7,967 0 21
CBC Unit 2,5 1,225 1 4
DIT Unit 0,167 0,408 0 1
CMC Unit 1,167 0,983 0 2
CFA Unit 0,5 0,548 0 1
RFM Unit 2,167 0,983 1 3
LOC Unit 19,333 21,768 6 63
WOC Unit 2,5 2,950 0 7
MCo Concern 4,667 1,155 4 6
DS Concern 25,03 43,3 0,05 75
Cc Concern 3,333 0,57 3 4
….

Table 2. Testing metrics predictions for MailSending.
Aver. Std. Dev Min Max

Unit TE 40,12 55,67 1,74 139,49
Rr 1,43 1,30 0,13 3,3
DDu 0,49 0,81 0 1,92

Concern TE 188,47 70,85 134,4 268,67
Tcov 0,55 0,17 0,42 0,75
Fcov 6,5 2,09 4,83 8,84
Rr 0,8 0,31 0,57 1,15
DDu 1,32 0,14 1,22 1,47
DD 0,05 0,02 0,04 0,08

Figure 2. Classification maps of quality factors.

Table 3. Software quality index for MailSending.
Units qI (R + EP) qI

C1i 0,23 0,10
C2f 0,31 0,14
C3s 0,25 0,06
C4c 0,12 0,10
C5t 0,09 0,09
C6l 0,10 0,10

Concerns CO3 0,15 0,04
CO1 0,22 0,08
CO2 0,19 0,07

6. Clustering Algorithm
In the user-layer of our framework, we have suggested
the use of a clustering algorithm in combination with
the pre-defined quality rules to analyze the
predicted/computed data. As clustering algorithm, we
use a genetic-based approach (such as [6, 8, 17]). This
type of clustering technique automatically decides the
best number of clusters needed to group the current
data (i. e., in our case the predicted values) using an
optimization function. In fact, this is very interesting in
our framework because the quality model
interpretation is not influenced by the experience or the

ANALOGIES

TE Tcov Fcov Rr DDu DD
CO3
CO1
CO2

TE Rr DDu
C1i
C2f
C3s
C4c
C5t
C6l

174 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

knowledge of the quality model user. Nowadays the
most used clustering algorithms are dependent from
human interaction and thus influenced by human
choices. This may be an intrinsic limitation of the use
of a clustering-based approach for the quality model
interpretation, so through a genetic algorithm we may
control this limitation. For example, the use of a k-
means clustering forces the user to choose the k value
(number of cluster) and then the groups are defined
based on this human choice. In this case, the clustering
may not be optimal and controlled by human choice.
Generally speaking, our ad-hoc clustering
implementation is inspired by the algorithm presented
in [17], but it is applied in combination with a k-means
clustering technique. We use a genetic algorithm to
define the most adequate number of clusters (k) for the
k-means clustering of our current data. In our genetic
algorithm, an individual (that is a feasible solution in
genetic algorithm language) is a group of clustered
data elements. The selection operation selects the
chromosomes according to the fitness function. An
individual with high fitness has high probability to be
in the new population. The crossover (we use the
single-point crossover) operation exchanges features of
two individuals to produce two new individuals (the
children). The exchange of features may produce other
good individuals. The mutation operation changes a
single element in the chromosome representation. This
operator should happen with very low probability.
Finally, the fitness function defines the goodness of
every individual (feasible solution) in the problem
domain and defines the probability of the solution
survival in the evolution process. In our case, the
fitness is inspired to the function used in [17]. The
fitness for clustering is defined as a linear combination
of the intra-cluster homogeneity and inter-cluster
separation as following: F = H (G) + µ * S (G), where
µ (0 ≤ µ) is a pre-defined scale factor. Through this
function the clustering problem is represented as a
direct maximization of trade-off between H and S
independently of number of cluster k, yet as µ varies a
control on k will be indirectly achieved. The following
limit cases exist:

µ� 0 then f = H (G) then k� ∞
µ� ∞ then f = S (G) then k� 1

Notice that the scale factor is not strictly related to the
specific optimization problem and to the dataset under
analysis, thus we may use it to indirectly control the
cluster algorithm. In our case, it may be interesting to
control the density of the clustered software
components. For example, if the user has a limited
resource to test the application, he/she may desire to
select a limited number of software components to test,
thus he/she may use the scale factor to control the
clustering operation.

The Genetic Algorithm:
{

Randomly population initialization;
Fitness evaluation;
While (termination is false)

{
Selection
Crossover and Mutation;
Fitness evaluation;

}
}

Genetic algorithms accept as input a finite length string
(the chromosome). Each of the elements in the
chromosome is a gene, and each gene has an allele
value. A population is randomly defined, then a fitness
function is calculated for every chromosome, and then
a set of genetic operators (selection, crossover,
mutation) are applied to generate the new population.
The process is stopped when the population is
stabilized or after a pre-defined maximum number of
iterations. Moreover, we have defined a procedure to
determine the most adequate scale factor based on the
cluster density to obtain the best clusters considering
the user necessities in term of density of the “border”
clusters.

Table 4. Software clusters samples for MailSending.
TE Cluster Test. Cluster

Units C1i 0,524 1 0,286 1
C2f 0,064 2 0,562 2
C3s 1 1 0 1
C4c 0,025 2 0,585 2
C5t 0,059 2 0,564 2
C6l 0 2 0,6 2

Centroids cl1 0,716 0,143
cl2 0,037 0,577

Concerns CO3 1 2 0,133 1
CO1 0,208 1 0,192 2
CO2 0 1 0,2 2

Centroids cl1 0,104 0,133
cl2 1 0,196

qI qI*
Units C1i 0,104 2 0,232 1

C2f 0,141 1 0,313 3
C3s 0,063 2 0,252 1
C4c 0,104 2 0,118 2
C5t 0,095 2 0,09 2
C6l 0,101 2 0,099 2

Centroids cl1 0,141 0,242
cl2 0,093 0,102
cl3 0,313

Concerns CO3 0,038 2 0,15 2
CO1 0,076 1 0,221 1
CO2 0,073 1 0,186 1

Centroids cl1 0,074 0,203
cl2 0,036 0,15

*qI = qI computed using only Reliability and errorProneness.

A Framework to Build Quality Models for Web Applications 175

Table 5. Clusters samples interpretation for MailSending.
Regression

TE Test Test qI
Units cl1 ++ units cl1 ++

cl2 + cl2 +
Concerns cl1 + concerns cl1 ++

cl2 ++ cl2 +

Analogies
qI qI qI* qI*

Units cl1 + units cl1 ++
cl2 ++ cl2 +++

cl3 +
Concerns cl1 ++ concerns cl1 +

cl2 + cl2 ++

qI* qI (Reliability + errorProneness)

7. Discussion
Referring to the two roles defined in our approach, we
may note that the administrator must be an expert user,
because he/she builds quality systems and our
framework needs some specific interaction. For
example, we may consider the choice of the set of
software/testing metrics, or the definition of the quality
rules (from a literature analysis). On the other hand,
the quality model user doesn’t need to be an expert
user and the usage/interpretation of the quality model
is entirely automatic. The described approach to apply
our framework to an existing web application is based
on a prediction system, clustering of values
calculated/predicted and on the use of the pre-defined
quality rules, thus it is entirely automatic. The
automation level may be a very useful factor to define
the model effectiveness, because its usage may be
composed of several heavy and repetitive tasks and
steps applied in all software components and group of
them. Thus, in very large and complex web
applications, an automatic quality model may be useful
to analyze the software and to extract information
reusable in testing, redesign, reengineering,
refactoring, and so on.

Furthermore, this paper focuses on the framework
description and on the use and interpretation of quality
model that we may build with our framework. Often,
in literature more effort is dedicated to construction,
description and evaluation of a quality model rather
than the description of its usage, interpretation and
customization. We think that this may be a limitation
on the use of quality models to increase the application
structural quality, because often model are very
difficult to understand, comprehend and use.

8. Conclusions
We have presented the framework used in our WAAT
project to build quality models for web applications.
Then, we have shown the use of this framework to
build a quality model based on a combination of

Object-Oriented and web metrics and focused on
testability quality factor to analyze structural quality of
web software. Our model is based on two different
layers, the administrator and the user. In the first, we
have described the steps performed by the users that
need to build a new quality factors or to customize an
existing model. While, in the other layer we have
described the steps that the quality-model user needs to
perform to apply the quality model built by the
administrator.

References
[1] Basili V., Briand L., and Melo W., “A Validation

of Object-Oriented Design Metrics as Quality
Indicators,” IEEE Transaction on Software
Engineering, vol. 22, no. 10, pp.751-761,
October 1996.

[2] Basili V., Caldiera G., and Rombach D., GQM
Paradigm, Computer Encyclopedia of Software
Engineering, John Wiley and Sons, 1994.

[3] Bellettini C., Marchetto A., and Trentini A.,
“Dynamical Extraction of Web Applications
Models Via Mutation Analysis,” Journal of
Information - An International Interdisciplinary
Journal - Special Issue on Software Engineering,
vol. 8, no. 5, pp. 673-682, September 2005.

[4] Boetticher G., “Using Machine Learning to
Predict Project Effort: Empirical Case Studies in
Data-Started Domains,” in Proceedings of 1st
International Workshop on Model-based
Requirements Engineering, San Diego, USA,
pp.17-24, 2001.

[5] Botafogo R., Rivlin E., and Shneiderman B.,
“Structural Analysis of Hypertexts: Identifying
Hierarchies and Useful Metrics,” ACM
Transaction on Information Systems, vol. 10, no.
2, pp. 142-180, 1992.

[6] Boudjeloud L. and Poulet F., “Attribute Selection
for High Dimensional Data Clustering,” in
Proceedings of the International Symposium on
Applied Stochastic Models and Data Analysis,
Brest, France, 2005.

[7] Briand L., Morasca S., and Basili V., “Defining
and Validating High-Level Design Metrics,”
Computer Science Technical Report Series, 1999.

[8] Casillas A., González de Lena M. T., and
Martínez R., Document Clustering into an
Unknown Number of Clusters Using a Genetic
Algorithm, Text, 2003.

[9] Chidamber S. and Kemerer C., “A Metrics Suite
for Object Oriented Design,” IEEE Transactions
on Software Engineering, vol. 20, no. 6, pp. 176-
493, June 1994.

[10] Conallen J., Building Web Applications with
UML, Addison-Wesley, 2000.

[11] Denaro G., Morasca S., and Pezzè M., “Deriving
Models of Software Fault Proneness,” in

176 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

Proceedings of 14th International Conference on
Software Engineering and Knowledge
Engineering (SEKE'2002), Italy, pp.361-368,
July 2002.

[12] Dhyani J., Keong W., and Bhowmick S., “A
Survey of Web Metric,” ACM Computing
Surveys, vol. 34, no. 4, pp. 469-503, 2002.

[13] Di Lucca G. A., Fasolino A. R., Pace F.,
Tramontana P., and De Carlini U., “WARE: A
Tool for the Reverse Engineering of Web
Applications,” in Proceedings of 6th European
Conference on Software Maintenance and
Reengineering (CSMR'2002), Hungary, pp.230-
240, March 2002.

[14] Durand J. and Gaudoin O., “Software Reliability
Modelling and Prediction with Hidden Markov
Chain,” INRIA-Rhone-Alpe Technical Report,
February 2003.

[15] Fenton N. and Neil M., “A Critique of Software
Defect Prediction Models,” IEEE Transactions
on Software Engineering, vol. 25, no. 5, pp.675-
689, 1999.

[16] Fenton N. and Neil M., “Software Metrics:
Roadmap,” in Proceedings of the International
Conference on Software Engineering
(ICSE'2000), Ireland, pp.359-370, June 2000.

[17] Gagliardi F., “An Evolutionary Computational
Model of Prototype-Based Categorization: An
Application on Clinical Semeiotics,” in
Proceedings of the XXVII Annual Conference of
the Cognitive Science Society, Italy, pp. 732-737,
2005.

[18] Herder E., “Metrics for the Adaptation of Site
Structure,” in Proceedings of the German
Workshop on Adaptivity and User Modeling in
Interactive Systems (ABIS02), pp. 22-26, 2002.

[19] Marchetto A. and Trentini A., “Web Applications
Testability Through Metrics and Analogies,” in
Proceedings of the 3rd International Conference
on Information and Communication Technology
(ICICT'2005), Egypt, pp. 751-780, 2005.

[20] Marinescu R., “Detecting Design Flaws via
Metrics in Object-Oriented Systems,” in
Proceedings of the 39th Technology of Object-
Oriented Languages and Systems (TOOLS'2001),
CA, USA, , pp. 103-116, 2001.

[21] Nageswaran S., Test Effort Estimation Using Use
Case Points, Quality Week 2001, CA, USA, June
2001.

[22] Offutt J., Wu Y., and Du X., “Modeling and
Testing of Dynamic Aspects of Web
Applications,” Technical Report, George Mason
University, USA, 2004.

[23] Ricca F. and Tonella P., “Building a Tool for the
Analysis and Testing of Web Applications:
Problems and Solutions,” in Proceedings of
Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’2001), Italy, pp. 25-
34, April 2001.

[24] Rosenberg L., Hammer T., and Shaw J.,
“Software Metrics and Reliability,” in
Proceedings of the 9th International Symposium
on Software Reliability Engineering, Germany,
pp.109-125, 1998.

[25] Schwabe D., Pontes R., and Moura I., OOHDM-
Web: An Environment for Implementation of
Hypermedia Applications in the WWW, SigWEB
Newsletter, 1999.

[26] Shan Y., McKay R., Lokan C., and Essam D.,
“Software Project Effort Estimation Using
Genetic Programming,” in Proceedings of the
International Conference on Communications,
Circuits and Systems (ICCCAS'2002), China, pp.
1108-1112, July 2002.

[27] Shepperd M., Schofield C., and Kitchenham B.,
Effort Estimation Using Analogy, ICSE-18,
Germany, pp. 170-178, March 1996.

[28] Systä T., Understanding the Behavior of Java
Program,” in Proceedings of the 7th Working
Conference on Reverse Engineering
(WCRE'2000), Australia, pp.214-223, 2000.

Alessandro Marchetto is a PhD
student in computer science in the
Department of Information and
Communication at the University of
Milano, Italy. He graduated with a
degree in computer science from the
University of Milano, Italy, in 2003.

His research interests include software engineering,
software modeling, reverse engineering techniques,
and software analysis and testing, in particular, for web
systems.

Andrea Trentini is an assistant
professor at the Diparimento di
Informatica e-Comunicazione
Universita' di Milano-Bicocca, Italy.
Formerly, researcher at
Departimento di Informatica
Sistemistica e-Comunicazione,

Universita' di Milano-Bicocca, Italy. His research
interests include software architectures, object-oriented
design and object-oriented languages. His research
applies to free (as in freedom) software. He teaches
Java, UML, OOA&D, and operating systems.

