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Abstract: This paper describes an approach to build and apply a quality model useful to analyze a web application through 
an object-oriented model and to evaluate the structural software qualities using the built model. The constructed quality model 
is focused on a set of software metrics and uses a prediction system based on software analogies analysis. In particular, the 
paper focuses on model construction, customization and interpretation. The proposed approach uses a combination of 
traditional web and object-oriented metrics to describe structural properties of web applications and to analyze them. These 
metrics are useful to measure some important software attributes such as complexity, coupling, size, cohesion and defects 
density. Furthermore, the presented quality model uses these metrics to describe applications in order to predict some 
software quality factors (such as test effort, reliability, error proneness) through an instance-based classification system. The 
approach uses a classification system to study software analogies and to define a set of information usable as the basis for 
applications quality factors prediction and evaluation.
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1. Introduction
Web applications quality, reliability and functionality 
are important factors because software glitches could 
block entire businesses and cause major 
embarrassment. These factors have increased the need 
for methods, tools, and models to improve web 
applications (design, analysis, testing, and so on). This 
paper focuses on analysis of legacy web applications 
where business logic is embedded into web pages. The 
applications analyzed are composed of web documents 
(static, active or dynamic) and web objects.

Software metrics may be very useful to increase the 
quality of software analysis, reengineering, and testing 
through prediction or analysis systems. For example, 
software size or complexity measures may be used to 
predict software testing effort, or coupling and 
cohesion measures to analyze software structure, and 
so on. Moreover, the use of metrics in web software 
may be very useful because the applications are more 
and more dynamical. Often, they are built via server 
side code, such as for PHP, ASP.NET, Java, JSP, and 
so on. Software developed with these languages may 
be very complex, structured, and may be very useful to 
model applications via Object-Oriented (OO) meta-
models. Furthermore, the use of metric-measurements 
is very “web-adequate”, because web software is often 
developed in very compressed life cycle (three to six 
months), without a formalized process, and web
documents and objects are directly coded in 
incremental way (often new software is obtained by 
duplicating via “copy & paste inheritance”). 

Techniques for automatic (or more formalized) 
application analysis, understanding, and testing are 
badly needed. 

In our Web Applications Analysis and Testing
(WAAT) project, we define an approach to extract an 
OO model from existing web applications, and use it as 
the basis for the application analysis and testing. In 
particular, the meta-model lets developers use some 
traditional web and OO metrics to describe existing 
software and to analyze the impact on software quality 
factors. 
This paper analyzes the WAAT quality model based 

on a metrics suite to help the user (e. g., software 
developers) define a quantitative system to measure 
web software and to evaluate/predict quality factors 
through structural properties. Nowadays, the existing 
metrics-based systems for web applications measure 
several structural properties, but often, they measure 
specific web assets, such as navigation paths length, 
pages click-stream distances, and so on (see [12] for 
web metrics roadmap). In our model, we focus not 
only on web specific measures, but, more generally, on 
measures related to software in general (such as OO, 
web, AOP, etc.) but applied to web applications.

Several techniques exist in literature to design web
application through OO approaches (see next section). 
These approaches are used to increase software quality 
in software modelling (i. e., using UML, see [10]), 
testing [22, 23], and analyze of existing software. This 
paper introduces a new framework to build quality 
models for web applications modelled via OO 
techniques.  Moreover, this paper presents our WAAT 



A Framework to Build Quality Models for Web Applications                     169

quality model built using this framework. In fact, the 
WAAT quality model is an instance of the meta-
model. The quality models that may be built through 
our framework let the user analyze a web application 
using a set of software metrics and quality rules. The 
aims of this paper are to describe (step-by-step) a 
system used to build and customize quality models (in 
particular, in order to study web application testability 
through several structural properties of the software) 
and to describe a system to use and evaluate the results 
on the usage of our quality models. Furthermore, this 
paper proposes the use of a genetic algorithm to 
increase the quality and the automation of the analysis 
performed in WAAT project using our quality model. 
The use of an optimization-function based analysis to 
cluster the prevision data computed through the use of 
a prediction system let us decrease the manual 
interaction of the user and increases the effectiveness 
of the clustering-based approach suggested through our 
framework to analyze the predicted data quality.

This paper is organized as follows. Section 2 
presents the state of the art. Section 3 summarizes our 
applications modelling and reverse engineering 
approach. Section 4 summarizes the WAAT 
framework for quality model construction. Section 5 
presents our quality model built through the 
framework. Moreover, sections 4 and 5 contain several 
references with more detailed information. Section 6 
introduces the used clustering algorithm. Finally, 
section 7 concludes the paper and describes future 
works.

2. State of the Art
Several web modeling methodologies are available in 
literature, and some of these methods are OO-based or 
UML-based. For example, see: UML Conallen’s 
extensions [10], the reverse engineered model used by 
ReWeb [23], and the Object-Oriented OOHDM [25]. 
Moreover, [3] contains a review of OO modeling 
techniques used in web software and related to the 
model used in our WAAT project (Figure 1 shows the 
our UML class meta-model used in WAAT).
Generally speaking, software engineer metrics are 

very useful to analyze software applications or models, 
to study structural software quality, and to define 
prediction about software effort, such as for design 
effort, testing effort, and so on. However, there is no 
consensus within the community on which metrics to 
use or how to calculate metrics. In particular, there are 
many empirically validated metrics suite and metrics. 
There are many papers describing different types of 
metrics involved in the different measurements, 
metrics definition, and analysis process. In this related 
works section, we have selected some paper studying 
metrics in OO design and web software, but it’s 
important to know that in this area the scientific 
community is nowadays very expansive. The goal of 

several metrics-papers is to define and validate a set of 
high-level design metrics to evaluate the quality of the 
application design of a software system (for example 
see [7, 9]). Other papers (for example see [7]) focus on 
empirical validation of the relationships between 
design measurement in OO systems (coupling, 
cohesion, and inheritance) and the quality of the 
software (the probability of fault detection in system 
classes during testing). [16] defines a software metrics 
roadmap for OO systems. [5, 18] study web metrics 
definition and analysis, while [12] proposes a web
metrics roadmap. Some papers study metrics for 
specific software quality aspects. [20] defines a 
metrics-based approach for detecting design problems 
(well-known design flaws). [24] defines metrics to 
promote and assess software reliability. [11] studies the 
correlation between fault-proneness of the software 
and the measurable attributes of the code, while [1]
studies the metrics as predictors of fault-prone classes. 
[15] proposes a Bayesian Belief Networks approach 
for software defect prediction. [21] and [27] define 
approach to the estimation of metrics based software 
testing efforts.  [26] proposes an approach to estimate 
the cost of a software project, while [4] studies 
machine learning models applied to software effort 
prediction. [14] introduces an approach to software 
reliability prediction based on Markov chains.

3. Model Recovery
Our approach to model recovery is composed of 
application behavior analysis, application model 
building, and model validation as follows:

• Application Behavior Analysis: We use static 
(scanner/parser applied on source code) and 
dynamic (mutation-based analysis applied on 
software executions) analysis to extract information 
from an existing web applications [3].  

• Model Building: With the information extracted by 
the previous phase, we build an application OO 
model (such as described in [13, 23]) using UML 
class and state diagrams. In particular, we have 
defined an UML meta-model (see [3]) usable to 
describe legacy/traditional web applications. Class 
diagrams are used to describe structure and 
components of a web application (e. g., forms, 
frames, Java applets, input fields, cookies, scripts, 
and so on), while state diagrams are used to 
represent behavior and navigational structures 
(client-server pages, navigation links, frames sets, 
inputs, scripting code flow control, and so on). 

• Model Validation: The reverse engineered model 
may contain more information than what is needed. 
In particular, it may contain “not valid” information, 
such as not valid dynamically generated client-side 
pages. A client-page is “valid” if it is reachable in 
the original application via an execution path. Since 
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our reverse engineering technique may define a 
model with a superset of behaviors we need a 
pruning technique. Our proposed approach is 
essentially based on web server log files analysis 
validation and “visual navigation validation” with 
the user help (see [3] for more details).

Figure 1. UML class diagram meta-model.

4. The Framework 
This section describes our framework to build a quality 
model for web applications modelled via OO 
techniques. In particular, the framework phases are 
subdivided into two different types based on their 
usage, for model administrator (i. e., user building, 
customizing and maintaining the quality model) and 
for model user (i. e., user using the built quality model 
in a web application to analyze it). 

The quality model administrator may build or 
customize the model through the following steps:

1. Construction of a meta-model (e. g., see previous 
section) that maps the web concepts to OO 
concepts.

2. Quality model construction. In this step, the use of a 
system such as the Goal-Question-Metrics [2]
(GQM is a human-driven method to incrementally 
build quality models, starting from a set of limited 
goals then iterated and refined through questions) 
may be very useful to help the administrator to 
select the factors that they need to analyze software. 

a. Definition of a set of interesting quality factors to 
analyze the applications (e. g., testability, 
reliability, and so on). 

b. Definition of a set of testing metrics strictly 
related to the quality factors (e. g., test effort, 
reliability rate, defect density, and so on). We 
need to define a set of testing metrics because it 
is impossible to directly calculate the quality 
factors on software, thus these factors are always 
expressed in terms of testing metrics and/or their 
combination.

c. Definition of a set of software metrics (e. g., lines 
of code, coupling between objects, and so on).

d. Theoretical and empirical (statistical) analysis of 
the relationships among software and testing 
metrics (e. g., Pearson’s correlation analysis on 
testing/software metrics in a large set of existing 
web applications).

3. Prediction system construction:

a. Definition of prediction system using the built 
quality model. The use of more than one 
complementary (e. g., algorithmic, such as 
regression and software analogies based) method 
is suggested. In fact, the quality factors of the 
model (via testing metrics) may be considered as 
dependent variables of the prediction system, 
while the software metrics may be considered as 
independent variables used to estimate the 
dependent.

b. Statistical validation of the prediction system 
constructed through a large dataset of 
applications and the use of predictions accuracy 
methods (e. g., two different usable measures of 
accuracy may be the MMRE -mean magnitude of 
relative error- which represents the mean of 
absolute percentage errors and the Pred25 which 
represents the percentage of predictions that fall 
within 25 percent of the current value).

c. (Optional) in case of more than one method used 
in the prediction system, the definition of results 
analysis or grouping policy may be needed. 

4. Quality rules definition:

a. From literature analysis, definition of the quality 
rules describing the relationships between quality 
factors and testing metrics used to measure them.

b. From literature analysis, definition of the quality 
rules describing the relationships among quality 
factors itself (grouped in a final application 
quality index).

The output of this administrator layer of the 
framework is a quality model composed of the 
following:

1. The correlation of the software/testing metric.
2. The prediction system that uses software metrics to 

predict the values of testing metrics.
3. The set of quality rules that tie testing metrics to 

quality factors and that tie quality factors itself. This 
set of elements may be used by the user (i. e., 
quality model user) to analyze an existing web
application performing the following steps:

1. Selection of web application to analyze (source 
code and execution environment may be needed).

2. Measurement of sof tware metrics (defined in step 
administrator_2.c) on web application source 
code and executions.

3. Computation of the testing metrics (defined in 
step administrator_2.b) using the measured 
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software metrics and the prediction system built 
by administrator (this step is named Level 1 -L1). 

4. Computation of the quality factors (defined in 
step administrator_2.a) using the predicted 
testing metrics and through the use of the quality 
rules defined by the administrator (this step is 
named Level 2 -L2). 

5. Computation of the quality index (defined in step 
administrator_4.b) using the calculated quality 
factors (this step is named Level 3 -L3).

6. Analysis of the results obtained for every level of 
values (i. e., L1, L2, L3).

a. Clustering of the values calculated/predicted.
b. Interpretation of the values grouped in the 

previous step using the quality rules (defined 
in step administrator_4.a/ .b) expressed as if-
then-else expression in order to analyze the 
“border values” and define the set of software 
components that need to be analyzed with 
more precision (e. g., with specific testing, 
reengineering, refactoring, source code 
inspection, and so on).

Therefore, input of the user layer is the set of the 
quality model components and the web application to 
analyze (source code and executions). While the output 
is composed of a set of software components that the 
quality model classifies as “components with low 
quality” and that need to be re-analyzed through 
specific techniques by the web application 
developers/testers. 

5. Applying the Framework to a Case 
Study: The WAAT Quality Model

In our WAAT project, we have applied the described 
framework to define a quality model based on OO
metrics and focused on the analysis of testability (and 
other strictly related quality factors). In the rest of this 
section, we show the WAAT administrator task 
performed to build the WAAT quality model and a 
typical case study in which the model is used by the 
quality model user to analyze an existing application.

5.1. Administrator Layer
The WAAT quality model administrator has 
performed the following steps (in this sub-section we 
summarize some results, for more details see [19]): 

1. We have built our UML meta-model (described in 
section 3) to analyze web applications as traditional 
OO software.

2. Through the use of a ad-hoc GQM system, we have 
built our quality model focused on testability 
analysis from the OO point of view. 

a. From literature analysis, we have defined the 
interesting quality factors such as: Testability, 

error proneness, reliability, and fault tolerance. 
The aim of our quality analysis is to study the 
values trend of these factors. 

b. From literature analysis, we have selected a small 
group of testing metrics to directly calculate the 
quality factors on software. In particular, our 
metrics are: Test Effort (TE), Test coverage 
(Tcov), Feature coverage (Fcov), Defect Density 
(DD), Unit DD (DDu), and Reliability rate (Rr).

c. From literature (and from previous experiments),
we have defined about 25 OO/web metrics to 
measure essential software attributes such as 
coupling, cohesion, separation of concerns, 
software size and complexity (e. g., metrics are 
coupling between components, response for a 
module, number of methods/attributes, operation 
for concern, and so on).

d. We have studied the relationships between 
software and testing metrics through an empirical 
experiment based on statistical analysis of a 
dataset containing several web applications. In 
particular, we have measured software metrics on 
the source code of the application under analysis 
(or using its UML model). Then, we have 
performed traditional web testing and measured 
our set of testing metrics. Then, we have 
performed the statistical analysis of metrics using 
the Pearson’s correlation analysis to evaluate the 
empirical correlation between metrics (for 
example lines of code influences test effort and 
feature coverage, while degree of separation of 
concerns influences test coverage, reliability rate, 
feature coverage, and defect density, and so on). 

3. Through the built of quality model, we have built a 
prediction system to predict the values of the testing 
metrics (i. e., representing the quality factors) based 
on the software metrics. 

a. We have used two different approaches to predict 
the values, the first is an algorithmic approach 
and is the regression based (i. e., a statistical-
based approach), while the other is a non-
algorithmic approach based on software 
analogies used in a classification system (i. e., 
nearest neighbour classifier). We use the testing 
metrics as dependent variables and the software 
metrics as independent variables of our 
prediction system. We define a system to 
calculate the testing metrics using the values of 
software metrics (i. e., we may know the values 
of the testing metrics without performing a 
testing phase of the application under analysis).

b. We have performed a statistical analysis using a 
set of applications in order to validate the 
prediction system and define its accuracy. To this 
aim, we have used two different measures of 
accuracy, the MMRE-mean magnitude of relative 
error-which represents the mean of absolute
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percentage errors and the Pred25 which 
represents the percentage of predictions that fall 
within 25 percent of the current value. We 
naturally think that the choice of accuracy 
evaluation is strictly related to the goals of the 
prediction system. For example, Pred25 is a very 
fast method to identify a system with high 
percentage of good predicted values but it may 
not identify a system that is occasionally 
inaccurate. In our case, to compare the two 
systems (statistical and analogies based) we 
decide to use both MMRE and Pred25 in order to 
define a comparison result more accurate and 
comparable. Generally speaking, the predictions 
by analogies tend to be more accurate but 
occasionally it may be wildly inaccurate, while 
prediction by regression may be less accurate but 
it is more conservative with a bias against 
overestimates.  For example, reliability is 
composed of defects density and reliability-rate 
metrics. In particular, we know that in a software 
system the reliability-rate metric has more 
influence on software reliability than defects 
density. Generally speaking, this is due to the 
type of errors/bugs differently considered in 
metrics.

4. We have selected a set of quality rules defining the 
relationships among quality model elements. These 
quality rules let us interpret the results of software 
measurements and predictions. 

a. We have defined the set of quality rules 
describing the relationships between quality 
factors and testing metrics. Our quality rules are 
the following:

Testability = (0.6 (1 - TE) + 0.2 Tcov + 0.2 
Fcov) / 3

 Error Proneness = (0.6 (1 - DD) + 0.4 (1 -
Ddu)) / 2

Reliability = (0.4 (1 - DD) + 0.6 Rr) / 2
Fault Tolerance = (0.5 (1 - DD) + 0.5 (1 -
                                     Ddu)) / 2

Where the testing metrics are normalized in 
order to define the factors as ∈[0, 1].

b. We have studied the relationships among quality 
factors and defined a relationship that groups 
them in a final application quality index that may 
be used as general value to define a structural 
quality of a web application from testability point 
of view. Our quality index rule is:

Quality = (0.38 Testability + 0.15 (1 - Error
Proneness) + 0.32 Reliability + 0.15
Fault Tolerance) / 4

5.2. User Layer 
To show the step-by-step user layer of our framework 
applied in the WAAT project, we have used our quality 
model with an existing web application (we use the 
quality model so we are quality model user) in order to 
study its structure from the testing point of view. Thus, 
we have performed the following steps:

1. MailSending is the application selected as case 
study to applying the WAAT quality model. It is a 
small web application written in PHP that consists 
in a web interface to send mail. 

2. From web application source code and its reverse 
engineered UML model, we have measured 
software metrics (Table 1 shows fragments of 
measured results). Thus, every software component 
(unit or group of them -named concerns-) is 
represented through its specific measured value.

3. (L1) through the prediction system based on 
software analogies, we have calculated the values of 
testing metrics for every software component (Table 
2 shows fragments of the calculated values). We 
compute these values without performing the testing 
phase, these are predicted values.

4. (L2) through the predicted testing metrics and the 
quality rules of the model, we have calculated the 
quality factors value for MailSending. Then we 
have classified software components using these 
calculated factors to define a set of colour-based
tables similar to the one in Figure 2. These tables 
show the trend of factors on MailSending 
components and let us identify components with 
low quality from testability-related point of view 
(components that needed to be analyzed again). For 
example, Figure 2 shows that the component named 
CO3 (corresponding to a group of software units) 
has low value in term of test-effort, while CO2 has 
high value of test-effort.

5. (L3) through the calculated quality factors and the 
quality index rule defined in the model, we have 
computed the quality index for every component or 
group. These indexes may be considered the general 
values defining the structural quality level of the 
MailSending software components. (Table 3 shows 
fragments of the calculated indexes with their 
colour-map).

6. We have analyzed the calculated values obtained for 
every level (i. e., L1, L2, L3) to evaluate the quality 
of the application through the defined quality 
factors.

a. For every level, we have grouped the application 
components based on their calculated values (i.
e., for L1 based on testing metrics, for L2 based 
on quality factors, and for L3 based on quality 
index). In this step, we have used a clustering 
algorithm (see the next section for more details 
about the algorithm) that helps us to define 



A Framework to Build Quality Models for Web Applications                     173

groups of components based on their different 
LX-related values (i. e., distance among 
components). We are interested in these clusters 
because the “border” clusters (generally, the first 
and the last ones) contain components with low 
and/or high quality values (that are the most 
interesting software components for us). Table 4 
shows fragments of the clustering results. In
particular, the table contains the values calculated 
for test-effort metrics, for testability quality 
factors and for two different types of quality 
indexes (in fact, the second is an alternative 
version composed of a set of sub-terms of the 
first one).

b. We have analyzed the trend of the grouped 
components using the quality rules expressed in 
term of if-then-else rules in order to analyze the 
“border” clusters and define the contained set of 
Software components that need to be analyzed 
again (via testing, reengineering, refactoring, 
source code analysis, and so on). Table 5 shows 
fragments of clusters interpretation. For example, 
we may consider the testability (at unit level). 
Quality rules for testability are the following: 
Software quality increases if testability increases, 
thus (rule1) high testability is desirable; high 
testability (rule2) is based on high testing 
coverage measures (Tcov and Fcov testing 
metrics) and (rule3) low test effort (TE metric). 
Moreover, the clusters centroids are calculated 
as: For cluster cl1centroids = 0,143 while for 
cl2centroids = 0,577. Thus, considering the quality 
rules for testability, we may analyze the centroids 
evolution using rule1. In this case, we have 
cl1centroids < cl2centroids thus we have found cluster 
named cl2 as cluster with high quality, while cl1 
as low quality. Therefore, in this case 
components associated with cluster cl2 needed to 
be analyzed in more detail (e. g., through more 
accurate testing, or via redesign, and so on) in 
order to increase their quality. Furthermore, for 
example, we may focus MailSending analysis on 
application components that needed more test 
effort. Thus, at unit level, components in clusters 
named cl1 (composed of C1i and C3s) need high 
effort (i. e., more attention in testing); while at 
concern level, components in cl2 (composed of 
CO1 and C02) need high effort. For another 
example, we may analyze the total quality of 
components (qI in Table 5, it is composed of the 
entire set of metrics and quality factors). In this 
case (considering qI), components with low level 
of quality are grouped in cluster named cl2, 
units-level, and cl1, at concerns-level.

Table 1. Software metrics statistics for MailSending.
Metric Type Aver. Std.Dev Min Max
InC Unit 1,333 0,816 0 2
dPC Unit 5,667 7,967 0 21
CBC Unit 2,5 1,225 1 4
DIT Unit 0,167 0,408 0 1
CMC Unit 1,167 0,983 0 2
CFA Unit 0,5 0,548 0 1
RFM Unit 2,167 0,983 1 3
LOC Unit 19,333 21,768 6 63
WOC Unit 2,5 2,950 0 7
MCo Concern 4,667 1,155 4 6
DS Concern 25,03 43,3 0,05 75
Cc Concern 3,333 0,57 3 4
….

Table 2. Testing metrics predictions for MailSending.
Aver. Std. Dev Min Max

Unit TE 40,12 55,67 1,74 139,49
Rr 1,43 1,30 0,13 3,3
DDu 0,49 0,81 0 1,92

Concern TE 188,47 70,85 134,4 268,67
Tcov 0,55 0,17 0,42 0,75
Fcov 6,5 2,09 4,83 8,84
Rr 0,8 0,31 0,57 1,15
DDu 1,32 0,14 1,22 1,47
DD 0,05 0,02 0,04 0,08

Figure 2. Classification maps of quality factors.

Table 3. Software quality index for MailSending.
Units qI (R + EP) qI 

C1i 0,23 0,10
C2f 0,31 0,14
C3s 0,25 0,06
C4c 0,12 0,10
C5t 0,09 0,09
C6l 0,10 0,10

Concerns CO3 0,15 0,04
CO1 0,22 0,08
CO2 0,19 0,07

6. Clustering Algorithm
In the user-layer of our framework, we have suggested
the use of a clustering algorithm in combination with 
the pre-defined quality rules to analyze the 
predicted/computed data. As clustering algorithm, we 
use a genetic-based approach (such as [6, 8, 17]). This 
type of clustering technique automatically decides the 
best number of clusters needed to group the current 
data (i. e., in our case the predicted values) using an 
optimization function. In fact, this is very interesting in 
our framework because the quality model 
interpretation is not influenced by the experience or the 

ANALOGIES

TE Tcov Fcov Rr DDu DD
CO3
CO1
CO2

TE Rr DDu
C1i
C2f
C3s
C4c
C5t
C6l
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knowledge of the quality model user. Nowadays the 
most used clustering algorithms are dependent from 
human interaction and thus influenced by human 
choices. This may be an intrinsic limitation of the use 
of a clustering-based approach for the quality model 
interpretation, so through a genetic algorithm we may 
control this limitation. For example, the use of a k-
means clustering forces the user to choose the k value 
(number of cluster) and then the groups are defined 
based on this human choice. In this case, the clustering 
may not be optimal and controlled by human choice. 
Generally speaking, our ad-hoc clustering 
implementation is inspired by the algorithm presented 
in [17], but it is applied in combination with a k-means 
clustering technique. We use a genetic algorithm to 
define the most adequate number of clusters (k) for the 
k-means clustering of our current data. In our genetic 
algorithm, an individual (that is a feasible solution in 
genetic algorithm language) is a group of clustered 
data elements. The selection operation selects the 
chromosomes according to the fitness function. An 
individual with high fitness has high probability to be 
in the new population. The crossover (we use the
single-point crossover) operation exchanges features of 
two individuals to produce two new individuals (the 
children). The exchange of features may produce other 
good individuals. The mutation operation changes a 
single element in the chromosome representation. This 
operator should happen with very low probability.
Finally, the fitness function defines the goodness of 
every individual (feasible solution) in the problem 
domain and defines the probability of the solution 
survival in the evolution process. In our case, the 
fitness is inspired to the function used in [17]. The 
fitness for clustering is defined as a linear combination 
of the intra-cluster homogeneity and inter-cluster 
separation as following: F = H (G) + µ * S (G), where 
µ (0 ≤ µ) is a pre-defined scale factor. Through this 
function the clustering problem is represented as a 
direct maximization of trade-off between H and S 
independently of number of cluster k, yet as µ varies a 
control on k will be indirectly achieved. The following 
limit cases exist:

µ� 0 then  f = H (G)   then   k� ∞
µ� ∞ then  f = S (G)   then   k� 1

Notice that the scale factor is not strictly related to the 
specific optimization problem and to the dataset under 
analysis, thus we may use it to indirectly control the 
cluster algorithm. In our case, it may be interesting to 
control the density of the clustered software 
components. For example, if the user has a limited 
resource to test the application, he/she may desire to 
select a limited number of software components to test, 
thus he/she may use the scale factor to control the 
clustering operation.

The Genetic Algorithm:
{

Randomly population initialization;
Fitness evaluation;
While (termination is false)

{
Selection
Crossover and Mutation;
Fitness evaluation;

}
}

Genetic algorithms accept as input a finite length string 
(the chromosome). Each of the elements in the 
chromosome is a gene, and each gene has an allele 
value. A population is randomly defined, then a fitness 
function is calculated for every chromosome, and then 
a set of genetic operators (selection, crossover, 
mutation) are applied to generate the new population. 
The process is stopped when the population is 
stabilized or after a pre-defined maximum number of 
iterations. Moreover, we have defined a procedure to 
determine the most adequate scale factor based on the 
cluster density to obtain the best clusters considering 
the user necessities in term of density of the “border” 
clusters.

Table 4. Software clusters samples for MailSending.
TE Cluster Test. Cluster

Units C1i 0,524 1 0,286 1
C2f 0,064 2 0,562 2
C3s 1 1 0 1
C4c 0,025 2 0,585 2
C5t 0,059 2 0,564 2
C6l 0 2 0,6 2

Centroids cl1 0,716 0,143
cl2 0,037 0,577

Concerns CO3 1 2 0,133 1
CO1 0,208 1 0,192 2
CO2 0 1 0,2 2

Centroids cl1 0,104 0,133
cl2 1 0,196

qI qI*
Units C1i 0,104 2 0,232 1

C2f 0,141 1 0,313 3
C3s 0,063 2 0,252 1
C4c 0,104 2 0,118 2
C5t 0,095 2 0,09 2
C6l 0,101 2 0,099 2

Centroids cl1 0,141 0,242
cl2 0,093 0,102
cl3 0,313

Concerns CO3 0,038 2 0,15 2
CO1 0,076 1 0,221 1
CO2 0,073 1 0,186 1

Centroids cl1 0,074 0,203
cl2 0,036 0,15

*qI = qI computed using only Reliability and errorProneness.
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Table 5. Clusters samples interpretation for MailSending.
Regression

TE  Test Test qI
Units cl1 ++ units cl1 ++

cl2 + cl2 +
Concerns cl1 + concerns cl1 ++

cl2 ++ cl2 +

Analogies
qI qI qI* qI*

Units cl1 + units cl1 ++
cl2 ++ cl2 +++

cl3 +
Concerns cl1 ++ concerns cl1 +

cl2 + cl2 ++

qI* qI (Reliability + errorProneness)

7. Discussion
Referring to the two roles defined in our approach, we 
may note that the administrator must be an expert user, 
because he/she builds quality systems and our 
framework needs some specific interaction. For 
example, we may consider the choice of the set of 
software/testing metrics, or the definition of the quality 
rules (from a literature analysis). On the other hand, 
the quality model user doesn’t need to be an expert 
user and the usage/interpretation of the quality model 
is entirely automatic. The described approach to apply
our framework to an existing web application is based 
on a prediction system, clustering of values 
calculated/predicted and on the use of the pre-defined 
quality rules, thus it is entirely automatic. The 
automation level may be a very useful factor to define 
the model effectiveness, because its usage may be 
composed of several heavy and repetitive tasks and 
steps applied in all software components and group of 
them. Thus, in very large and complex web
applications, an automatic quality model may be useful 
to analyze the software and to extract information 
reusable in testing, redesign, reengineering, 
refactoring, and so on. 

Furthermore, this paper focuses on the framework 
description and on the use and interpretation of quality 
model that we may build with our framework. Often,
in literature more effort is dedicated to construction, 
description and evaluation of a quality model rather 
than the description of its usage, interpretation and 
customization. We think that this may be a limitation 
on the use of quality models to increase the application 
structural quality, because often model are very 
difficult to understand, comprehend and use.

8. Conclusions
We have presented the framework used in our WAAT 
project to build quality models for web applications. 
Then, we have shown the use of this framework to 
build a quality model based on a combination of 

Object-Oriented and web metrics and focused on 
testability quality factor to analyze structural quality of 
web software. Our model is based on two different 
layers, the administrator and the user. In the first, we 
have described the steps performed by the users that 
need to build a new quality factors or to customize an 
existing model. While, in the other layer we have 
described the steps that the quality-model user needs to 
perform to apply the quality model built by the 
administrator.
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