
The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 97

Intelligent Agent Based Approach for Transaction
Processing in Mobile Database Systems

Sekar Ganesh, Mathan Vijayalakshmi, and Arputharaj Kannan
Department of Computer Science and Engineering, College of Engineering, Anna University, India

Abstract: Transaction processing in a Mobile Database System (MDS) is more complex because of unlimited mobility of the
Mobile Unit (MU). The handoff and frequent failure of mobile unit makes it tricky to store log records and access it for
recovery. In this paper, we present a new log management scheme, which uses a mobile-agent-based framework to facilitate
efficient transaction processing during handoff or MU failure. Instead of executing the transaction in mobile unit, we are
giving it to base agent which is in the base station. By doing so, we save power in the mobile unit. Moreover, we are using
announcement scheme during handoff which minimizes traffic of Home Location Register Database. Also we use Speculative
Locking (SL) protocol, which improves the performance of fixed network transaction by trading extra processing power. In SL,
a transaction releases the lock on the data object whenever it produces corresponding after-image during its execution. By
accessing both before image and after images, the waiting transaction carries out speculative execution retains one execution
based on the termination (commit or abort) mode of the preceding transactions. We have also compared waiting time of
ordinary locking protocol and speculative locking protocol.

Keywords: Mobile databases, mobile agents, locking protocols.

Received May 24, 2005; accepted April 12, 2006

1. Introduction
Mobile computers using wireless networks are a
rapidly emerging trend. This will give user the
information accessing capability regardless of the
location of the user or the information. Wireless
communication through Personal Communication
Systems (PCS) or Global System for Mobile
communication (GSM) has become a norm of present
day society. Information processing system based on
PCS or GSM architecture, which we refer to as the
Mobile Database System (MDS). It is essentially a
distributed client/server system where clients can move
around freely while performing their data processing
activities in connected, disconnected, or intermittent
connected mode. It can process debit/credit
transactions, pay utility bills, make airline reservations,
and other transactions without being subject to any
geographical constraints.
Since there is no MDS type of system available, it is

difficult to identify the transaction volume at mobile
units, however, the present information processing
needs and trends in e-commerce indicate that
transaction workload at each mobile unit could be high
and MDS would be a useful resource to most of the
organizations. Although MDS is a distributed system
based on client/server paradigm, it differs from
conventional centralized or distributed systems in
transaction management schemes (concurrency
control, database recovery, query processing, etc.),
different logging scheme, different caching schemes,

etc. For example, in MDS or in any distributed system,
a number of activities related to transactions’
execution, such as transaction arrival at client or at a
server, transaction fragmentation and their distribution
to relevant nodes for execution, dispatch of updates
made at clients to the server, migration of a mobile unit
to another cell (handoff), etc., have to be logged for
recovery.
Application recovery, unlike database recovery,

enhances application availability by recovering the
execution state of applications. Application recovery is
relatively more complex than database recovery
because of:

• A large numbers of applications are required to
manage database processing.

• Presence of multiple application states.
• The absence of the notion of the “last consistent
state”.

This gets more complex in MDS because of:

• The existence of random handoffs, and MU failures
limited processing power of mobile units, and

• The presence of operations in connected,
disconnected, and intermittent connected modes.

Because of handoff, it is not possible to store the entire
log reliably at one location and retrieving it efficiently,
which makes it very difficult to see the entire log for
recovery. Further, if MDS uses conventional
approaches for managing log, even with modifications,

98 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

would impose an unmanageable burden on the limited
channel capacity.
In this paper, we take these challenges and present

an efficient logging scheme, which stores, retrieves,
and unify fragments of log for recovery within the
constraints of MDS. We recognize and exploit the
unique processing capability of mobile agents for
dealing with geographical mobility and use them to
develop our log management scheme, which is
scalable, that is, any new application can be added or
existing ones can be deleted dynamically. We claim
that our contribution helps to develop robust and
highly available mobile information management
systems, which are the backbone of e-commerce and
m-commerce platforms.
Like in conventional distributed systems we have a

COordinator (CO), which coordinates the distributed
transaction processing. In our CO, we use a new
protocol called speculative locking protocol [8, 10] to
improve the performance of mobile database. We
extend speculation to 2PL to improve the transaction
processing performance of Distributed DataBase
Systems (DDBSs). In 2PL, we can observe that even
though a transaction produces after-images during its
execution, the locks on the data objects are released
only after the completion of 2-Phase Commit (2PC).
Parallelism could be increased in the fixed network

by allowing the waiting transactions to access the after-
images, which were produced by the lock holding
transaction during the execution. In the proposed
Speculative Locking (SL) protocols, the waiting
transaction is allowed to access the locked data objects
whenever the lock-holding transaction produces
corresponding after-images during execution. By
accessing both before and after-images, the waiting
transaction carries out speculative executions and
retains one execution based on the termination
decisions of the preceding transactions. This in turn
reduces the waiting time of connected mobile unit.
The remainder of this paper is organized as follows.

Section 2 discusses recovery problem in MDS. Section
3 discusses related previous work. Section 4 gives the
main objective. Section 5 discusses our system
architecture and details of each component. Section 6
gives the performance analysis and results. Section 7
presents the conclusion.

2. Recovery Problems
MDS recovery is more complex than conventional
system mainly for the following reasons:

• Random Handoff: MUs may be subjected to handoff
randomly. A handoff may affect recovery mainly
because the location of the desired MU may not be
immediately available for communication.

• MU’s Stability: The unlimited portability of MUs
makes them vulnerable to all kinds of failure. For

example, it may run out of its limited battery power,
it may run out of its disk space, it may be affected
by airport security, or user may physically drop the
MU, and so on. Any of these events affect its
functionality and a recovery algorithm must take
these into consideration.

• Limited Wireless Bandwidth: This severely affects
its communication capability. During recovery, MU
may require communicating with BS or with other
MUs, but it may not get any free channel for
communication. This limitation could seriously
affect recovery.

3. Previous Work
The time-out scheme reported in [4], wastes power of
the mobile unit because of frequent abort of the
transaction. Lazy and Pessimistic schemes
(asynchronous schemes) are reported in [1, 3, 9]. In
lazy scheme, logs are stored in the BS and, if the MU
moves to a new BS, a pointer to the old BS is stored in
the new BS. The pointers can be used during failure to
recover the log distributed over several BS. This
scheme has the advantage that it has relatively less
network overhead during handoff, as no log
information needs to be transferred. But, this scheme
has a large recovery time. In the pessimistic scheme,
the entire log and checkpoint records, if any, are
transferred at each handoff. Hence, the recovery is fast
but each handoff requires large volumes of data
transfer.
The work reported in [8] presents two schemes

based on the MU’s movement and uses independent
check pointing and pessimistic logging. In these
schemes, the list of BSs where the log is distributed is
transferred during a handoff. In the distance-based
scheme, log unification is done when the distance
covered by MU increases above a predefined value. In
the frequency-based scheme, log unification is
performed when the number of handoffs suffered by
the MU increases above a predefined value. After
unifying the log, the distance or handoff counter is
reset. These schemes are a trade off between the lazy
and the pessimistic strategies.
The schemes discussed so far do not consider the

case where a MU recovers in a BS different than the
one in which it crashed. In such a scenario, the new BS
does not have the previous BS information in its VLR
and it has to access the HLR to get this information [6],
which is necessary to get the recovery log. HLR access
may increase the recovery time significantly if it is
stored far from the MU.

4. Objectives
The main objective of this paper is to develop agent-
based framework, which provides a platform for
implementing our scheme, based on the distributed

Intelligent Agent Based Approach for Transaction Processing in Mobile Database Systems 99

logging approach, which reduces recovery time while
keeping the total network cost manageable. Also, we
develop a new locking protocol called Speculative
Locking (SL) protocol, which reduces the waiting time
of transactions, by using extra processing power.

5. System Architecture
Figure 1 depicts high level architecture of our Mobile
Database System (MDS). Mobilaction fragments the
user query and sends the required query to home agent,
which is in base station. This transaction is then
forwarded to coordinator, which takes care of query
distribution and commit protocols. In our system,
coordinator uses speculative locking protocol. Event
agent captures different events (handoff, failure,
registration) of mobile unit. While handoff, we use
announcement scheme, which is to reduce the HLR
traffic. Along with log we add trace, which we explain
in following sections. The detail functions of each
process are given in the following sections.

User
Transaction

Mobilication

Home
Agent

coordinator
Agent

Speculative
Locking protocol

execution

Other
Base station
coordinators

Event
Agent

Request
old BS
for trace

Old
Base Station

Trace
Maintenance

Log
unification

Notification Neighbour
VLR

Base
Agent

New
Base Agent

Dispatch
Driver agent

Transaction
fragment

Log
buffer

log

Transaction queries Data request

Events

Registration

updates

Failure

Hand-off Mobile id

Request for
code

BSid

Driver
code

Muid

Request code for
HoAg

Figure 1. System Architecture.

5.1. Mobilaction
Here we have used transaction model referred to as
“Mobilaction”[4]. A Mobilaction (Ti) is defined as Ti
= {e1, e2, ….., en} where ei is an “execution
fragment”. Each ei represents subset of the total Ti
processing. A transaction Ti is requested at a MU, it is
fragmented, and is executed at the MU and at a set of
BSs, which is in fixed network. We refer to the MU
where a Ti originates or initiates as H-MU (Home MU)
and the BS where H-MU initially registered as H-BS
(Home BS).
In MDS, like conventional distributed database

systems, a COordinator (CO) is required to manage the
commit of Ti and its role can be illustrated with the
execution of a Ti. A Ti originates at H-MU and the H-
BS is identified as the holder of the CO of Ti. H-MU
fragments Ti, extracts its ei, sends Ti-ei to the CO and
begins processing ei. H-MU may move to other cells
during the execution of ei, which must be logged for
recovery. At the end of the execution of ei, H-MU
updates its cache copy of the database, composes

update shipment, and sends it to the CO. CO logs the
updates from H-MU. Upon receipt of Ti-ei from H-
MU, the CO splits Ti-ej’s and sends them to relevant
DBSs for execution. The H-MU may suffer a handoff
and the CO may change. Handling this situation is
explained in forth coming situation.
By forwarding this execution fragment to fixed

network, saves power of the mobile unit. Since MUs
have some limitation (limited storage, limited power,
handoff, frequent failure etc), it is better to forward the
execution fragment to fixed network instead of
executing in MU itself.

5.2. Speculative Locking Protocol
CO uses a new protocol called speculative locking
protocol to improve the performance of mobile
database. We extend speculation to 2PL to improve the
transaction processing performance of DDBSs. In 2PL,
it can be observed that even though a transaction
produces after-images during its execution, the locks
on the data objects are released only after the
completion of 2PC. Parallelism could be increased in
the fixed network by allowing the waiting transactions
to access the after-images, which were produced by the
lock holding transaction during the execution.
In the proposed Speculative Locking (SL) protocols,

the waiting transaction is allowed to access the locked
data objects whenever the lock-holding transaction
produces corresponding after-images during execution.
By accessing both before and after-images, the waiting
transaction carries out speculative executions and
retains one execution based on the termination
decisions of the preceding transactions. This in turn
reduces the waiting time of connected mobile unit.
The processing of a transaction Ti in DDBS is

depicted in Figure 2-a. For a transaction Ti, the
notations si, ei, and ci denote the start of execution,
completion of execution, and completion of commit
processing, respectively. The notation ai denotes the
abort of Ti. (Note that an abort can happen at any time
during processing). Consider T1 and T2 that access (X,
Y) and (X, Z), respectively. Figure 2-b illustrates the
processing with conventional 2PL. In this figure, an arc
a to b, indicates that b happens after a. Also, ri [X] and
wi [X] indicate read and write operations on X by Ti,
respectively.
It can be observed that even though T1 produces the

after-image of X during execution, T2 accesses X only
after the completion of T1’s commit processing. Figure
2-c illustrates the processing with SL. Whenever T1
produces X’ (X’ denotes an after-image of X), T2
accesses both X and X’ and starts the speculative
executions: T21 and T22. However, T2 commits only
after the termination of T1. If T1 commits, T22 is
retained. Otherwise, if T1 aborts, T21 is retained. By
doing so we reduce the waiting time of transaction
which tries to access the locked data is reduced. In

100 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

turn, it reduces the bandwidth used by mobile unit.
Moreover, the speculative execution is taken place in
fixed network, where the processing power is
abundant.

Figure 2. Speculative locking protocol.

5.3. Mobile Agents While Handoff
First, let us see various agent used in our framework:

• Base Agent (BaAg): This agent decides which
logging scheme to use in current environment. For
every MU, the BA creates an instance of agent that
handles Mobilaction based on the relevant logging
scheme.

• Home Agent (HoAg): This agent handles
Mobilaction for each H-MU. It is responsible for
maintaining application states.

• Coordinator Agent (CoAg): This agent will act as
coordinator in each base station.

• Event Agent (EvAg): This agent will records
different events such as registration, handoff, failure
of MUs.

• Driver Agent (DrAg): This agent is responsible to
move the code and associated data of mobile agents.

MU sends Mobilaction to its HoAg, Which is
forwarded to its corresponding CoAg. All interaction
of CoAg and MU is sent via HoAg. The HoAg moves
along with the MU to the new BS in handoff. When
MU gets handoff and registered in new BS, an instance
of DrAg is created and it is sent to old BS. DrAg
function is to dispatch the HoAg code from old BS to
new BS without changing its execution state. Along
with HoAg code, log data required to continue its
execution is also brought by DrAg. Log data referred
above is loaded into HoAg in old BS and its

downloaded in new BS. HoAg will execute from its
current state without rebooting. HoAg will activate
BaAg, which will decide which logging scheme to use.
We use trace based logging scheme, discussed in next
section.

5.4. Trace Management
During mobile unit handoff, logs should be transferred.
If there is frequent handoff, then there will be lot of
traffic in the network for log transfer. So, instead of
transferring the entire log we use trace based scheme.
Trace is a table with two fields namely base Id and log
size. By seeing the trace we can take decision of
unification of distributed log in different sites.
Unification is discussed in next section.
When a mobile unit registers to a base station, base

station will send subscriber Id of mobile unit to old
base station as a request for trace. Then the old base
station HoAg will send the appropriate trace to new
base station. Trace is stored in local trace buffer and it
adds a new entry with current base station Id in first
field and second field is zero. On further execution of
transaction, log and trace are updated.

5.5. Log Unification
When the mobile gets failed in any site, the logs are
unified on getting the trace. Unification is decided on
two values names Expected Recovery Time (ERT) and
Unification Time (UT). Expected Recovery Time is
found using the previous statistic. Unification Time is
calculated by:

Unification Time (UT) = function (Trace (log size),
network speed, propagation delay)

ERT is found from previous statistical values. After
computing these two values, compare it. If ERT is
greater than UT then start unification. If ERT < UT it
has to wait until MU recovery. This is because; MU
may recover in different base station. If the recovery
happens in the same BS, log unification starts, but if
the MU reboots in a different BS, then HoAg transfers
the trace information and the log stored at this BS
when requested.

5.6. Announcement Scheme
When the mobile unit gets handoff, the old base station
Id is required for getting the trace and logs. This old
BS is found by querying the HLR. For each handoff
HLR is queried. If there is more number of MUs and if
handoff rate is high then traffic (queries) at HLR will
be high. To minimize this, we use announcement
scheme.
When any mobile unit is handoff from current, VLR

announcement starts. First, it selects adjacent
VLR_list, in which mobile unit may register. This
adjacent VLR_list selection is based on association

(a) Processing of Ti.

(c) Processing with SL.

(b) Processing with 2PL.

Intelligent Agent Based Approach for Transaction Processing in Mobile Database Systems 101

rule (data mining algorithm) got from previous visitor
database. Then ANN messages are sent to all VLR in
the VLR_list. All these adjacent VLR in VLR_list will
receive these ANN message and waits for mobile unit
registration or any explicit DEL message. When any
mobile unit gets registered, the corresponding VLR
will send the message to old VLR about the
registration. Then old VLR will send explicit DEL
message to all other adjacent VLR_list, to tell that MU
had registered in some other VLR. If MU registered
any VLR other than adjacent VLR_list then “registered
message” will passed via Home Location Register
(HLR).

6. Performance Analysis
We have compared the performance of our agent based
framework with normal MDS. Also, we have
compared the performance of our SL protocol with
ordinary locking protocol. In the following section, we
have presented the details about our simulation model
and then the performance results.

6.1. Simulation Model
As there is no simulator available for MDS, we have
built a simulation model MDBSim using Jsim [2].
Initially, we have assumed 36 base stations, in 6X6
grid fashion. To this 36 base station, we have
distributed 108 mobile units. Here, all the base stations
have an equal area and each BS has at most eight
neighbors. These BS’s are combined into groups of
nine (3X3 grid), where each group represents a MSC
and a VLR attached to it. Each mobile unit suffers
handoff and failure, with rates h and f, respectively.
Agents discussed in the above sections are designed

by IBM Aglets. In aglets, the agent framework is first
tested with single mobile unit. After testing, we have
integrated Aglet work and MDBSim by inter-process
communication. The database servers are connected
through JDBC connectivity. Initially, we gave
transaction to 20 mobile units, and the handoff rates
(h), failure rates (f) are varied. Also we have analyzed
performance of SL protocol, by varying transmission
time.

6.2. Simulation Results
6.2.1. Handoff Rate (h) Vs. Transaction Time

Figure 3 shows the relationship between handoff rate
and the average transaction time of 20 mobile units. As
the handoff rate increases above 6 then transaction
time is less to our scheme. So if the handoff rate is
high our scheme is fair.

6.2.2. Failure Rate (h) Vs. Transaction Time

Figure 4 shows the relation between failure rate and
the average transaction time. Agent based logging
scheme is always better than the normal schemes.

0
5
10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

Series1

Series2

Figure 3. Handoff rate with transaction time.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Series1

Series2

Figure 4. Failure rate with transaction time.

6.2.3. Speculation Vs. 2PL

Figure 5 shows the relation between transmission time
and throughput of transaction. As the transmission time
increases throughput gets decreases but speculative
locking protocol has better throughput than 2PL.

0
2
4
6
8
10
12
14

1 2 3 4 5 6 7 8 9 10 11

Series1

Series2

Figure 5. Transfer time with throughput.

7. Conclusion
In this paper, we have presented a mobile agent based
framework with speculative locking protocol. The
speculative locking protocol proposed with agents

x-axis: Transfer time *10 (s)
y-axis: Throughput
Series 1: 2PL
 Series 2: Speculation

x-axis: Handoff rate *10
y-axis: Average transaction
 time
Series 1: Without agents
 Series 2: With sgents

x-axis: Failure *10
y-axis: Average transaction

time
Series 1: Without agents
 Series 2: With agents

102 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

reduces the waiting time of connected mobile unit and
facilitates efficient transaction processing during
handoff and mobile unit failure. Also, the
announcement scheme proposed reduces the traffic at
Home Location Register database during handoff by
the mobile unit. The simulation result shows that
transaction time and throughput are better during
handoff and mobile unit failure than the other system.

References
[1] Gadiraju S. and kumar V., “Recovery in the

Mobile Wireless Environment Using Mobile
Agents,” IEEE Transactions on Mobile
Computing, vol. 3, no. 2, pp. 180-191, April
2004.

[2] JSim, available at: http://chief.cs.uga.edu/~jam
/jsim/, 2001.

[3] Krishna P., Vaidya N. H., and Pradhan D. K.,
“Recovery in Distributed Mobile Environment,”
in Proceedings of IEEE Workshop Advances in
Parallel and Distributed Systems, pp. 83-88,
October 1993.

[4] Kumar V., Dunham M. H., Prabu N., and Seydim
A. Y., “TCOT-A Time Out Based Mobile
Transaction Commitment Protocol,” IEEE
Transactions on Computers, vol. 51, no. 10, pp.
1212-1218, October 2002.

[5] Liao G., Liu Y., Wang L., and Peng C.,
“Concurrency Control of Real-Time Transaction
with Disconnection in Mobile Computing
Environment,” in Proceedings of the
International Conference on Computer Networks
and Mobile Computing, pp. 205-212, 2003.

[6] Mao Z. and Douligers C., “A Distributed
Database Architecture for Global Roaming in
Next-Generation Mobile Networks,” IEEE/ACM
Transactions on Networking, vol. 12, no. 1, pp.
146-160, February 2004.

[7] Ozsu M. T. and Valduriez P., Principles of
Distributed Database Systems, Pearson
Education, 2002.

[8] Park T., Woo N., and Yeom H. Y., “An Efficient
Recovery Scheme for Mobile Computing
Environments,” in Proceedings of the 8th
International Conference Parallel and
Distributed Systems, pp. 26-29, 2001.

[9] Pradhan D. K., Krishna P., and Vaidya N. H.,
“Recovery in Mobile Environments: Design and
Trade-Off Analysis,” in Proceedings of the 26th
International Symposium on Fault-Tolerant
Computing (FTCS'26), pp. 1-21, June 1996.

[10] Reddy P. K. and Kitsuregawa M., “Speculative
Locking Protocol to Improve Performance for
Distributed Database Systems,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 16, no. 2, pp. 154-169,
February 2004.

[11] Schiller, Mobile Computing, Addison-Wesley
Publications, New Delhi, 2003.

[12] Silberschatz, Korth, and Sunarshan, Database
System Concepts, Addison-Wesley, 2002.

Sekar Ganesh received his Master
in computer science and engineering
from Anna University, India, in
2005. Currently, he is working as an
assistant system engineer trainee in
TCS, Chennai. His areas of interest
include database, mobile
communication, and algorithms.

Mathan Vijayalakshmi is a lecturer
in the Department of CSE, College
of Engineering, Guindy, Anna
University, India. She has 5 years of
teaching experience. Currently, she
is working toward her PhD in
computer science and engineering at

Anna University, India. Her research areas include
mobile computing, database, and artificial intelligence.

Arputharaj Kannan is an assistant
professor in the Department of CSE,
College of Engineering, Guindy,
Anna University, India. He has 15
years of teaching experience. He
received his PhD in computer science
and engineering from Anna

University, India in 2001. His research areas include
software engineering, database management systems,
and artificial intelligence.

