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Abstract: We present SD-SQL Server, a prototype scalable distributed database system. It let a relational table to grow over 
new storage nodes invisibly to the application. The evolution uses splits dynamically generating a distributed range 
partitioning of the table. The splits avoid the reorganization of a growing database, necessary for the current DBMSs and a 
headache for the administrators. We illustrate the architecture of our system, its capabilities and performance. The 
experiments with the well-known SkyServer database show that the overhead of the scalable distributed table management is 
typically minimal. To our best knowledge, SD-SQL Server is the only DBMS with the discussed capabilities at present.
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1. Introduction
The explosive growth of the volume of data to store in 
databases makes many of them huge and permanently 
growing.  Large tables have to be hashed or partitioned 
over several storage sites. Current DBMSs, e. g., SQL 
Server, Oracle or DB2 to name only a few, provide 
static partitioning only. To scale tables over new 
nodes, the DBA has to manually redefine the partition 
and run a data redistribution utility. The relief from this 
trouble became an important user concerns [1].

This situation is similar to that of file users forty 
years ago in the centralized environment. The Indexed 
Sequential Access Method (ISAM) was in use for the 
ordered (range partitioned) files. Likewise, the static 
hash access methods were the only known for the files. 
Both approaches required the file reorganization 
whenever the inserts overflowed the file capacity. The 
B-trees and the extensible (linear, dynamic) hash 
methods were invented to avoid the need. They 
replaced the file reorganization with the dynamic 
incremental splits of one bucket (page, leaf, segment
…) at the time. 

The approach was successful enough to make the 
ISAM and centralized static hash files in the history.  
Efficient management of distributed data present 
specific needs. The Scalable Distributed Data 
Structures (SDDSs) addressed these needs for files [3, 
4]. An SDDS scales transparently for an application 
through distributed splits, hash, range or k-d based.  In 
[5], the concept of a Scalable Distributed DBS (SD-
DBS) was derived for databases. The SD-DBS 
architecture supports the scalable relational tables that 
accommodate their growth through the splits of their 
overflowing segments at SD-DBS storage nodes. As 
for an SDDS, the split can be in principle hash, range 

or k-d based with respect to the partitioning key(s). 
The application sees a scalable table through a specific 
type of updateable distributed view termed (client)
scalable view. Such a view hides the partitioning and 
dynamically adjusts itself to the partitioning evolution. 
The adjustment is lazy, in the sense it occurs only 
when a query to the scalable table comes in and the 
system finds the view out of date. Scalable tables make 
the  database  reorganization useless, similarly to 
B-trees or extensible hash files with respect to the 
earlier file schemes.

To prove the feasibility of the scalable tables, we 
have built the prototype termed SD-SQL Server [6]. 
The goal was to offer the usual SQL Server 
capabilities, but for the scalable tables. The SD-SQL 
Server user manipulates scalable tables as if they were 
SQL Server tables. However, growing scalable tables 
dynamically migrate on more SD-SQL Server nodes, 
invisibly to the user. 

More precisely, when an insert makes a segment of 
a scalable table T to exceed some parameterized size of 
b tuples at a node, the segment splits. The split is range 
partitioned with respect to the key. It migrates all the 
lowest b/2 tuples in the segment.  The moving tuples 
enter one or more new segments on available SD-SQL 
Server nodes. These segments are dynamically 
appended to T maintained in a dedicated SD-SQL 
Server meta-table. The actual partitioning is hidden 
behind a scalable view of T. That one reuses internally 
an SQL Server partitioned distributed union-all view, 
with the check constraints for the view updates [7]. 
The SD-SQL Server keeps the view definition in line 
with the actual partitioning.

The scalable table management creates an overhead 
with respect to the static partitioning use. The design 
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challenge for any SD-DBS is to minimize this 
overhead. The performance analysis of our prototype, 
using in particular the well-known SkyServer database 
[2], proves this overhead negligible for practical 
purpose. The current capabilities of SQL Server allow 
an SD-SQL Server scalable table to reach at least 250 
segments. This should suffice for many terabyte tables. 
SD-SQL Server is the first system with the discussed 
capabilities, to the best of our knowledge. Our results 
pave the way towards their successful use for other 
DBMSs.  

This paper focuses on the practical use of the new 
capabilities of the SD-SQL Server. We show the 
following manipulations: The creation of a scalable 
table and its expansion through the splits. The on-line 
performance reported by the SQL profiler. We show 
the overhead of an SD-SQL Server split for various 
segment sizes. Likewise, we show the overhead of 
various queries to scalable tables, in particular 
involving the view adjustment. To make the point 
about the negligible incidence of the SD-SQL Server 
overhead, we compare the execution times to those of 
the direct use of the SQL Server, whenever 
appropriate. The on-line performance, especially with 
respect to the SD-SQL Server overhead, measured by 
the SQL profiler.

Section 2 recalls the architecture of the SD-SQL 
Server. Section 3 describes the experiments and 
illustrates the performance measures. Section 4 
concludes the discussion.

2. SD-SQL Server Architecture
2.1. Gross Architecture
Figure1 shows the gross architecture of SD-SQL. The 
system is a collection of SD-SQL Server nodes. Each 
node has the component termed SD-SQL Server 
manager. The manager’s code implements various SD-
SQL Server services for the scalable table 
management. Every manager uses internally the 
services of SQL Server. The latter handles at every 
node the database with the SD-SQL Server specific 
meta-tables and various stored procedures 
implementing the SD-SQL Server services. It may also 
hold the segments, as discussed below. The SQL 
Servers provide furthermore the inter-node 
communication of data and of queries. The nodes are 
configured for this purpose as SQL Server linked 
nodes. The current limit on the number of linked SQL 
Server nodes seems around 250 at present. This is the 
cause of the above discussed scalable table size limit at 
present. 

There are three kinds of SD-SQL Server nodes. A 
client node (and manager) handles the user/application 
interface, i. e., the queries and views only. In 
particular, when a query refers to a client view, it 
checks and eventually adjusts the view to fit the actual 

partitioning. Internally, the adjustment means a 
dynamic change to the underlying SQL Server 
partitioned and distributed view schema, representing 
the SD- SQL Server client view to the SQL Server.

Figure1. Gross architecture of SD-SQL server.

A server node only manages the segments of 
scalable tables, located in its segment DB. It manages 
the segment evolution, the splitting in particular. The 
server also executes the (sub) queries coming from 
(linked) SQL Servers at other nodes on behalf of SD-
SQL Server client queries. Finally, a peer is both a 
client and a server. 

Figure1 shows the nodes termed D1…Di, supposed 
named upon their (segment) DBs. D1 manager is a 
client, without segments in its SQL Server DB. D2 is a 
server hence it does not carry the users/applications on 
its node. Finally, Di is a peer providing thus all the 
services of the SD-SQL Server manager. 

Furthermore, the figure shows a scalable table T that 
was initially created at D2. T splits many times since at 
nodes not shown. The figure shows the last split 
creating a segment at Di. Server D2 is the only to 
always know the actual partitioning of T, symbolized 
with the full lines. Client D1 happened to issue an 
operation after the last split. Its view (dotted lines) was 
adjusted and is, for the time being, up to date. Peer D3
in contrast did not yet manipulate T after the split. Its 
client view is out of date. At least Di is not in it.  

The SD-SQL Server architecture uses the standard 
SQL Server. Any contrary approach could be utopian 
for anyone not from Microsoft.

2.2. SD-SQL Server
2.2.1. Meta-Tables
The servers carry some SD-SQL Server specific meta-
tables in the segment DBs. They describe the actual 
partitioning of the scalable tables, the linked servers,
etc. The server updates the tables when a split or a 
creation of a segment in its segment DB occurs. To 
search or update the meta-tables, the server uses SQL 
queries detailed in [6].  

SQL
Server

D2

SD-SQL
Client

SD-SQL 
Server

Managers

SQL
Server

Di

SD-SQL 
Server

SD-SQL 
Peer

Split

User/ApplicationUser/Application

SQL
Server

D1

T T



SD-SQL Server: Scalable Distributed Database System 105

• Di.SD-RP (DB-S, Table): This table defines at 
server or peer Di the partitioning of every table T
created at Di (as its initial segment). Tuple  (Dj, T)
enters Di.SD-RP each time a segment of T is created 
in segment database Dj. A new segment enters a Dj
that does not own a T segment.

• Di.SD-S (Table, S-max): This table fixes for each T
at Di the maximal size (in tuples) of its segment. 

• Di.SD-C (DB-T, Table). This table contains the 
tuple (Di, T) for every segment at Di. Attribute T
identifies the scalable table the segment belongs to. 
Attribute Di indicates the server where T was 
created. It thus points to table Di.SD-RP with the 
actual partitioning of T.

• Di.SD-Site (Site): Each tuple in this table indicates a 
server node Di available for splits of Di. Segments. 

2.2.2. Splitting
A split of segment Di.T occurs whenever Di.T exceeds 
the size stored for it in Di.SD-S. At present, for every T 
there is a single size. The overflow may be the result of 
an insert of arbitrarily many tuples by a single insert
command. The server tests the overflow of a segment 
using a trigger [6]. It then selects N ≥ 1 servers from 
its Di.SD-Site table not already in use for T (note the 
difference to a simple B-tree like split). N is such that 
each server receives at most half of a segment capacity. 
The split range partitions then Di.T and provides each 
new segment with T scheme. It also creates the new 
indexes for all the declared ones at T. Each manager 
involved in the split uses the services of its local SQL 
Server through specific SQL queries.

Once the SD-SQL manager at Di completes the 
process, it alters the check constraint of the segment 
Di.T. Finally, it updates its own meta-tables and the 
SD-RP table of T.

2.3. The SD-SQL Client
2.3.1. Scalable Distributed Views
Each client manages its scalable view of every scalable 
table it allows the access to. Conceptually, the scalable 
view TV, of table T is the client image of T range 
partitioning, perhaps outdated. The client represents 
every TV in its SQL Server as a distributed partitioned 
view of T. We recall that such a view in SQL Server is 
a union all view, updatable provided the check 
constraints at the underlying tables are set (which is the 
case of every SD-SQL Server segment). At the 
creation of T, let it be at server Di, the client image is 
set to:

Create view T_view as
Select * from Di.T

The client adds the suffix ‘_view’ to avoid the name 
conflict internal to its SQL Server between the view 

and table names in the case of the peer. It deals 
accordingly when processing any query to T.  

When a query at a client invokes T, the client checks 
its scalable view and adjusts it if splits occurred. The 
client has for this purpose the meta-table termed C-
Image (Table, Size). When the client creates table T at 
node Di, or its image of T created by another client, it 
enters the tuple (Di.T, 1) into C- Image. When a query 
to T comes in, the client retrieves the T tuple from C- 
Image to match the Size against the actual count, let it 
be CT, of T segments in Di.SD-RP. If Size matches CT, 
the view is up to date. Otherwise, the client sets Size to 
CT.  Next, the client adds to the definition of the 
underlying distributed partitioned view the missing 
segments found in Di.SD-RP. The result is like:

Create view T_view as
Select * from Di.T
Union all select * from Dj.T
Union all …

The clients checks and perhaps adjust in this way all 
the scalable tables referred to in the query.

2.3.2. Scalable View Adjustment
Except for the client that triggered the split, the 
existing scalable views are not adjusted synchronously 
at the split time. As in general in an SDDS, this could 
be highly ineffective in presence of many clients. 
Some could be unknown to the splitting server or 
unavailable at that time, etc. The client checks 
therefore instead its scalable view correctness only 
when there is a query to it. The client has for this 
purpose the meta-table termed C- Image (Table, Size). 
When the client creates table T at node Di, it enters the 
tuple (Di.T, 1) into C- Image. Later, when a query to T 
comes in, the client first retrieves the T tuple from C- 
Image to match the Size against the actual count, let it 
be CT, of T segments in Di.SD-RP through the specific 
SQL query. If Size matches CT, the view is OK. If Size
is different of CT, then the client sets it to CT.  Next, the 
client adjusts the definition of the underlying 
distributed partitioned view accordingly, getting the 
locations of the missing segments from SD-RP. SQL 
Server recompiles the view on the fly.

The clients check and perhaps adjust in this way all 
the scalable tables referred to in the query. The query 
may refer to the table directly in main from clause, or 
through a view name or through an alias, or in a sub-
query from clause etc. The parsing is quite simple to 
implement for the first type of queries. It is more 
tedious for the latter options. We will show the 
experiments with queries of the first kind. More 
general parsing capabilities are under implementation. 
The issue was felt secondary for the prototype, 
appearing rather programming than research challenge.
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3. Experimentation Description
To validate the SD-SQL Server architecture, we made 
measurements to prove its scalability and efficiency. 
We have measured in various ways SD-SQL Server 
access performance. The hardware consisted of 1.8 
GHz P4 PCs with 512 MB and 1 GB of RAM, linked 
by 1 Gbs ethernet. We use the SQL profiler to take 
measurements.

The measures show the overhead at the SD-SQL 
servers and clients. At the servers, we measured the 
split time. At the clients, we measured the overhead of 
a scalable view management during a query 
processing. Below, we detail the experiments.

3.1. Split’s Performance
We experiment the system on distributed peers, named 
Peer1, Peer2, …. We use the 120 GB fragment of the 
SkyServer database and some of its benchmark queries 
[2].  These are the steps to create a scalable table and 
split it:
1. Create a scalable table. We use the create_sd_table

function of SD-SQL Server, operationally 
implemented as SQL Server stored procedure also 
termed create_sd_table. The input is the traditional 
create table statement and the maximal segment 
size. The procedure executes create table statement, 
and a number of other distributed stored procedures. 
We apply the creation procedure to make PhotoObj
table of SkyServer DB a scalable table. PhotoObj is 
a table of 158,426 tuples (about 260 MB). We fix 
the segment size at 158,000 tuples. The result is the 
following execution of the create_sd_table at 
Peer1:

Exec create_sd_table ‘create table  
PhotoObj(objid bigint primary key, ….)’,  
158000

As PhotoObj is not prefixed, SD-SQL Server 
creates it in the segment DB of Peer1. The results of 
this execution are:

• Creation of PhotoObj empty segment at Peer1.
• Update of the server meta-tables.
• Update of C-Image at Peer1 and creation there   
   of the initial scalable view PhotoObj_view.

We then insert by SD-SQL Server command insert 
into 158,000 tuples from the original PhotoObj into 
ours. It should take about 30 sec.

2. Split a scalable table. We insert one more tuple into 
PhotoObj. Peer1 splits then PhotoObj, creating a 
new segment at Peer2. The new segment PhotoObj
created on Peer2 has the same characteristics of the 
original one on Peer1 (indexes, attributes...). Only 
the check constraints differ between the segments of 
a scalable table.

We measure the time of splitting by the SQL profiler. 
We show that the overhead of a distributed splitting 
should be typically negligible in practice. Figure 2 
shows the split time of the PhotoObj table for different 
segment sizes b = 39.500, 79.000, 158.000. The split 
time remains always fast. It is sub-linear with respect 
to the segment size, thus the scalability is good.
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Figure 2. SD-SQL server segment split time.

3.2. View Management’s Performance 
We have implemented SD-SQL Server so to accept 
various SQL queries to the scalable tables. We allow 
the execution of a large number of complex queries on 
SD-SQL Server: Queries with aggregations, joins, …
To show the overhead of a scalable view management, 
we have used benchmark queries to various SkyServer 
DB scalable tables [2]. Among the queries, we show 
the following distributed ones and prove their 
measures here after. Query (Q1) benchmarks the fast 
side, bringing only a few tuples from nodes different 
from that of the query. Query (Q2) is in turn at the 
expensive side, bringing 129,470 tuples from all the 
nodes. We execute these two queries at Peer1.

Q1.  Select top 10 objid from PhotoObj_view   
        Where objid 

Not in (selecT objid from Photoobj)
Q2.  Select * from PhotoObj_view  
        Where (status & 0x00002000 > 0) 
        And (status & 0x0010 > 0) 

The measures of  (Q1) show that the time difference 
between the execution on SD-SQL Server with view 
checking only and directly on SQL Server is 
negligible, as shown in Figure 3. The query executes in 
about 300 ms. The view adjustment that implies the 
largest overhead for the query execution takes here 
about 0.7 s and is constant as one could expect. It 
makes the substantially longer, but we recall, it 
remains a rare operation. The execution in turn of the 
expensive (Q2) takes about 45 sec with the view 
adjustment and 44 sec by SQL Server directly. Thus 
the view adjustment took again about 1 sec, but now it 
represents about 2 % of the execution time only.               
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Figure 3. SD-SQL server query (Q1) execution time.

4. Conclusion
This paper shows the prototype implementation of SD-
SQL Server: A first relational database system with 
dynamically splitting tables. We show its main 
concepts of scalable tables and views. We illustrate 
how they actually function for an application, using the 
SkyServer database. We show the availability and 
performance of the usual SQL commands for scalable 
tables under our system. Further work concerns more 
benchmark queries, various implementation and 
optimization issues, and deeper performance analysis.
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