
The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 103

SD-SQL Server: Scalable Distributed
 Database System

Soror Sahri
CERIA, Université Paris Dauphine, France

Abstract: We present SD-SQL Server, a prototype scalable distributed database system. It let a relational table to grow over
new storage nodes invisibly to the application. The evolution uses splits dynamically generating a distributed range
partitioning of the table. The splits avoid the reorganization of a growing database, necessary for the current DBMSs and a
headache for the administrators. We illustrate the architecture of our system, its capabilities and performance. The
experiments with the well-known SkyServer database show that the overhead of the scalable distributed table management is
typically minimal. To our best knowledge, SD-SQL Server is the only DBMS with the discussed capabilities at present.

Keywords: Scalable distributed DBS, scalable table, distributed partitioned view, SDDS, performance.

Received June 4, 2005; accepted June 27, 2006

1. Introduction
The explosive growth of the volume of data to store in
databases makes many of them huge and permanently
growing. Large tables have to be hashed or partitioned
over several storage sites. Current DBMSs, e. g., SQL
Server, Oracle or DB2 to name only a few, provide
static partitioning only. To scale tables over new
nodes, the DBA has to manually redefine the partition
and run a data redistribution utility. The relief from this
trouble became an important user concerns [1].

This situation is similar to that of file users forty
years ago in the centralized environment. The Indexed
Sequential Access Method (ISAM) was in use for the
ordered (range partitioned) files. Likewise, the static
hash access methods were the only known for the files.
Both approaches required the file reorganization
whenever the inserts overflowed the file capacity. The
B-trees and the extensible (linear, dynamic) hash
methods were invented to avoid the need. They
replaced the file reorganization with the dynamic
incremental splits of one bucket (page, leaf, segment
…) at the time.

The approach was successful enough to make the
ISAM and centralized static hash files in the history.
Efficient management of distributed data present
specific needs. The Scalable Distributed Data
Structures (SDDSs) addressed these needs for files [3,
4]. An SDDS scales transparently for an application
through distributed splits, hash, range or k-d based. In
[5], the concept of a Scalable Distributed DBS (SD-
DBS) was derived for databases. The SD-DBS
architecture supports the scalable relational tables that
accommodate their growth through the splits of their
overflowing segments at SD-DBS storage nodes. As
for an SDDS, the split can be in principle hash, range

or k-d based with respect to the partitioning key(s).
The application sees a scalable table through a specific
type of updateable distributed view termed (client)
scalable view. Such a view hides the partitioning and
dynamically adjusts itself to the partitioning evolution.
The adjustment is lazy, in the sense it occurs only
when a query to the scalable table comes in and the
system finds the view out of date. Scalable tables make
the database reorganization useless, similarly to
B-trees or extensible hash files with respect to the
earlier file schemes.

To prove the feasibility of the scalable tables, we
have built the prototype termed SD-SQL Server [6].
The goal was to offer the usual SQL Server
capabilities, but for the scalable tables. The SD-SQL
Server user manipulates scalable tables as if they were
SQL Server tables. However, growing scalable tables
dynamically migrate on more SD-SQL Server nodes,
invisibly to the user.

More precisely, when an insert makes a segment of
a scalable table T to exceed some parameterized size of
b tuples at a node, the segment splits. The split is range
partitioned with respect to the key. It migrates all the
lowest b/2 tuples in the segment. The moving tuples
enter one or more new segments on available SD-SQL
Server nodes. These segments are dynamically
appended to T maintained in a dedicated SD-SQL
Server meta-table. The actual partitioning is hidden
behind a scalable view of T. That one reuses internally
an SQL Server partitioned distributed union-all view,
with the check constraints for the view updates [7].
The SD-SQL Server keeps the view definition in line
with the actual partitioning.

The scalable table management creates an overhead
with respect to the static partitioning use. The design

104 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

challenge for any SD-DBS is to minimize this
overhead. The performance analysis of our prototype,
using in particular the well-known SkyServer database
[2], proves this overhead negligible for practical
purpose. The current capabilities of SQL Server allow
an SD-SQL Server scalable table to reach at least 250
segments. This should suffice for many terabyte tables.
SD-SQL Server is the first system with the discussed
capabilities, to the best of our knowledge. Our results
pave the way towards their successful use for other
DBMSs.

This paper focuses on the practical use of the new
capabilities of the SD-SQL Server. We show the
following manipulations: The creation of a scalable
table and its expansion through the splits. The on-line
performance reported by the SQL profiler. We show
the overhead of an SD-SQL Server split for various
segment sizes. Likewise, we show the overhead of
various queries to scalable tables, in particular
involving the view adjustment. To make the point
about the negligible incidence of the SD-SQL Server
overhead, we compare the execution times to those of
the direct use of the SQL Server, whenever
appropriate. The on-line performance, especially with
respect to the SD-SQL Server overhead, measured by
the SQL profiler.

Section 2 recalls the architecture of the SD-SQL
Server. Section 3 describes the experiments and
illustrates the performance measures. Section 4
concludes the discussion.

2. SD-SQL Server Architecture
2.1. Gross Architecture
Figure1 shows the gross architecture of SD-SQL. The
system is a collection of SD-SQL Server nodes. Each
node has the component termed SD-SQL Server
manager. The manager’s code implements various SD-
SQL Server services for the scalable table
management. Every manager uses internally the
services of SQL Server. The latter handles at every
node the database with the SD-SQL Server specific
meta-tables and various stored procedures
implementing the SD-SQL Server services. It may also
hold the segments, as discussed below. The SQL
Servers provide furthermore the inter-node
communication of data and of queries. The nodes are
configured for this purpose as SQL Server linked
nodes. The current limit on the number of linked SQL
Server nodes seems around 250 at present. This is the
cause of the above discussed scalable table size limit at
present.

There are three kinds of SD-SQL Server nodes. A
client node (and manager) handles the user/application
interface, i. e., the queries and views only. In
particular, when a query refers to a client view, it
checks and eventually adjusts the view to fit the actual

partitioning. Internally, the adjustment means a
dynamic change to the underlying SQL Server
partitioned and distributed view schema, representing
the SD- SQL Server client view to the SQL Server.

Figure1. Gross architecture of SD-SQL server.

A server node only manages the segments of
scalable tables, located in its segment DB. It manages
the segment evolution, the splitting in particular. The
server also executes the (sub) queries coming from
(linked) SQL Servers at other nodes on behalf of SD-
SQL Server client queries. Finally, a peer is both a
client and a server.

Figure1 shows the nodes termed D1…Di, supposed
named upon their (segment) DBs. D1 manager is a
client, without segments in its SQL Server DB. D2 is a
server hence it does not carry the users/applications on
its node. Finally, Di is a peer providing thus all the
services of the SD-SQL Server manager.

Furthermore, the figure shows a scalable table T that
was initially created at D2. T splits many times since at
nodes not shown. The figure shows the last split
creating a segment at Di. Server D2 is the only to
always know the actual partitioning of T, symbolized
with the full lines. Client D1 happened to issue an
operation after the last split. Its view (dotted lines) was
adjusted and is, for the time being, up to date. Peer D3
in contrast did not yet manipulate T after the split. Its
client view is out of date. At least Di is not in it.

The SD-SQL Server architecture uses the standard
SQL Server. Any contrary approach could be utopian
for anyone not from Microsoft.

2.2. SD-SQL Server
2.2.1. Meta-Tables
The servers carry some SD-SQL Server specific meta-
tables in the segment DBs. They describe the actual
partitioning of the scalable tables, the linked servers,
etc. The server updates the tables when a split or a
creation of a segment in its segment DB occurs. To
search or update the meta-tables, the server uses SQL
queries detailed in [6].

SQL
Server

D2

SD-SQL
Client

SD-SQL
Server

Managers

SQL
Server

Di

SD-SQL
Server

SD-SQL
Peer

Split

User/ApplicationUser/Application

SQL
Server

D1

T T

SD-SQL Server: Scalable Distributed Database System 105

• Di.SD-RP (DB-S, Table): This table defines at
server or peer Di the partitioning of every table T
created at Di (as its initial segment). Tuple (Dj, T)
enters Di.SD-RP each time a segment of T is created
in segment database Dj. A new segment enters a Dj
that does not own a T segment.

• Di.SD-S (Table, S-max): This table fixes for each T
at Di the maximal size (in tuples) of its segment.

• Di.SD-C (DB-T, Table). This table contains the
tuple (Di, T) for every segment at Di. Attribute T
identifies the scalable table the segment belongs to.
Attribute Di indicates the server where T was
created. It thus points to table Di.SD-RP with the
actual partitioning of T.

• Di.SD-Site (Site): Each tuple in this table indicates a
server node Di available for splits of Di. Segments.

2.2.2. Splitting
A split of segment Di.T occurs whenever Di.T exceeds
the size stored for it in Di.SD-S. At present, for every T
there is a single size. The overflow may be the result of
an insert of arbitrarily many tuples by a single insert
command. The server tests the overflow of a segment
using a trigger [6]. It then selects N ≥ 1 servers from
its Di.SD-Site table not already in use for T (note the
difference to a simple B-tree like split). N is such that
each server receives at most half of a segment capacity.
The split range partitions then Di.T and provides each
new segment with T scheme. It also creates the new
indexes for all the declared ones at T. Each manager
involved in the split uses the services of its local SQL
Server through specific SQL queries.

Once the SD-SQL manager at Di completes the
process, it alters the check constraint of the segment
Di.T. Finally, it updates its own meta-tables and the
SD-RP table of T.

2.3. The SD-SQL Client
2.3.1. Scalable Distributed Views
Each client manages its scalable view of every scalable
table it allows the access to. Conceptually, the scalable
view TV, of table T is the client image of T range
partitioning, perhaps outdated. The client represents
every TV in its SQL Server as a distributed partitioned
view of T. We recall that such a view in SQL Server is
a union all view, updatable provided the check
constraints at the underlying tables are set (which is the
case of every SD-SQL Server segment). At the
creation of T, let it be at server Di, the client image is
set to:

Create view T_view as
Select * from Di.T

The client adds the suffix ‘_view’ to avoid the name
conflict internal to its SQL Server between the view

and table names in the case of the peer. It deals
accordingly when processing any query to T.

When a query at a client invokes T, the client checks
its scalable view and adjusts it if splits occurred. The
client has for this purpose the meta-table termed C-
Image (Table, Size). When the client creates table T at
node Di, or its image of T created by another client, it
enters the tuple (Di.T, 1) into C- Image. When a query
to T comes in, the client retrieves the T tuple from C-
Image to match the Size against the actual count, let it
be CT, of T segments in Di.SD-RP. If Size matches CT,
the view is up to date. Otherwise, the client sets Size to
CT. Next, the client adds to the definition of the
underlying distributed partitioned view the missing
segments found in Di.SD-RP. The result is like:

Create view T_view as
Select * from Di.T
Union all select * from Dj.T
Union all …

The clients checks and perhaps adjust in this way all
the scalable tables referred to in the query.

2.3.2. Scalable View Adjustment
Except for the client that triggered the split, the
existing scalable views are not adjusted synchronously
at the split time. As in general in an SDDS, this could
be highly ineffective in presence of many clients.
Some could be unknown to the splitting server or
unavailable at that time, etc. The client checks
therefore instead its scalable view correctness only
when there is a query to it. The client has for this
purpose the meta-table termed C- Image (Table, Size).
When the client creates table T at node Di, it enters the
tuple (Di.T, 1) into C- Image. Later, when a query to T
comes in, the client first retrieves the T tuple from C-
Image to match the Size against the actual count, let it
be CT, of T segments in Di.SD-RP through the specific
SQL query. If Size matches CT, the view is OK. If Size
is different of CT, then the client sets it to CT. Next, the
client adjusts the definition of the underlying
distributed partitioned view accordingly, getting the
locations of the missing segments from SD-RP. SQL
Server recompiles the view on the fly.

The clients check and perhaps adjust in this way all
the scalable tables referred to in the query. The query
may refer to the table directly in main from clause, or
through a view name or through an alias, or in a sub-
query from clause etc. The parsing is quite simple to
implement for the first type of queries. It is more
tedious for the latter options. We will show the
experiments with queries of the first kind. More
general parsing capabilities are under implementation.
The issue was felt secondary for the prototype,
appearing rather programming than research challenge.

106 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

3. Experimentation Description
To validate the SD-SQL Server architecture, we made
measurements to prove its scalability and efficiency.
We have measured in various ways SD-SQL Server
access performance. The hardware consisted of 1.8
GHz P4 PCs with 512 MB and 1 GB of RAM, linked
by 1 Gbs ethernet. We use the SQL profiler to take
measurements.

The measures show the overhead at the SD-SQL
servers and clients. At the servers, we measured the
split time. At the clients, we measured the overhead of
a scalable view management during a query
processing. Below, we detail the experiments.

3.1. Split’s Performance
We experiment the system on distributed peers, named
Peer1, Peer2, …. We use the 120 GB fragment of the
SkyServer database and some of its benchmark queries
[2]. These are the steps to create a scalable table and
split it:
1. Create a scalable table. We use the create_sd_table

function of SD-SQL Server, operationally
implemented as SQL Server stored procedure also
termed create_sd_table. The input is the traditional
create table statement and the maximal segment
size. The procedure executes create table statement,
and a number of other distributed stored procedures.
We apply the creation procedure to make PhotoObj
table of SkyServer DB a scalable table. PhotoObj is
a table of 158,426 tuples (about 260 MB). We fix
the segment size at 158,000 tuples. The result is the
following execution of the create_sd_table at
Peer1:

Exec create_sd_table ‘create table
PhotoObj(objid bigint primary key, ….)’,
158000

As PhotoObj is not prefixed, SD-SQL Server
creates it in the segment DB of Peer1. The results of
this execution are:

• Creation of PhotoObj empty segment at Peer1.
• Update of the server meta-tables.
• Update of C-Image at Peer1 and creation there
 of the initial scalable view PhotoObj_view.

We then insert by SD-SQL Server command insert
into 158,000 tuples from the original PhotoObj into
ours. It should take about 30 sec.

2. Split a scalable table. We insert one more tuple into
PhotoObj. Peer1 splits then PhotoObj, creating a
new segment at Peer2. The new segment PhotoObj
created on Peer2 has the same characteristics of the
original one on Peer1 (indexes, attributes...). Only
the check constraints differ between the segments of
a scalable table.

We measure the time of splitting by the SQL profiler.
We show that the overhead of a distributed splitting
should be typically negligible in practice. Figure 2
shows the split time of the PhotoObj table for different
segment sizes b = 39.500, 79.000, 158.000. The split
time remains always fast. It is sub-linear with respect
to the segment size, thus the scalability is good.

22041

43445

60203

17060

0

20000

40000

60000

80000

19750 39500 79000 158426
Segment's size

sp
lit

 ti
m

e
(m

s)

Figure 2. SD-SQL server segment split time.

3.2. View Management’s Performance
We have implemented SD-SQL Server so to accept
various SQL queries to the scalable tables. We allow
the execution of a large number of complex queries on
SD-SQL Server: Queries with aggregations, joins, …
To show the overhead of a scalable view management,
we have used benchmark queries to various SkyServer
DB scalable tables [2]. Among the queries, we show
the following distributed ones and prove their
measures here after. Query (Q1) benchmarks the fast
side, bringing only a few tuples from nodes different
from that of the query. Query (Q2) is in turn at the
expensive side, bringing 129,470 tuples from all the
nodes. We execute these two queries at Peer1.

Q1. Select top 10 objid from PhotoObj_view
 Where objid

Not in (selecT objid from Photoobj)
Q2. Select * from PhotoObj_view
 Where (status & 0x00002000 > 0)
 And (status & 0x0010 > 0)

The measures of (Q1) show that the time difference
between the execution on SD-SQL Server with view
checking only and directly on SQL Server is
negligible, as shown in Figure 3. The query executes in
about 300 ms. The view adjustment that implies the
largest overhead for the query execution takes here
about 0.7 s and is constant as one could expect. It
makes the substantially longer, but we recall, it
remains a rare operation. The execution in turn of the
expensive (Q2) takes about 45 sec with the view
adjustment and 44 sec by SQL Server directly. Thus
the view adjustment took again about 1 sec, but now it
represents about 2 % of the execution time only.

SD-SQL Server: Scalable Distributed Database System 107

0
1000

39500 79000 158000

Segment's sizeEx
ec

ut
io

n
tim

e
(m

s)
View Update+Query Execution

Query Execution

Execution directly on SQL Server

Figure 3. SD-SQL server query (Q1) execution time.

4. Conclusion
This paper shows the prototype implementation of SD-
SQL Server: A first relational database system with
dynamically splitting tables. We show its main
concepts of scalable tables and views. We illustrate
how they actually function for an application, using the
SkyServer database. We show the availability and
performance of the usual SQL commands for scalable
tables under our system. Further work concerns more
benchmark queries, various implementation and
optimization issues, and deeper performance analysis.

Acknowledgments
We thank Gray J. (Microsoft BARC) for providing the
SkyServer database and for the counselling crucial to
this work, and Graefe G. for info on SQL Server linked
servers’ capabilities. The support for this work came
partly from the research grant of Microsoft Research,
and from the European Commission ICONS project
no. IST-2001-32429.

References
[1] Ben-Gan I. and Moreau T., Advanced Transact

SQL for SQL Server 2000, Apress Editors, 2000.
[2] Gray J., Szalay A. S., Thakar A. R., Kunszt P. Z.,

Stoughton C., Slutz D., and VandenBerg J., Data
Mining of SDDS SkyServer Database, in
Proceedings of the 4th International Meeting
(WDAS'2002), pp. 189-208, Paris, France, March
2002.

[3] Litwin W., Neimat M. A., and Schneider D.,
“Linear Hashing for Distributed Files,” in
Proceedings of the ACM-SIGMOD International
Conference on Management of Data, Washington
DC, pp. 327-336, 1993.

[4] Litwin W., Neimat M. A., Schneider D. L. H., A
Scalable Distributed Data Structure, ACM
Transactions on Database Systems, vol. 21, no.
4, pp 480-525, December 1996.

[5] Litwin W., Rich T., and Schwarz T.,
“Architecture for a Scalable Distributed DBSs
Application to SQL Server 2000,” in
Proceedings of the 2nd International Workshop
on Cooperative Internet Computing (CIC'2002),
Hong Kong, August 2002.

[6] Litwin W. and Sahri S., “Implementing SD-SQL
Server: A Scalable Distributed Database
System,” in Proceedings of the Internatioal
Workshop on Distributed Data and Structures
(WDAS'2004), Switzerland, 2004.

[7] Microsoft SQL Server 2000: SQL Server Books
Online, www.micosoft.com, 2005.

Soror Sahri received his
Engineering degree from Université
des Sciences et Technologies Houari
Boumediène (USTHB), Algiers,
1999 His MSc in computer science,
from Université Paris Dauphine,
France, 2002, and his PhD from

Université Paris IX Dauphine, France, 2006. His
researche areas include scalable and distributed
databases, P2P and grid systems.

