
The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 108

An Extended Feature Modelling Based Component
Model for Performance Evaluation

Zhongjie Wang, Xiaofei Xu, and Dechen Zhan
School of Computer Science and Technology, Harbin Institute of Technology, China

Abstract: Traditional component modelling methods focus emphatically on the precise and formal descriptions of business
semantics, while usually cannot support to conveniently evaluate the reuse performance of components. Our main concern is
to present a new component model for measuring performance after components being designed and before practically
reused. The proposed model uses the Extended Feature Modelling method (Ext-FM) to express business semantics and uses
variation point to express component′s reuse mechanism. Some example metrics for component reusability are addressed
briefly to validate the effectiveness of this model.

Keywords: Component model, extended feature modelling, variation point, reusability metrics.

Received August 28, 2005; accepted April 13, 2006

1. Introduction
From 1990s component-related technologies [3, 15]
have been considered as one of the most pivotal
technologies to realize software reuse, and there has
been a consensus both in academe and in industry that,
component reusability influences the performance of
software reuse rigorously [11]. Currently, most of
popular metrics for component reusability [10, 17]
usually evaluate component performance by analyzing
practical accumulated reuse data after components
have been reused for some periods. However, it is
quite indispensable to evaluate component reusability
before they are practically reused, to find those designs
that are not suited to reuse and modify these
deficiencies so as to improve reusability as far as
possible for better software reuse [19].

Pre-reuse reusability should be acquired by
analyzing component model which describes
component structure and semantics, and considered as
the foundation of analyzing and evaluating
components’ properties and behaviours [4]. It
establishes a common theoretical and application
platform for basic component-based development [13]
activities, such as storage, query, adaptation and
composition, etc. Currently, there exist numerous
component models, which can be classified into three
types according to their purposes [8], i. e., component
description and classification models, such as
REBOOT [12], JBCL [7]; component specification and
composition models, such as 3C [16], Wright [1],
JBCOM [14]; and component implementation models,
such as DCOM [9], CORBA CCM [2], EJB [14].

Present research on component models tends to two
opposite extremes, research on component syntax
structure and implementation techniques in

programming language level without considering
business semantics, and research on component
semantics using high formal approaches (e. g., formal
languages) while breaking away from business
background in reality. Neither approaches pay much
attention to the mappings between component models
and domain business models, and there are some
limitations that make it difficult for these component
models to support reusability evaluation expediently
[19].

The objective of this paper is to present a new
component model to support reusability evaluation in a
simple and precise way. The rest of this paper is
arranged as follows. In section 2, we present extended
feature modelling method (Ext-FM), and based on
traditional feature modelling, we put forward the
concept of Feature Dependency (FD) and show five
types of FDs. In section 3, a new component model
based on Ext-FM is shown, and we emphatically
discuss how to express variable semantics in this
model by variation points. In section 4, the way of how
to evaluate pre-reuse reusability with the help of the
new model, including several metrics and the
corresponding evaluation methods, are briefly
discussed. Finally, comparisons between our model
and other models, and the conclusion are shown in
section 5.

2. Extended Feature Modelling (Ext-FM)
Feature-oriented methods have been widely applied in
the field of software reuse, in which, features are used
to capture the commodities and differences among
related business systems in a given business domain [5,
6]. The characteristics, such as hierarchical, extendable

An Extended Feature Modelling Based Component Model for Performance Evaluation 109

and multi-dimensional [4], make feature more suitable
to express the variations in business domain space than
other technologies.

After a domain’s feature models are created, they
could be reused in all the business systems in this
domain. If we can construct business components
according to domain feature models, these identified
components could also be reused when constructing
various applications in the corresponding domain.

In fact, there exist an essential semantics
consistency between component’s functions and
domain features, and a component can be considered
as a sub feature space of a business domain’s global
feature space, i. e., the component model and domain
business model are in a uniform semantics space. If we
use the same feature space to describe component
semantics, a direct mapping between domain model
and component model is easily obtained [4]. In this
section, we firstly introduce some basic concepts in
traditional feature modelling, and emphatically present
the idea of FD and five types of FD.

2.1. Feature and Feature Space
Feature is an ontology that is used to describe the
knowledge of external world, and is represented as
“terms” or “concepts” used to describe the services
supplied by a specific business domain [4]. Features
are hierarchical, i. e., there exist hierarchy structures
between parent features and child features. According
to this property, related features can form a multi-layer
feature space, denoted as Ω = <F, D>, in which F is
feature set, and D is the set of feature dependencies
between features in F.

Ω is usually represented as the form of feature tree,
in which there is one and only one root feature froot, and
two directly connected features in the tree are parent
and child feature, respectively. We use child (f), parent
(f), ancestor (f), descendant (f) and sibling (f) to
denote f’s child feature set, parent feature set,
ancestor feature set, descendant feature set and
sibling feature set, respectively.

In a feature tree, leaf feature (without child features,
or child (f) = ∅) are called atomic features, and non-
leaf features (child (f) ≠ ∅) are complex features.
There exists composition relationship, or “whole-part
association”, between parent and child features, which
make feature space appear in the form of a hierarchical
tree.

In a specific business domain, features could be
business processes, business activities, business
objects, attributes and operations, etc. A feature item is
an instance of a specific feature, and it describes the
feature’s one possible value under a given business
environment [19]. Let dom (f) denotes the set of all
feature items of feature f, and is called the “domain” of
f. ∀τ ∈ dom (f), τ is called a value of f. For a specific
business domain, dom (f) is a finite set.

A feature is the abstraction of all its feature items,
and there exists a “generalization-instantiation”
relationship between feature and its items. We use
feature items to describe the variability of feature
itself.

The instantiation of a feature f is the process of
choosing a proper feature item from dom (f) for f to
satisfy a specific semantics context, denoted as τR (f).
Similarly, by instantiating a feature vector Y = (f1, f2,
…, fn), we can get an instance of Y, denoted as τ (Y) =
(τ (f1), τ (f2), …, τ (fn)), in which τ (fi) ∈ dom (fi), 1≤ I
≤n. If we instantiate each feature f1, f2, …, fn in Ω, we
can get Ω’s one instance, denoted as t (Ω). All the
instances of Ω form Ω’s instance set T (Ω). It is easy to
know that T (Ω) ⊆ dom (f1) × dom (f2) × … × dom (fn),
and ∀t ∈ T (Ω), t = (τ1, τ2, …, τn), in which τI ∈ dom
(fi) is the projection of t on fi, also denoted as t [fi]. t’s
projection on feature set X is denoted as t [X].

2.2. Feature Dependency
In feature space Ω = <F, D>, D is the dependency set
between features in F. Feature dependencies can be
classified into five types, as follows:

• Whole-Part Association (WPA): It is the simplest
FD, which depicts the fixed composition
relationship between child and parent features.
WPA explicitly behaves as the parent-child
structure between features.

• Feature Integrity Dependency (FID): It depicts the
variable composition relationship between parent
feature’s items and child features themselves. It
ensures parent feature’s semantics integrity
according to four selection strategies to choose
specific child features for each feature item of the
parent feature. FID is the exclusive one type of FD
in traditional feature modelling.

• Feature Value Dependency (FVD).
• Feature Multi-Value Dependency (FMVD): FVD

and FMVD both describe constraints between
different features’ instances.

• Feature Semantics Dependency (FSD): It is not
related to feature instantiation, but depicts the
semantics constraints between features themselves.

Definition 1: Each instance (or value) of a feature f can
be denoted by instances of child (f)’s one subset. ∀τ ∈
dom (f), there ∃ Y ⊆ child (f), Y = {f1, f2, …, fn}, and ∀
fi ∈ Y, there must exist at least one feature item τI ∈
dom (fi) which makes that τ can be uniquely
determined by τ1,τ2, …, τn, then Y is the essential sub-
feature set of τ, denoted as Y = es_set(τ).

Definition 2: There exists an FID between a feature f
and a feature set Y, if and only if Y ⊆ child (f), and for
each feature item τ of f, it uniquely determines a subset

110 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

Y′ of Y, and Y′ is a subset of es_set (τ), i. e., Y′ ⊆ es_set
(τ). The FID can be denoted as f| → Y.

Actually, FID defines whether f’s each child feature
would be selected as an essential part of f’s instance
when f is instantiated. f| → Y can be classified into four
detailed types, i. e., mandatory FID, optional FID,
single-selection FID and multiple-selection FID,
denoted as f|M → g, f|O → g, f|S → Y, f|T → Y,
respectively.

• Mandatory FID: f|M → g ⇔ ∀τ ∈ dom (f), g ∈
es_set (τ) must be true, i. e., g is always an
indispensable part of f.

• Optional FID: f |O → g ⇔ ∃ P, Q ⊆ dom (f), P ∪ Q
= dom (f), P ∩ Q = ∅, which makes that ∀τ ∈ P,
there is g ∈ es_set(τ), and ∀τ ∈ Q, there is g∉es_set
(τ). That is to say, only when f is instantiated to
items in P, g is a mandatory part of f, and when f is
instantiated to items in Q, g is not necessary at all.

• Single-S election FID: f|S → Y ⇔ (1) |Y| ≤ |dom (f)|;
(2) there exists a partition {P1, P2, …, Pn} of dom
(f), n = |Y|, Pi ∩ Pj = ∅, ∪I = 1…n Pi = dom (f), and
∀Pi, there exists one and only one fi ∈ Y which
satisfies that ∀τ ∈ Pi, fi ∈ es_set (τ), and ∀fi′ ∈ Y \
{fi}, fi′ ∉ es_set (τ). This shows that for each feature
item τ of f, there is only one feature in Y to be
contained in τ.

• Multiple-Selection FID: f|T →Y ⇔ (1). There exists
a partition {P1,P2,…,Pn} of dom (f), Pi ∩ Pj = ∅, ∪I

= 1…n Pi = dom (f); ∀Pi, ∃Y′ ⊆ Y which makes ∀τ ∈
Pi, ∀fj ∈ Y′, fj ∈ es_set (τ), and ∀fj′ ∈ Y \ Y′, fj′ ∉
es_set (τ). This shows that for each feature item τ of
f, there are several but not all features in Y to be
contained in τ.

In traditional feature modelling methodology [4, 5, 6],
features are classified into mandatory feature, optional
feature and alternative features according to whether a
feature is included in its parent feature, just
corresponding to g and Y in f|M → g, f|O → g, f|S → Y
and f|T → Y. But it does not explicitly associate child
features with parent feature’s items. We improved this
shortcoming. Therefore, FID actually can be
considered as the dependencies between the “type” of
parent feature and the “value” of its child features, and
can be called “type-value” dependencies, which
describes what child features constitute the essential
sub-features of each feature item of their parent
feature.

Definition 3: Two feature sets X, Y are subsets of F in
Ω. For every two instances t1, t2 of Ω, if t1 [X] = t2 [X]
always leads to t1 [Y] = t2 [Y], then we call Y “feature
value dependent” on X, denoted as X → Y. X → Y
means that one instance of X uniquely determines one
instance of Y.

Definition 4: Three feature sets X, Y and Z are subsets
of F in Ω, and Z = F - X - Y. FMVD X →→ Y exists,
when and only when for arbitrary instance t in T (Ω),
t’s each unique projection on (X, Z) corresponds to a
set of Y’s instances, which are determined by X’s value
and not related to Z’s value at all.

FVD and FMVD are consistent in essence, and they
both depicts the dependencies between instances of
two feature sets, called “value-value” dependency, i. e.,
one instance of a feature set unique-value or multiple-
value determined instance(s) of another feature set.
They usually appear between parent/child features or
sibling features.

Similar to functional dependency in relational
model and in database normalization, FVD and FMVD
also have the characteristics of reflexivity,
augmentation, transitivity, pseudo transitivity, union
and decomposition, etc. According to Armstrong
Axiom, we can get a feature set X’s closure on FD set
D, denoted as X+, which contains all the features that
directly or indirectly dependent on features in X.

Definition 5: FSD refers to the semantics association
between features. According to different feature types,
FSD can also have multiple types, such as temporal
constraints between business operation features,
association/ generalization/ composition depen-
dencies between business object features. Generally
speaking, we use predicate P (X) to denote that features
contained in X should satisfy the constraints of P. The
concrete expression of P is determined by its concrete
type, and different types of FSD have different
constraint intensity.

3. An Ext-FM Based Component Semantics
Model

As pointed out before, a business component defines a
sub-space of one specific business domain’s feature
space, so it can be denoted as C <cid, froot, F, D, PS,
RS>, in which:

• cid is the unique identity of C.
• froot is the root feature of C’s feature space, and is

the ancestor of all other features in this space.
• F is the set of all features containing in component

feature space except froot, and satisfies ∀f ∈ F,
|dom(f)| ≥ 1.

• D is the set of feature dependencies between
features in {froot} ∪ F.

• PS is the set of features that C provides to other
components.

• RS is the set of features that C required from other
components.

Features in PS are provided to be used in other
components by providing interfaces, and features in RS
are obtained from other components by required

An Extended Feature Modelling Based Component Model for Performance Evaluation 111

interfaces. The component model should also have the
following constraints:

1. F ⊆ descendant (froot).
2. ∀f ∈ F - RS, if child (f) ≠ ∅, then ∀g ∈ child (f),

there must be g ∈ F - RS or g ∈ RS.
3. ∀f ∈RS, parent (f) ∉ RS.
4. PS ≠ ∅.
5. PS, RS ⊆ {froot} ∪ F.

In Figure 1, we show a simple example of Ext-FM
based component, which includes 8 features in F, 1
feature in PS and 4 features in RS. Component
reusability can be represented by feature’s variability,
which has two different styles as following:

1. Feature’s Variability: Only in some special business
circumstances, one feature is a required constituent
of component feature space, and in other one it is
unnecessary.

2. Feature Value’s Variability: One feature can be
instantiated as an arbitrary feature item contained in
the feature’s domain.

C

RS = {f11, f31, f32, f34}
Required Interfaces

f1 f3f2

froot

f12f11 f32f31 f33 f34

Providing Interfaces
PS = {froot}

Figure 1. An example of Ext-FM based component.

In fact, feature’s variability can be transformed to
feature value’s variability. ∀f which is a non-
mandatory feature, by adding one null feature item I∅
into dom (f), f can now be regarded as a mandatory
feature. If f should not be chosen in some
circumstances, f can be considered to be instantiated as
I∅.

According to the number of instances, features
contained in one component can be classified into two
types:

1. Fixed Feature: Which satisfies |dom(f)| = 1 and
dom(f) ≠ {I∅};

2. Variable Feature: Which satisfies |dom(f)| > 1.

For variable feature f, if I∅ ∈ dom (f), then f is called
“optional variable feature”. Every variable feature in
component C can also be called a “variation point” of
C.

All the fixed features in component C constitute C’s
fixed part fix_part (C), and all the variable features

constitute C’s variable part var_part (C). By choosing
one specific feature item for each variable feature in C,
C is instantiated and a set of “component instances” is
obtained. Component’s instantiation process can
actually be considered as the process of variable
features’ instantiation, and is usually carried out before
the component is practically reused. The set of all the
instances of component C is denoted as instance (C),
and for ∀f ∈ var_part (C), ∀t ∈ instance (C), denote ρ
(f, t) as the feature item that f is instantiated to in t.

A component model has two parts: The
specification and the implementation. It is necessary
for a reusable component to supply its implementation
besides its specification form to make up of the fully
executable component, so as to be reused in practical
applications. Because fixed part of one component
must be reused, during component design phase, the
fixed part must be implemented as source code form.
For every variation point, because it contains multiple
feature items, these feature items are not always
necessary to be implemented during design phase by
component designers, and can be deferred until reuse
phase by application developers. Denote f’s feature
item τ’s implementation as impl (f, τ), and if τ has not
yet been implemented during design phase, then impl
(f, τ) = ∅.

In conclusion, the basic process of component reuse
can be divided into three phase:

1. According to constraints of each feature dependency
in D, instantiate every variable feature f, i. e.,
choose one feature item τ from dom (f).

2. If impl (f,τ) = ∅, implement τ using proper
programming languages.

3. Construct an integrated software system by
composition of all the reused components.

In Figure 2, we present an example of feature-oriented
component, which contains two fixed features f1, f2 and
three variable features f3, f4, f5, with their domain dom
(f1) = {τ31,τ32, I∅}, dom (f2) = {τ41,τ41}, dom (f3) = {τ51,
I∅}. There exist some FDs between its features, e. g.,
{f3} → {f4}, {f3} → {f5}.

4. Ext-FM Based Metrics for Component
Reuse Performance

In this section, we present several key metrics for
component reusability evaluation based on Ext-FM
based component model.

As mentioned in [11], component reusability is
defined as the synthesis of two characteristics:
Usefulness and usability. Usefulness is the extents to
which a reusable component will often be needed, and
can be evaluated by the reuse scope or reuse frequency
of functions supplied by the component. Usability
assesses the extent to which a component is easy to
use, regardless of its functionality, and can be

112 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

evaluated by reuse cost, reuse efficiency, etc. Here we
present several key metrics for both usability and
usefulness to illustrate how our Ext-FM based
component model could support component
performance evaluation. These metrics are:

• Granularity.
• Reuse Frequency.
• Reuse Cost.
• Reuse Efficiency.
• Cohesion.
• Coupling.

C

PS

RS

f1 f3 f5

τ31 τ32 I∅

f2 f4

Impl(f1) Impl(f2)

Impl(f3,τ32)

τ41 τ42 I∅ τ51

∅ ∅ ∅ Impl(f3,τ51)

{f3}→{f4}

froot

Legend
Fixed Feature Variable Feature
Implementation of Feature Item

VAR_PART(C)
FIX_PART(C) {f3}→{f5}

Figure 2. Variation point mechanism for Ext-FM based component
model.

4.1. Granularity
Definition 6: A feature f’s granularity is defined as the
sum of granularity of all its child features, i. e.,

()
()

()
()

()
child

 child

1 child
i

i
f f

G f , f
G f

, f
∈

 ≠ ∅
=
 = ∅

∑

For a component C, because it can be regarded as a
sub space of domain feature space, its granularity can
be measured by the granularity of the root feature
contained in C, i. e., () ()rootfGCG = .

4.2. Reuse Frequency
Reuse frequency CF (C) is defined as the chance of a
component C could be frequently used at different
situations, and have two metrics: Absolute frequency
CFA (C) and relative frequency CFR (C). CFA (C) can
be measured by the number of instances of C’s feature
space, denoted as CFA (C) = |T(C)|. A larger CFA (C)
means that C could be reused in more circumstances,
and it has larger usability.

CFR (C) describes the chance that C could be reused
in the global feature space Ω, and can de measured by
the ratio of the number of instances of C’s feature
space and the number of Ω’s instances, i. e.,

() ()
()R

T C
CF C T= Ω . The larger CFR(C) is, the more

chances C’s feature set could be reused during the
process of constructing Ω, so C has larger reusability.

4.3. Reuse Cost
According to component reuse process in section 3.2,
component reuse cost CRC (C) can be decomposed
into three parts: Instantiation cost CI (C),
implementation cost CP (C) and composition cost CC
(C), and we have CRC (C) = CI (C) + CP (C) + CC
(C).

Component instantiation process is as follows:
According to FIDs, specify whether each variable
feature should be contained in the instance; then
according to FVDs/FMVDs, select one specific feature
item for each chosen variable features. Therefore,
instantiation cost can be approximately denoted as:

CI (C) = CD × |D| + ()()
()_

,R F
f VARIABLE PART C

RF f C C
∈

×∑

In which CD is the unit cost to deal with each FD, and
CF is the unit cost to choose proper feature item for one
variable feature. Because only those chosen features
are required to be instantiated, we add a coefficient
RFR (f, C) to denote the probability that feature f could
be chosen in C’s instance, and it is also called the
relative reuse frequency of f relative to C, and

() ()
(),R

T f
RF f C

T C
= , 0 < RFR (f, C) ≤ 1.

Implementation cost refers to the cost that, after s
component is instantiated, if some chosen feature items
of some chosen variable features are not yet
implemented (coded), then programmers should
implement them. Because we will not know in advance
which feature items could be chosen, we also calculate
CP (C) approximatively by:

CP (C) = ()
()_

_ _P
f VARIABLE PART C

C NON IMPL SET f
∈

×

∑

 in which

Non_impl_set (f) = () (){ }, dom f implτ τ τ∈ = ∅

and CP is the average unit implementation cost for a
feature item.

Composition cost CC (C) refers to the cost that C
composes with other components to form the whole
domain feature space. Component composition is the
process of creating interface connection between C and
other components’ features, i. e.,

1. Create connections between C’s required features
RS and other components’ providing features PS.

2. According to the FVDs/FMVDs between C and
other components, create associations between
instances of C and other components. Therefore,

An Extended Feature Modelling Based Component Model for Performance Evaluation 113

composition cost can be calculated by CC (C) = CB

× |RS (C)| + CM × |outer_FD (C)|, in which CB, CM
are unit cost for interface connection and unit cost
for FVD/FMVD matching, respectively. Outer_FD
(C) = {X → Y| ∃ f ∈ X and f ∈ F (C), ∃ g ∈ Y and g
∉ F (C)}.

4.4. Reuse Efficiency
Reuse efficiency refers to the efficiency when we use
the component to construct feature space of a specific
business. It is closely related to the size of a
component’s feature space, the larger the size is, and
the higher the component’s reuse efficiency is.

We could calculate reuse efficiency by the ratio of
C’s feature space in the whole domain feature space, i.
e.,

() ()
()

F C
CRE C

F
=

Ω

Because it is difficult to specify Ω’s scope, we
could use C’s implementation absolute granularity to
indirectly represent C’s reuse efficiency, i. e., CRE (C)
= NAG (C). The larger C’s granularity is, the more
contributions to construct the whole domain feature
space C has, so the higher C’s reuse efficiency is.

4.5. Cohesion
Cohesion and coupling are two key metrics used to
evaluate component performance in literatures. In our
component model, five types of FDs are the main
reasons leading to cohesion in component and coupling
between components. Here we use the concept of
Feature Dependency Density (FDD) to evaluate
cohesion and coupling.

Definition 7: A feature f’s inner FDD depicts the
intensity (or, semantics closeness) of FDs between f
and its child features, and between f’s child features,
denoted as:

Inner_FDD (f) = α1× FID_Ds (f) + α2× FVD_Ds (f) +
α3 × FSD_Ds (f) + α4 × child_Ds (f).

If child (f) = ∅, then inner_FDD (f) = 1. In this
definition:

• FID_Ds (f): The FDD between f and its child
features caused by FIDs, and we could calculate it
by the average of each child feature’s reuse
frequency relative to f, denoted as:

()
()

()
,

_
R

g child f
RF g f

FID Ds f
n

∈=
∑

, ()n child f=

A child feature is more frequently contained in f, the
more cohesion between this child feature and f has.

• FVD_Ds (f): The FDD between f’s all child features
caused by FVD/FMVDs, and we could get it by
calculating the ratio of the number of FVD/FMVDs

existing between features of child (f) and the
possible largest number of FVD/FMVDs between
child (f). The larger the number of FVD/FMVDs in
child (f), the higher cohesion f has. Because
FVD/FMVD can be represented as X→Y or X →→
Y, so there will exist FVD/FMVDs with the number
of at most 1 2 1C C ... Cn

n n n
−+ + + = 2n − 2, therefore:

()
() (){ },

_
2 2n

X Y X Y child f
FVD Ds f

→ → ⊂
=

−

• FSD_Ds (f): The FDD between f’s child features
caused by FSD, and it has similar measurement with
FVD_Ds (f), denoted as:

()
()()

() ()P ,
P

_
2 1

X X child f
n

Complexity X
FVD Ds f

n
⊆=

− −

∑

• Child_Ds (f): The average of the inner FDD of f’s
all child features, i. e.,

child_Ds(f) =
()

()
_

g child f
inner FDD g

n
∈
∑

• 1 2 3 4, , ,α α α α are the coefficient for the above four

FDD, and
4

1
1i

i
α

=

=∑ .

Cohesion of component C depicts the degree of
semantics closeness of C’s all features, which can be
measured by inner FDD of C’s foot feature, i. e.,

Cohesion(C) = inner_FDD (froot)
We could calculate the root feature’s cohesion from

leaf features and recursively top wards until to froot. We
will not present the detailed calculation here.

4.6. Coupling
Definition 8: A feature f’s outer FDD depicts the
intensity of FDs between f and other features, and can
be calculated by:

Outer_FDD (f) = β1 × WPA_Ds (f) + β2 × FID_Ds (f) +
β3 × FVD_Ds (f) + β4× FSD_Ds (f)

In which:

• WPA_Ds (f) is the FDD between f and its child
features caused by WPA, i. e., the degree that f
depends on outer features to realize its own
functions, measured by WPA_Ds (f) = 11

n
− , n =

child (f).
• The meanings of FID_Ds(f) is same as the

FID_Ds(f) in Definition 15.
• FVD_Ds(f) is the FDD between f and other features

caused by FVD/FMVD, and can be calculated by:

FVD_Ds (f) =
(){ }

11
,X Y f X f Y

−
→ → ∈ ∉

114 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

• FSD_Ds (f) is the FDD between f and other features
caused by FSD, and can be calculated by:

FSD_Ds (f) =
() (){ }

()()
() ()P

P P
1

P
X FSDs f

X f X

Complexity X
∈

∈
−

∑

• 1 2 3 4, , ,β β β β are the coefficient of the above four

FDD, and 4

1
1i

i
β

=

=∑ .

Component C’s coupling depicts the closeness degree
of features in C and in other components. We could
calculate it by the average of C’s all the features’ outer
FDD, denoted as:

Coupling (C) =
()

()
()

1 _
f F C

outer FDD f
F C ∈

∑

5. Experiments and Comparisons with
Related Works

We have applied the model and metrics in practical
design and implementation of a component-based
Enterprise Resource Planning (ERP) system, named
NERP, during which the approach presented in this
paper has shown its effectiveness significantly.

Taking a sub-system “procurement management
system” in ERP as an example, we have identified 25
components from its business models, listed in Table 1.
Due to limited space, here we only present the
structure of a component C21 in Figure 3, and Table 2
shows the meanings of each feature/feature item
contained in C21 (for more details about other
components, please see [18] for reference). Using the
metrics in this paper, we get the statistical data
(performance) of each component, shown in Table 3.

The following are some comparisons between our
Ext-FM based component model and other component
models in literatures:

1. 3C, Wright, JBCOM and other component models
are much closer to formal semantics level, and they
lack of precise descriptions on semantics in problem
domain, which lead to a gap between component
models and domain business models. Our model
adopt extended feature modelling as a tool to
describe component semantics and to create direct
semantics mapping between component models and
domain models, i. e., enterprise’s business models
and component models are uniformly represented
by the form of feature space, and a component is
considered as a sub space of domain model,
therefore, realizing consistency between the two
model levels.

2. Many component models usually use highly formal
way to describe semantics, such as Z, predicate
logic, etc, to support the automation of component-
based software reasoning, validation, and evolution,

etc. This way leads to more highly complexity and
much poorer readability and understandability. Our
model adopts semi-formal method, i. e., feature
modelling, which is easier to be used and
understood, and can be integrated with activities in
domain analysis phase of software reuse.

3. Compared with the feature-oriented component
modelling in literatures, our model mainly supports
evaluation on component performance, therefore,
we ignore some complex and unnecessary
information, and pay more attention to component’s
“content”, i. e., business semantics, and emphasize
on component semantics and semantics
dependencies, which makes modelling easier.

4. Traditional feature modelling methods have
limitations, which primarily behaves that the way to
depict semantics variability is very simplex, and
cannot express various variable semantics
completely. Our model extends traditional feature
modelling and gets another three types of FD (FVD,
FMVD, FSD) besides FID.

The most significant advantage of our model is that,
most of component models are difficult to support
evaluating component performance, while our model
can do that gracefully and conveniently based on the
analysis of component feature space, just as several
example metrics presented in section 4.

Table 1. Component set for purchasing domain process.
Component ID Component Name

C1 Acquiring Procurement Requirements
C2 Operating on Procurement Requirements
C3 Planning Procurement
C4 Auditing Procurement Plans
C5 Adjusting Procurement Plans
C6 Managing Supplier Information
C7 Managing Evaluation Strategies
C8 Evaluating Suppliers
C9 Public Bidding Management for Procurement
C10 Quotation Management
C11 Supplier Selection for Specific Plans
C12 Creating New Procurement Orders
C13 Allocating Procurement Orders
C14 Modifying Procurement Orders
C15 Querying Procurement Orders
C16 Auditing Procurement Orders
C17 Updating Procurement Orders
C18 Cancelling Procurement Orders
C19 Managing Product Arrival Plans
C20 Monitoring the Products on the way
C21 Product Arrival Informing
C22 Product Testing Management
C23 Inventory In
C24 Reimbursing Products
C25 Account Payable Management

An Extended Feature Modelling Based Component Model for Performance Evaluation 115

C

PS

RS

f2 f1

τ11 τ12

f3

τ41 τ42 I∅ τ51

{f3}→{f4}

f

VAR_PART(C)
FIX_PART(C) {f3}→{f5}

f6

τ1

τ3
τ2

τ42

f4

τ42

f5

Figure 3. Structure of the component “product arrival informing”.

Table 2. Feature, feature item and feature dependencies in Figure 3.

Features Meanings Feature
Items Meanings Feature

Dependencies

τ1
Product Arrival
without Order

τ2
Product Arrival
with Orderf

Product
Arrival
Informing

τ3
Import Product
Arrival

τ11 Domestic
f1

Product
Arrival Bill
Management τ12

Import

f2

Auditing
Imported
Product
Arribal Form

f3

Customs
Declaration
for Importing
Products

τ41
Measure by
Sampling

τ42 Measure Allf4
Inform to
Measure

τ43 Measure None

τ51
Check by
Sampling

τ52 Check Allf5
Inform to
Quality
Checking

τ53 Check None

f6
Inform to
Inventory In

f|M→{f1, f4, f5, f6}
f|O→{f2, f3}
f4→f5
ExeOrder(f1, f2, f3)
ExeOrder(f1, f4)
ExeOrder(f1, f5)
ExeOrder(f4, f6)
ExeOrder(f5, f6)

5. Conclusion
In this paper, we presented a new component
semantics model based on extended feature modelling,
to solve the problem that current component models
cannot support us to evaluate component reuse
performance precisely and easily.

This model has been used in the design and
development of several Enterprise Resource Planning
(ERP) systems, and the practical experiences have
proved its validity and effectiveness on variability
representation and performance evaluation. We are
sure that this component model will be a useful
supplement for the research and practice of
component-based software reuse.

Table 3. Component metrics for purchasing domain process.
C G(C)CFR(C)CRE(C)CI(C)CP(C)CC(C)CRC(C)Cohesion(C)Coupling(C)
C1 1 0.64 0.014 1.27 3.84 5.72 10.83 1.00 0.14
C2 3 0.64 0.043 3.83 7.40 11.03 22.26 0.75 0.28
C3 6 0.82 0.086 7.67 12.23 18.23 38.13 0.68 0.47
C4 2 1.00 0.028 2.55 3.29 4.90 10.74 0.94 0.12
C5 4 0.73 0.057 5.11 5.21 7.76 18.08 0.85 0.20
C6 2 1.00 0.028 2.55 14.77 22.02 39.34 0.91 0.57
C7 2 0.57 0.028 2.55 3.82 5.69 12.06 0.82 0.14
C8 1 0.66 0.014 1.27 6.92 10.32 18.51 1.00 0.27
C9 3 0.51 0.043 3.83 5.85 8.72 18.4 0.81 0.22
C10 1 0.53 0.014 1.27 5.85 8.72 15.84 1.00 0.22
C11 2 0.94 0.028 2.55 9.56 14.25 26.36 0.79 0.37
C12 1 1.00 0.014 1.27 15.33 22.86 39.46 1.00 0.59
C13 1 0.67 0.014 1.27 2.39 3.56 7.22 1.00 0.09
C14 1 0.72 0.014 1.27 5.81 8.66 15.74 1.00 0.22
C15 2 1.00 0.028 2.55 10.04 14.97 27.56 0.96 0.39
C16 1 1.00 0.014 1.27 2.85 4.25 8.37 1.00 0.11
C17 1 1.00 0.014 1.27 6.08 9.06 16.41 1.00 0.23
C18 2 0.62 0.028 2.55 4.20 6.26 13.01 0.74 0.16
C19 3 0.58 0.043 3.83 3.97 5.92 13.72 0.76 0.15
C20 1 0.57 0.014 1.27 1.99 2.96 6.22 1.00 0.07
C21 6 0.81 0.086 7.67 7.78 11.60 27.05 0.77 0.30
C22 4 0.75 0.057 5.11 9.22 13.75 28.08 0.68 0.35
C23 5 0.71 0.072 6.39 10.70 15.95 33.04 0.64 0.41
C24 5 0.68 0.072 6.39 3.26 4.86 14.51 0.83 0.12
C25 9 0.84 0.130 11.51 10.55 15.73 37.79 0.76 0.41

Acknowledgement
Research works in this paper are fully supported by the
Specialized Research Fund for the Doctoral Program
of Higher Education (SRFDP) in China (Grant No.
20030213027) and the Natural Science Foundation of
China (Grant No. 60573086).

References
[1] Allen R. and Garlan D., “A Formal Basis for

Architectural Connection,” ACM Transactions on
Software Engineering and Methodology, vol. 6,
no. 3, pp. 213-249, 1997.

[2] Ben Natan R., CORBA_A Guide to the Common
Object Request Broker Architecture, McGraw-
Hill, 1995.

[3] Jacobson I., Griss M., and Jonsson P., Software
Reuse: Architecture, Process and Organization
for Business Success, Addison-Wesley, 1997.

[4] Jia Y., “The Evolutionary Component-Based
Software Reuse Approach,” PhD Dissertation,
Graduation School of Chinese Academy of
Sciences, 2002.

[5] Kang K. C., Cohen S. G., Hess J. A., Novak W.
E., and Peterson A. S., “Feature-Oriented
Domain Analysis (FODA) Feasibility Study,”
Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon
University, 1990.

[6] Kang K. C., Kim S., Lee J., Kim K., Shin E., and
Huh M., “FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference
Architectures,” Annals of Software Engineering,
vol. 5, no. 1, pp. 143-168, 1998.

[7] Li K., Guo L., Mei H., and Yang F., “An
Overview of JB (JadeBird) Component Library

116 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

System JBCL,” in Proceedings of the 24th

International Conference on Technology of
Object-Oriented Languages, IEEE Computer
Society Press, Los Alamitos, USA, pp. 206-213,
1997.

[8] Mei H., “A Component Model for Perspective
Management of Enterprise Software Reuse,”
Annals of Software Engineering, vol. 11, no. 1,
pp. 219-236, 2001.

[9] Microsoft, “Distributed Component Object
Model Protocol COM/1.0,” available at:
http://www.microsoft.com/library, 1996.

[10] Mili A., Fowler S., Gottumukkala R., and Zhang
L., “An Integrated Cost Model for Software
Reuse,” in Proceedings of the 22nd International
Conference on Software Engineering, Limerick,
Ireland, ACM Press, pp. 157-166, June 2000.

[11] Mili H., Mili A., Yacoub S., and Addy E., Reuse-
Based Software Engineering: Techniques,
Organization, and Controls, John Wiley and
Sons, 2002.

[12] Sindre G., Conradi R., and Karlsson E. A., “The
REBOOT Approach to Software Reuse,” Journal
of Software and Systems, vol. 33, no. 3, pp. 201-
212, 1995.

[13] Sparling M., “Lessons Learned through Six
Years of Component-Based Development,”
Communications of the ACM, vol. 43, no. 10, pp.
47-53, 2000.

[14] Sun Corporation, “Enterprise JavaBeans
Specifications Version 1.1,” available at:
http://java.sun.com/products/ejb/docs.html, 1998.

[15] Szyperski C., Component software: Beyond
Object-Oriented Programming, Addison-Wesley,
1998.

[16] Tracz W., “Implementation Working Group
Summary,” in Proceedings of Reuse in Practice
Workshop, IDA Document D-754, Pittsburgh,
PA, pp. 10-19, 1990.

[17] Vitharana P., Jain H., and Zahedi F., “Strategy-
Based Design of Reusable Business
Components,” IEEE Transactions on Systems,
Man, and Cybernetics - Part C: Applications and
Reviews, vol. 34, no. 4, pp. 460-474, 2004.

[18] Wang Z. J., “Optimization Technology for
Reconfiguration and Reuse of Enterprise
Software and Applications,” PhD Dissertation,
Harbin Institute of Technology, 2005.

[19] Wang Z. J., Xu X. F., and Zhan D. C., “A
Component Optimization Design Method Based
on Variation Point Decomposition,” in
Proceedings of the 3rd ACIS International
Conference on Software Engineering, Research,
Management and Applications, Michigan, USA,
pp. 399-406, 2005.

[20] Wu Q., Chang J., Mei H., and Yang F., “JBCDL:
An Object-Oriented Component Description
Language,” in Proceedings of 24th International

Conference on Technology of Object-Oriented
Languages, Los Alamitos, CA, USA, IEEE
Computer Society Press, pp. 198-205, 1997.

Zhongjie Wang is a lecture in
computer application technology in
School of Computer Science and
Technology at Harbin Institute of
Technology (HIT), China. His
research interests include software
engineering, software reuse,

software reconfiguration, software component related
techniques.

Xiaofei Xu is a professor and dean
of School of Computer Science and
Technology at Harbin Institute of
Technology (HIT), China. He is a
member of the CIMS Subject Expert
Committee of Chinese 863 National
High-Tech Program; standing

member of Council of China Computer Society; senior
member the US Society of Manufacturing Engineer
(SME); member of German Society of Operational
Research; director of Council of Heilongjiang Province
Computer Society; member of Editorial of Journal of
CIMS and Journal of Harbin Institute of Technology
(New Series). His research interests include computer
integrated manufacturing system (CIMS), database
systems, supply chain management, agile virtual
enterprises, management and decision information
system, and knowledge engineering. He has published
more than 200 academic papers and 3 books. He has
implemented over 20 projects from Key Projects of
National 863 Hi-tech Project, National Science
Foundation, Ministry/Province Science Foundation,
Province Outstanding Youth Foundation Project and
international cooperative Project.

Dechen Zhan is a professor in
School of Computer Science and
Technology at Harbin Institute of
Technology (HIT), China. His
research interests include computer
integrated manufacturing system,
enterprise resource planning,

decision support systems, software reuse and
reconfiguration.

