
148 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

An Efficient Parallel Gauss-Seidel Algorithm for
the Solution of Load Flow Problems

Raed Alqadi1 and Maher Khammash2
1Department of Computer Engineering, An-Najah National University, Palestine
2Department of Electrical Engineering, An-Najah National University, Palestine

Abstract: In this paper, a parallel algorithm for solving the load flow problem of large power systems is presented. This
algorithm uses a parallel virtual machine implemented as a distributed system built from readily available PCs. The proposed
algorithm is based on the Gauss-Seidel algorithm usually used in the solution of load flow problems. This algorithm is
parallelized by distributing the bus voltages among a set of processors such that each processor will be working on 1/n of the
bus voltages in the circuit, where n is the number of processors. Since it is virtually impossible to obtain a parallel processing
machine in our country, the algorithm is developed over a distributed system which consists of a network of PCs. Even though
the communication overhead is much more than that in a real parallel machine, the results show that large power systems can
be solved in much less time compared to the time required for sequential algorithm usually used, and that with proper
selection of the number of processors, the execution time is reduced by almost a factor of the number of processors.

Keywords: Parallel algorithm, distributed system, load flow, communication overhead, execution time.

Received November 16, 2005; accepted April 22, 2006

1. Introduction
Load flow studies are of great importance in planning
and designing the future expansion of power systems
as well as in optimizing existing systems for best
performance. The principal information obtained from
a power-flow study consists of the magnitude and
phase angle of the voltage at each bus and the real and
reactive power flowing in each line.
Traditional solutions of the load-flow problems

follow an iterative process by assigning estimated
values to the unknown bus voltages and calculating a
new value for each bus voltage from the estimated
values at the other buses, the real power specified, and
the specified reactive power or voltage magnitude. A
new set of values for voltage is thus obtained for each
bus and still used to calculate another set of bus
voltages in a sequential algorithm. The iterative
process is repeated until the changes at each bus are
less than a specified tolerance value.
The sequential algorithm usually used in load flow

calculations may result in large number of iterations
over a large set of data and thus requires long
execution time. Over the past two decades, there has
been a great interest in using parallel and distributed
computer systems in the computation as well as
monitoring of large power systems’ performance and
parameters such as node voltages, currents, and power
flow, which has been applied in this study. Examples
of such studies can be found in [3, 5, 7, 8, 9, 11]. In
this paper, we present a parallel technique based on
distributing the computation over a set of computers

interconnected with a regular Local Area network
(LAN). The technique mimics parallel processing
through a distributed system thus creating a parallel
virtual machine. Parallel virtual machines have been
proposed by many researchers; see for example [2, 6,
10, 12, 13]. We implemented our own machine
because it has been optimized for solving power
systems; mainly parallelizing the well-known Gauss-
Seidel algorithm which is commonly used in load flow
analysis of power systems.
The aim of this study is to create a parallel

algorithm using parallel processing to solve the
problem of load flow by Gauss-Seidel method. Despite
the fact that Gauss-Seidel algorithm is inherently
serial, it is possible to gain performance by applying
parallel techniques [7]. In [1], a parallel Gauss-Seidel
algorithm that targets multi-grid systems and runs on
distributed memory computers is proposed. In [7], a
technique has been proposed to parallelize Gauss-
Seidel algorithm by performing specialized orderings
on sparse matrices. It is shown in [5] that it is possible
to eliminate much of the data dependencies caused by
precedence in the calculations. In this paper, we
present a much simpler parallel algorithm that achieves
high performance by distributing the calculations of
the bus voltages among several processors. In our
technique, each processor is responsible for calculating
a subset of bus voltages. This parallel algorithm has
been examined on several power systems to ensure its
capability and effect upon reducing the computer
execution time in comparison with the sequential
algorithm usually used. The algorithm was evaluated

An Efficient Parallel Gauss-Seidel Algorithm for the Solution of Load Flow Problems 149

using a large number of power networks generated by
a random network generator program written by the
authors.
The rest of this paper is organized as follows.

Section 2 provides an overview of the Gauss-Seidel
load flow algorithm. Section 3 presents the proposed
parallel version of the Gauss-Seidel algorithm. Section
4 presents the results of the proposed approach
including a comparison to the sequential algorithm.
Finally, conclusions are presented in section 5.

2. Gauss-Seidel Method
The Gauss-Seidel method is an iterative process which
starts by assigning estimated values to the unknown
bus voltages. Using the estimated bus voltages and the
specified real and imaginary power values, a new value
for each bus voltage is calculated at the end of each
iteration. The process is repeated until the difference
between each bus voltage and its corresponding value
in two successive iterations is less than a predefined
tolerance value.
For a total of N buses, the calculated voltage at any

bus K is expressed as a function of the real and reactive
power delivered to a bus from generators or supplied to
the load connected to the bus, the estimated or
previously calculated voltages at the other buses, and
the self- and mutual admittances of the nodes as given
in equation (1) [4].

)1()(
)1(

1)(1

1 1

 −

= +=
∑ ∑ −−−−

−
=

k

j

N

kj

i
jkj

i
jkji

k

kjk
kk

i
k VYVY

V

QP
YV

(1)
Where:
Vk : Calculated voltage of bus k.
Ykk : Self admittance of bus k.
Ykj : Mutual admittance between buses k and j.
Pk: and Qk: Scheduled real and reactive power entering
the system at bus k.

Vj: Most recently calculated values for the
corresponding buses or the estimated voltage if no
iteration has yet been made at that particular bus.

(i) and (i - 1) denote current and previous iteration,
respectively.

In the original sequential algorithm of Gauss-Seidel
method, the voltage at each bus at any iteration is
calculated by using the voltages of previous buses
calculated at the same iteration and the voltages of the
next buses calculated at the previous iteration as shown
in equation (1). The entire process is carried out again
and again until the amount of correction in voltage at
every bus is less than some predetermined precision
index.
Experience with the Gauss-Seidel method in solving

large power flow problems has shown that an
excessive number of iterations are required before the
voltage corrections are within an acceptable precision

index if the corrected voltage at a bus merely replaces
the best previous value as the computations proceed
from bus to bus which results in long computer time.
In this study, it is shown that the total execution

time is reduced considerably by using parallel
processing for the solution of load flow problem since
each processor (computer) is only responsible for a
subset of bus voltages and calculation of the voltages
in done concurrently. In the next section, we present
our version of the parallel Gauss-Seidel algorithm.

3. Parallel Algorithm
The idea of using parallel processing in the solution of
load flow problem by Gauss-Seidel method starts with
dividing the whole group of bus voltages into
subgroups where the calculation of the bus voltages of
these subgroups is performed by several processors
(clients) concurrently. Since the parallel processing is
emulated by a distributed system composed of PCs
interconnected via LAN, from now on we will refer to
the processors or PCs by the term clients and server.
The server will be responsible for coordinating the
distribution and execution of the algorithm while the
clients will be responsible for the execution of the
algorithm. The calculation of the bus voltages is
distributed among several clients such that each client
is responsible for the calculation of the bus voltages of
the subgroup to which it belongs, in this way each
client calculates the bus voltages of its subgroup
independently of other clients. The clients used in the
implementation are heterogeneous PCs deploying
Microsoft Windows XP.
Each client calculates the bus voltages of its

subgroup according to equation 2 in the following
manner. If bus j does not belong to the same subgroup,
the value of Vj is substituted from the previous
iteration, but if bus j belongs to the same subgroup
then the value of Vj is substituted from the same
iteration if j < k or and from the previous iteration if j >
k. The parallel algorithm can be presented
mathematically as shown in Figure 1. Also, a pictorial
representation of the algorithm is shown in Figure 2. In
this figure, 12 buses are distributed over 4 clients
(computers) where each client computes the voltages
for 3 buses.

3.1. Implementation
The parallel algorithm has been implemented using a
network of 20 computers connected over LAN; the
program was written in C# and used TCP/IP sockets
for communication. The following paragraphs describe
the main steps of the algorithm.

3.2. Initial Step
• The Server distributes the network definitions to the
clients.

150 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

• From the clients' number connected, the server
calculates the portion of data each client must
work on. For example, if the number of clients is
8 and the number of the bus voltages in the
network is 2000 bus, then the number of bus
voltages each client has to work on is 2000/8 =
250 bus voltages.

• Every client is sent the complete set of data
including the following:

•The set of the initial estimated values of the bus
voltages in the network.
• The node admittance matrix of the network that
includes the self-and mutual admittances.
•The scheduled real and reactive power entering
the system at each bus.
•The range of the elements the client is to work
on. For example 8 clients work over 2000
elements, then the first client will work on the
range of elements form 1-250, while the second
will work over 251-500, and so on.

• The server sends the “start execution” message to
the clients.

Parallel Gauss Seidel Algorithm
Let C = {c1, c2, … cm} be the set of available clients (computers)
where m is the number of computers, and let N be the number of
buses

Client L computes the voltages {Vx, … , Vy} where

),*(1)1(* NL
m
NMinyandL

m
Nx

=+−

=

For each k in {x, …., y) compute

 −

= +=
∑∑ ∑ −−
−

=
−−−−

−
=

1x

1j

N

1kj

)1i(
jkj

1k

xj

)i(
jVkjY)1i(

jkj)1i(
k

kjk
kk

1)i(
k VYVY

V

QP
YV

(2)
Broadcast the vector {Vx, Vx + 1, ….., Vy}
Obtain the voltages {V1, …, VN} - {Vx, …, Vy} from the other
clients

Figure 1. Parallel Gauss-Seidel algorithm.

3.3. Iterative Steps
• Every client calculates the values of the bus
voltages to which it is dedicated.

• When a client finishes iteration over its range of
data, it broadcasts the vector of node voltages it
computed with a tag identifying its identity number.
Afterwards, the client sleeps waiting for a
notification from the server to start a new iteration.

• When a client receives the computed bus voltages
from all other clients, it replaces the old bus
voltages with the new received values.

• When all clients send their vectors of node voltages,
the server sends a “continuation message” to alert
the clients to start a new iteration.

• The previous iterative steps are repeated until all
clients converge, or until a certain predefined
number of iterations end with no convergence.

• When the convergence is reached by the clients,
each client sends a completion message to server.
When this message is received from all clients, the
server displays the results. At this moment, the
execution is completed.

Figure 2. Distribution of the calculation of bus voltages among
several clients.

4. Results and Discussion
To evaluate the algorithm, the parallel algorithm was
compared to the sequential algorithm. To achieve this,
a random network generator was developed in order to
provide test power networks. Several experiments were
conducted using different number of clients and
different size of networks. Generally, for large
networks (1000 nodes or more) the algorithm produced
significant speed up. Of course this is the desired
behavior since the algorithm is intended for large
networks.
The amount of communication overhead becomes

insignificant as compared to the processing time even
though it is based on LAN communication. But for
small networks (200 nodes or less) the amount of
communication overhead is significant and hence the
serial algorithm is superior.
Figure 3 shows the execution time in seconds for

networks of 1000 buses versus the number of
computers. It is clear that the execution time decreases
significantly as the number of computers is increased.
But as the number increases beyond a certain limit, the
communication time becomes significant and thus the
increase becomes marginal. However, the figure
clearly shows that our algorithm is very efficient in
reducing the execution time for large network using a
reasonable number of computers, e. g., 5-20.
Figure 4 shows the speedup versus the number of

clients (computers), the results were calculated by
dividing the sequential program execution time by the
execution time of the parallel algorithm for each
respective number of clients. The results in Figures 3
and 4 were obtained by taking the average execution
time of 10 randomly generated networks; each is a
1000 bus network.

Client 1

Client 2

Client 3

Client 4

V1
V2
V3
V4
V5
V6
V7
V8
V9

V10
V11
V12

V1
V2

V3

V4
V5
V6

V7
V8
V9

V10
V11
V12

Results Broadcasted to Other Clients
After Local Computation

Client 4
Broadcast

Client 2
Broadcast

Client 3
Broadcast

Client 1
Broadcast

Network Bus Voltages

An Efficient Parallel Gauss-Seidel Algorithm for the Solution of Load Flow Problems 151

Figure 3. Execution time (s) versus the number of clients for 1000
bus networks.

Figure 4. Speedup versus number of clients for 1000 bus networks.

Figure 5 and 6, respectively, show the execution
time and the speedup for networks of 500 buses versus
the number of computers. It can be seen that as the
number of computers is increased beyond 12, the
execution time starts to increase. Such result is
expected because the number of buses in the power
networks is relatively small (500) and hence a small
number of computers (less than 10) will be needed.
Increasing the number beyond that value will result in
high communication overhead compared to the
computation time of the bus voltages. Consequently,
the suggested algorithm is effective for networks with
a medium number of buses between 200 and 1000
when using a reasonable number of clients in order not
to increase the communication overhead as compared
to the computation time of the bus voltages.
From studying these results, it is clear that for large

power systems the suggested algorithm is effective.
This algorithm reduced the execution time
considerably compared with the sequential algorithm
usually used. The amount of communication overhead
becomes insignificant as compared to the processing
time when the size of the power circuit is considerably
large and a reasonable number of computers, e. g., 5-
20, is used.

Figure 5. Execution time (s) versus the number of clients for 500
bus networks.

Figure 6. Speedup versus the number of clients for 500 bus
networks.

5. Conclusion
In this study, a parallel algorithm of load flow
calculation using Gauss-Seidel method is realized. This
algorithm is based on the distribution of the
calculations of the bus voltages among several clients
operating in parallel. The parallel processing is
emulated by a distributed system composed of PCs
interconnected via LAN. The proposed algorithm was
tested on several test power networks and compared
with the sequential algorithm usually used.
The obtained results show that the execution time of

the parallel algorithm has been considerably reduced in
comparison with the execution time of the sequential
algorithm for power networks of large number of
buses. The amount of communication overhead
becomes insignificant as compared to the processing
time even though it is based on LAN communication.
The proposed parallel algorithm which has been

implemented using distributed processing is an
efficient algorithm and is recommended by the authors
in the calculation of load flow for the networks with
large number of buses.

Execution Time for 1000 Node Circuits

0

200

400

600

800

1000

0 5 10 15 20 25

Number of Computers

Ex
ec
ut
io
n
tim
e

Speedup for 1000 Node Circuits

0
2
4
6
8
10
12
14
16
18

0 5 10 15 20 25
Number of Computers

Sp
ee
du
p

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20

Number of Computers

Ex
ec
ut
io
n
Ti
m
e

0
1
2
3
4
5
6
7
8
9
10

0 5 10 15 20
Number of Computers

Sp
ee
du
p

152 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

References
[1] Adams M. F., “A Distributed Memory

Unstructured Gauss-Seidel Algorithm for Multi-
Grid Smoothers,” in ACM/IEEE Proceedings of
SC01 Performance Networking and Computing,
2001.

[2] Al Geist, Beguelin A., Dongarra J., Jiang W.,
Manchek R., and Sunderam V. S., PVM: Parallel
Virtual Machine: A Users' Guide and Tutorial
for Networked Parallel Computing, MIT Press,
1994.

[3] Bruggencate M. and Chalasani S., “Parallel
Implementations of the Power System Transient
Stability Problem on Clusters of Workstations,”
in Proceedings of Supercomputing, San Diago,
CA, 1995.

[4] Grainger J. G. and Stevenson W. D., Power
System Analysis, McGraw- Hill, New York, 1994.

[5] Gupta A., “Recent Advances in Direct Methods
for Solving Unsymmetric Sparse Systems of
Linear Equations,” ACM Transactions on
Mathematic Software, vol. 28, no. 3, pp. 301-324,
2002.

[6] Hariri S. and Parashar M., Tools and
Environments for Parallel and Distributed
Computing, Wiley-IEEE, 2004.

[7] Koester D. P., Ranka S., and Fox G. C., “A
Parallel Gauss-Seidel Algorithm for Sparse
Power System Matrices,” in Proceedings of
Supercomputing, pp. 184-193, 1994.

[8] Koester D. P., Ranka S., and Fox. G. C., “Parallel
Block-Diagonal-Bordered Sparse Linear Solvers
for Electrical Power System Applications,” in
Proceeding of the Scalable Parallel Libraries
Conference, IEEE Press, 1994.

[9] Mahesh J., Karypis G., Kumar V., Gupta A., and
Gustavson F. G., “An Efficient and Scalable
Parallel Sparse Direct Solver,” in Proceedings of
the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, March
1999.

[10] Tylavsky D. J. and Bose A., “Parallel Processing
in Power Systems Computation,” IEEE
Transactions on Power Systems, vol. 7, no. 2, pp.
629-638, 1992.

[11] Wei-keng L., Coloma K., Choudhary A., and
Ward L., “Cooperative Write-Behind Data
Buffering for MPI I/O,” in the Proceedings of
12th Euro PVM/MPI Conference, pp. 102-109,
2005.

[12] “PVM: Parallel Virtual Machine,” available at:
http://www.csm.ornl.gov/pvm/.

[13] Wikipedia, “Parallel Virtual Machine,” The free
Encyclopedia, available at: http://en.wikipedia.
org/wiki/PVM.

Raed Alqadi received his MSc and
PhD in computer engineering from
the University of Wisconsin-
Madison, USA in 1995. He joined
the Electrical Engineering
Department in 1996 and founded the
Computer Engineering Department

in 2000. Currently, he is a staff member at the
Computer Engineering Department at An-Najah
National University. Previously, he was the chair of
Electrical Engineering, Computer Engineering
Department, and dean of the IT College. His research
interests include real time systems, computer
architecture, embedded microcontrollers, and web-
programming.

Maher Khammash received his
MSc and PhD degrees in electrical
engineering from Moscow Power
Engineering Institute, Technical
University, Moscow, Russia, in
1989 and 1993, respectively. He
joined An-Najah National

University, Nablus, Palestine, in 1993 where he is
currently an assistant professor at the Department of
Electrical Engineering. He has taught in the areas of
electric power systems analysis and planning, CAD
applications in electric power systems, and electrical
machines. His research interests are computer aided
design in electric power systems, optimum operation of
electrical networks, and reactive power compensation
in distribution and transmission networks.

