A Learning-Classification Based Appro Word Prediction

Hisham Al-Mubaid

Computer Science Department, University of Houston-Clear Lake, U

Abstract: Word prediction is an important NLP problem in which we want to predict the correct w Word completion utilities, predictive text entry systems, writing aids, and language translation are prediction applications. This paper presents a new word prediction approach based on context features. The proposed method casts the problem as a learning-classification task by training word 1 discriminating features selected by various feature selection techniques. The contribution of this work presenting this problem, and the unique combination of a top performer in machine learning, svn selection techniques MI, X^2 , and more. The method is implemented and evaluated using several data results show clearly that the method is effective in predicting the correct words by utilizing sman achieved impressive results, compared with similar work; the accuracy in some experiments ap predictions.

Keywords: Word prediction, word completion, machine learning, natural language processing.

Received January 7, 2006; accepted June 6, 2006

1. Introduction

Word Prediction (WP) is an important Natural Language Processing (NLP) task in which we want to predict (*determine*) the correct word in a given context. Word prediction task can be employed in many applications, for example, predictive text entry systems, word completion utilities, and writing aids [9, 13]. Statistical and similarity based approaches have done quite well in tackling this problem just like other similar problems such as *word sense disambiguation* [4, 12, 21, 22, 23]. A common approach to handle such disambiguation-like problems is to train and apply word *bigram* or *n*-gram models.

This paper presents an effective method for word prediction using machine learning and new feature extraction and selection techniques. We use feature selection techniques adapted from Mutual Information (MI) and Chi-square (X^2). These feature extraction and selection techniques, *MI* and X^2 , have been used successfully in Information Retrieval (IR) and Text Categorization (TC) [10, 11, 26]. Thus, the *WP* problem here is casted as a word classification task in which multiple candidate words are classified to determine the most correct one in the given context. For example, in this word prediction instance:

 $[w_n \dots w_3 w_2 w_1 - ?-]$

we wish to predict and determine the word that follows the sequence ... $w_3 w_2 w_1$ (i. e., the word in place of the "-2-").

The proposed method has a un the representations of words in a §

- 1. For a given occurrence o representation of *w* invol occurrence of certain word fea the training corpus using ne techniques adapted from *MI* an
- 2. The encoding of (1) is used in train word classifiers using the
- 3. The word classifiers of (2) at word predictors in a new w correct word given its context. of this method is that it perfo very small contexts (only prece

The method has been implement extensively; the experiments and 1 this paper. The results clearly of method is effective in predictir utilizing very small contexts. T accuracy approaching 91% in so outperforming most of the publis task.

The rest of the paper is or Section 2 presents a brief overview The proposed methods includir learning, and prediction are exp Section 4 describes the bas evaluation process and exper discussed in section 5. Finally, s conclusion.

2. Related Work

A number of methods and systems have been proposed for word prediction in the past few decades. These methods can be classified as statistical methods that are based on statistical (and probabilistic) language models; and syntactic methods in which syntactic information is extracted and exploited in word prediction task. In [9], Fazly presents a comprehensive review of prior related work in word prediction. Fazly also presents a collection of experiments on word prediction applied to word completion utilities. The implemented and evaluated algorithms [9] were based on word unigrams and bigrams, and based on syntactic features like POS tags in the syntactic predictors, and combination. The training and testing are done on texts taken from British National Corpus (BNC). Roughly speaking, tags-and-words predictors achieved the best overall performance with hit rate approaching 37%, and keystroke savings around 53% -hit rate is defined to be the percentage of the times that the correct word appears in the prediction list. Among the other related interesting work is the approach presented in [7]. That approach attempts to learn the contexts in which a word tends to appear, using expressive and rich set of features. The features are introduced in a language as information sources. It also attempts to augment local context information by global sentence information. The evaluation of the method in this paper is very similar to that presented in [7].

One of the related problems to word prediction is the context-sensitive spelling error correction, or malapropisms [2, 14]. In this problem, the misspelled variant of the original word is a correct word and belongs to the language [2, 14, 15]. For example, the misspelling of the word quite as quiet is a contextsensitive spelling error. Since quiet is a valid word in English, the traditional spell-checkers will not discover this spelling error. Thus, the function of the contextsensitive spelling correction is to choose, for an instance for a word in text (e. g., quite), its correct spelling from its confusion set (e.g., quite, quiet). It is worth mentioning at this point that word prediction can be harder than context-sensitive spelling problem such that, in the latter problem the size of the given context is double the size of the given context in word prediction. That is, in word prediction, only the preceding words are available as context to the prediction task, whereas in the context-sensitive spelling correction task, the words before and after the target word are available as a context. Of course the context of prediction or classification task is critically an important resource for such a task.

3. The Proposed Method

The proposed method is based on representing each word as a feature vector, then using machine learning

to train word classifiers during th word classifiers are then employ phase, to determine from a conf word in a given context. Thus, tl word classification task. For exam set be {*weak*, *week*} then when *e* '*w*' the word prediction task t determine whether the user wan '*week*'.

In a given context (e. g., $[w_n,$ want to predict the word w_x such 1 word to be predicted (e. g., $\{w\}$ given along with the confusion s is the set of the alternative (can context, e. g., $\{w_x, w_y\}$. We want which of the two candidate word in this context. In word completi prediction task can start after typ the target word, so that, the pr limited to alternative words that s letter. In this research, we fol researchers and assume that the predetermined [7, 8, 14, 15]. contains two or more of the most the language. For example, MS list of confusion sets, called words, for grammar checking. S Table 1, can be used as a basis for

Table 1. A part from the commonly cc Word.

Commonly Confused \					
Abut-About, Adept-Adapt, Adepts-Adopts, Aid-Aide, Ail-Ale, Alters-Altars, Assess-A					
Bear, Beet-Beat, Bettor-Better, Border-					
Bridal-Bridle, Broach-Brooch,					
Theirs-Their's, Tide-Tied, Undo-Undue, Ur					
Vein-Vain, Who's-Whose, Wile-While, Wit					
Yolk-Yoke, You're-Your					

Examples of confusion sets u include: {*quite-quiet, peace-piece begin, than-then, raise-rise, site-s* we can summarize the problem, a:

Let $c = \{w_1, w_2, \dots, w_n\}$ b prediction task.

where *n* is an integer number size of context window (*in this res values of 3, 5, or 10*).

The words w_1 , w_2 , ..., w_n are t immediately before the word to be = { w_x , w_y } be the confusion set proposed method relies on mach word classifiers to classify (predic the predicted correct word in tha in the confusion set is represente the feature vector that is compose data. One of the contributions o way we extract and compute the features from the training data. We describe next the feature extraction process and then we talk about the learning and the prediction steps.

3.1. Feature Selection and Extraction

Let a training text T be given. We extract from T all the occurrences of the confusion set words w_x and w_y . Each occurrence is extracted along with its context (preceding n words) to make one training example of the form $[w_n \dots w_3 w_2 w_1 \underline{w}_x]$ or $[w_n \dots w_3 w_2 w_1 \underline{w}_y]$. Thus, we have now two sets of training examples; the training examples of w_x and the training examples of w_{ν} both extracted from T. We convert each example into a feature vector as follows. The given context words are used as features in some of the related work [14, 22, 23]. In this research, however, we do not use word features directly from the contexts; instead we select, as features, only certain words with high "discriminating" capabilities between the two confused words (w_x and w_y). These features are used to represent each example in the training and prediction. We use the confusion words occurrences extracted from the training text T as labeled training examples. Feature selection is a key issue in the effectiveness and efficiency of the learning and classification performance of such methods as the one presented here

Before delving into the details of feature selection, let us mention that there has been a lot of research devoted to feature selection in machine learning and data mining, particularly in text categorization research, see for example [10, 11, 26]. Assume that we have two classes C_1 and C_2 of labeled examples extracted from the training text T. Let C_1 contains examples of w_x and their contexts, and C_2 includes examples of w_v with their contexts. We extract all the context words $W = \{w_1, w_2, ..., w_m\}$ from the sets C_1 and C_2 . Now, each such context word $w_i \in W$ may occur in contexts from C_1 or C_2 or both with different frequency distributions. Now, if a context word $w_i \in W$ appears in a context of a prediction example, we would like to be able to determine to what extent the existence of w_i suggests that this example belongs to C_1 or C_2 . Thus, we select those words w_i from W which are highly associated with either C_1 or C_2 (the highly discriminating words) as features. We utilize feature selection techniques like *MI* and X^{2} [11, 26] to select the highly discriminating context words from W. MI and X^2 were used effectively for feature selection in text categorization and information retrieval [10, 11, 26] but never been utilized for language prediction or classification problems. In the rest of this section, we explain how MI and X^2 are applied to determine which context words from W will be selected as features.

Let us first define the notions of a, b, c, and d as follows. From the training examples, we calculate four

numeric values a, b, c, and d for $w_i \in W$ as follows:

- a = Number of occurrences of w
- b = Number of occurrences of w
- c = Number of examples of C_{I} t
- d = Number of examples of C_2 t

Then, MI is defined as: $MI = N^*a$

$$MI = \frac{N^*a}{(a+b)^*(a+c)}$$

Where *N* is the total number of ex Chi-square (X^2) is computed as:

$$X^{2} = \frac{N^{*}(ad-cb)^{2}}{(a+c)^{*}(b+d)^{*}(a+b)^{2}}$$

Again, N is the total number of ex

Illustrating the proposed WP n when using the MI technique for calculate the MI value for each choose the k top $w_i \in W$ words values as features. In our experii values of 10, 20, and 30. For exa each training example is represen entries, such that, the first entry with the highest MI value, the se the word with the second highest Then for a given training examp entry is set to 1 if the corresp occurs/appears in that training en otherwise. Thus, if we want to discriminating words as feature example, then feature vector size the following example, let W =set of all context words. We context $w_i \in W$ and sort the words W a values in descending order as in T

Table 2. Words $w_i \in W$ with the

2.	words $w_i \in W$ with the							
	Context Words w _i	Λ						
	Person	1.						
	Nice	1.						
	Found	1.						
	Still	1.						
	Place	1.						
	Generate	1.						
	Went	1.						
	Clear	1.						
	Deliver	1.						
	Small	1.						

Table 2 shows the top 10 cont highest 10 MI values. These 10 v compose the feature vectors for tr examples. For example, the follow

A Learning-Classification Based Approa

represents an example containing the 2^{nd} , 3^{rd} and 7^{th} feature words (*viz., nice, found,* and *went*) in the given context. Additionally, if the window size is 5, then that example may look like:

went _____ nice _____ found $< w_x \text{ or } w_y >$

That is, three of the 10 feature words are occurring within the preceding 5 words of the word to be predicted. In this case, window size is 5 and the vector size is 10. For example, the word '*nice*', occurred as third preceding word in the context but it is translated to a '1' in the seventh entry of the feature vector.

Let us look into the MI feature selection technique in little more detail. The objective of MI is to select from two classes C_1 and C_2 of examples the most discriminating features (words). A good such feature is the one that is highly associated with C_1 but not with C_2 or vice versa. MI uses the co-occurrence counts a_1 , b, c, and d with equation (1) to compute MI value for each feature, such that the feature with highest MI value will be the best in discriminating C_1 from C_2 . The MI's formula gives most weight to a (the numerator in equation (1)) which represent the association between the word/ feature and class C_l . We would like to update this formula by multiplying MI by the difference (a - b) between a and b. Recall that, for a given word w_i , the value b represents the association between w_i and class C_2 (how many times w_i occurs in C_2). In this, we subtract from *a* the number of times the word is associated with C_2 . That is, if a word w_i is associated q times with C_1 and q times with C2 then the formula yields zero, which is what we want, since in this case, the feature w_i is not really a discriminating feature. Thus, we applied the formula:

$$MI \ l = MI * (a - b) \tag{3}$$

for feature selection. Furthermore, to give more weight to *a*, we also applied the formula:

$$MI \ 2 = MI * a * (a - b) \tag{4}$$

Notice that equations (3) and (4) can also be written as:

$$MI_{l} = \frac{N^{*}a}{(a+b)^{*}(a+c)} * (a-b)$$
$$MI_{2} = \frac{N^{*}a}{(a+b)^{*}(a+c)} * a * (a-b)$$

respectively.

We found out after extensive experimentation, with multiple datasets, that using MI_2 for feature selection gives, in most cases, better results than MI and MI_1 , see Table 3. The results in Table 3 demonstrate clearly that our proposed feature selection technique MI_2 which is adapted from MI outperforms MI across the three confusion sets using *Reuters* dataset. These experiments as shown in Table 3 are done on more than 3,000 prediction instances (*Table 6 gives numbers of testing instances in Reuters and other datasets*).

Thus, in our experiments we use of MI or MI_1 and X^2 for feature Table 3. Accuracy results of four featur three confusion sets using *Reuters* datase:

Confusion Sets	MI	MI*A	
Conf. set 1	72.77	79.71	
Conf. set 2	86.32	88.87	
Conf. set 3	92.77	94.79	

3.2. Learning and Prediction

Thus, from the training text vectors using the top words select Then, we use the well-establishe *Support Vector Machines* (SVI classifiers with the training v inductive learning techniqu classification. A significant elabe and empirical justification has b literature to support SVM [3, 6]. extensively applied in various remarkable results.

For example, in text catego investigated extensively and prov best learning algorithms [6, 10, method, for a given confusior construct one feature vector for instance in the training text. Thus. the training examples, and we c classes, one for w_x vectors and one SVM trains on these two clas classifier (model). Thus, we con classifier for each confusion set. is then used in the prediction phas in the given context. Of cours process, we construct a feature ve as in the training process. We us our experiments as most of implementation of SVM we used light, available at: http://svmlight. default parameters.

4. The Baseline Method: No

We applied *Naïve Bayes* (N. Bay task to compare with our meth *Bayes* for *WP*, we followed the passuming the probabilistic moexamples [8]. *Naïve Bayes* was disambiguation-like NLP problem sense disambiguation [4, 12, 21, introduce *Naïve Bayes* here experimental settings with it, for refer to [12, 17]. Let $W = \{w \text{ context. Let further } C = \{c_1, c_2, ..., set that contains the alternative ($ the prediction task. The decisionBayes is as follows:

267

$$c^* = \underset{k}{\operatorname{argmax}} P(c_k | W) = \underset{k}{\operatorname{argmax}} (P(c_k) \cdot \underset{i=1}{\overset{n}{\prod}} P(w_i | c_k))$$
(5)

Such that $P(c_k | W)$ is the conditional probability of the

confusion set word c_k appears in the context W. This -decision rule selects $c^* \in C$ as the predicted word in the given context W. The probabilities P (c_k) and P ($w_i|c_k$) are computed from the training text T. Notice here that Naïve Bayes assumes that the context words $w_{l_i}, w_{2, \dots}, w_n$ are conditionally independent. There is one issue with the Naïve Bayes is that the probability P ($w_i|c_k$) may, very well, be a very small value or zero, so we use a smoothing technique to avoid this problem. There are a number of smoothing techniques proposed in the literature, for example, add-1, Ng's smoothing, and Kneser-Ney and Katz smoothing. For more details on smoothing see [5, 14]. Chen *et al.* (1998) [5] presents a comprehensive review about the smoothing techniques.

5. Evaluation and Experimental Results

In this section, we describe the datasets used in experiments and the experimental settings, then we discuss the results.

5.1. Datasets

We used four different text datasets to evaluate our method. The details of the datasets are in Table 4. We select the testing text size to be little less than the training text size as the case in the actual prediction. The testing text size is not important and will not affect the performance as we only utilize the preceding 3 words for each prediction case. The datasets are as follows:

- The ACL dataset were obtained from Linguistic Data Consortium (LDC) (www.ldc.upenn.edu) and include news stories 1987-1991 taken from the Wall Street Journal (WSJ).
- The Reuters is taken from the Reuters-21578 benchmark dataset. Reuters-21578contains 21578 news articles from the Reuters newswire [24].
- The BioMed text is a corpus of biomedical articles taken from Medline [18]. The Medline database is considered to be the largest and most comprehensive data resource in bioinformatics. We use this text to evaluate the performance of our method on specialized texts.
- The 10-K dataset contains financial text of 10-K filings of US corporate, taken from U.S. Securities and Exchanges Commissions (SEC) at (www.sec.gov). 10-K filing is an annual financial and transactional report required by SEC from all

public companies, and it comprehensive information on of a public company. At SEC of around 10,000 public comp years are available (and tota 50,000 filings. The size of around 30 GB.). This dataset i text (financial text) used to eva

Table 4. Details of the four datasets

Dataset (Source)	ר ז	
Reuters (Reuters-21578)	1	
ACL (LDC www.ldc.upenn.edu)		
Biomed Text (Medline)	,	
10-K (SEC at www.sec.gov)	:	

Table 5. The three confusion sets use

Confusion Set 1	Accept-except, affe
Confusion Set 2	Site-sight, than-the rise,
Confusion Set 3	Advice-advise, wei loose,

5.2. Confusion Sets

We used three confusion sets shown in Table 5. These c commonly used in word pred sensitive spelling research; see [2,

5.3. Evaluation and Discussio

Several experiments have been c the method. We used MI, MI 2 selection, and SVM for learning ar used the N. Bayes algorithm compare our results. For cor preceding 3, 5, or 10 words. We of size 3, using only preceding 3 best performance. Furthermore, how many features to include in For that, we tried 10, 20, and 3 that the best performance resu features (i. e., using the top 2 highest 20 MI 2, or X^2). Thus, here are generated using the (context size = 3) and the top 20 We initially tested our method Reuters, ACL, and BioMed (Tat confusion sets (Table 5). The re-Table 6 when using MI 2 for fea Table 7 when the X^2 feature self used. With a total of 19,438 word were tested in each experiment (notice that MI_2 (Table 6) pro accuracy than $\overline{X^2}$ (Table 7).

Formatted: Font: 7 pt, Complex Script Font: 7 pt

I.

Moreover, to compare our method against the baseline method we ran all the testing prediction instances on the Bayesian method and the results are in Table 8. The Bayesian method produced slightly better accuracy than MI 2 only in the Reuters dataset, but with the other two datasets, both MI_2 and X² outperform Bayesian significantly (Table 8). Furthermore, the micro-average accuracy on the three datasets demonstrates that MI 2 and X^2 outperform Bayesian (Table 8). Finally, since the 10-K dataset is very specialized dataset and is not as commonly used in NLP research as the other datasets, we tested our method on it in a separate experiment using MI 2 and X^2 with the three confusion sets, and the results are in Table 9. In this experiment too, MI 2 with 91.42% accuracy outperforms X^2 with 87.09% accuracy. This experiment also proves that our method can achieve impressive accuracies exceeding 91% correct predictions (Table 9). Overall, our method of learningclassification-based word prediction is capable of achieving accuracy in the range of 87% - 88% correct predictions using only the three preceding words as context, which emphasizes the robustness of the feature selection techniques and the learning method. Furthermore, the experimental results proved that the method can achieve really high accuracies; for example, the method produced accuracy of ~90% using confusion set 2 and Reuter (Table 7), and the average accuracies on BioMed and Reuters are approaching ~89% and ~90%, respectively (Table 6). In addition, the method achieved accuracy of 95.2% on Reuters using confusion set 3 (Table 6) and 93.1% on the BioMed dataset using confusion set 3 (Table 7).

Table 6. Accuracy results with the 3 datasets and 3 confusion sets using MI_2 for feature selection, preceding 3 words for contexts, and top 20 features.

	Confusion Set 1		Confusion Set 2		Confusion Set 3			
Dataset	No. of Tested Instances	Accuracy	No. of Tested Instances	Accuracy	No. of Tested Instances	Accuracy	Average Accuracy	
Reuters	615	81.46	1481	89.80	941	95.21	89.79	
ACL	2658	86.68	3149	83.39	2369	87.08	85.53	
BioMed	2725	86.93	4313	88.73	1187	93.09	88.76	
Total	5998		8943		4497			

Table 7. Accuracy results with the 3 datasets and 3 confusion sets using X2 for feature selection, preceding 3 words for contexts, and top 20 features.

	Confusi	Confusion set 1		Confusion set 2		Confusion set 3		
Dataset	No. of Tested Instances	Accuracy	No. of Tested Instances	Accuracy	No. of Tested Instances	Accuracy	Average Accuracy	
Reuters	615	81.46	1481	89.80	941	86.96	87.23	
ACL	2658	85.94	3149	82.85	2369	87.21	85.12	
BioMed	2725	85.13	4313	87.22	1187	93.09	87.37	
Total	5998		8943		7853			

6. Contribution and Conclusion

We presented a learning-classification based method for word prediction. The method uses very small context (*the preceding three words*) to predict the

following word in that context y The method was evaluated extens with the Bayesian algorithm a experimental results showed that achieve impressive accuracy in pe predictions, which validates it contribution of this work can be new aspects: Casting the wp t classification task by using machine word predictors using highly disc selected by various techniques. Th also includes a new feature select adapted from MI and outperforms experiments. Furthermore, the uni one of the top performers in mac with feature selection techniques. are used in TC and IR, makes a into WP. These aspects can cc other similar NLP problems as n this paper.

Table	8.	Ave	rage	e a	accuracy	on	each	m
accura	cv	here	is tl	he	average	of te	sting	on

Dataset	No. of Tested	A		
	Instances	N.Bayes		
Reuters	3037	90.67		
ACL	8176	80.12		
BioMed	8225	81.28		
Total	19,438			
Micro. Avg		82.26		

Table 9. Accuracy results for th

No. of Dataset Tested Instances		A	
10-K	2,610	<u>MI_</u> 91.4	

Word prediction is a very im many significant applications. prediction system can benefit user text entry rates, and minir typographical errors and misspelli been observed by the developer: word processor OpenOffice [2] along with standard word proce completion (www.openoffice.org) directions of this research, we we new aspects to further improve the For example, we will investigate i size without affecting the compu the method. Also, we plan to exp involving positional informatior features in the learning process.

Acknowledgements

This work was supported by the Institute for Space Systems Operations (ISSO), February 2005.

References

- Al-Mubaid H., "Context-Based Word Prediction and Classification," in Proceedings of the 18th International Conference on Computers and their Applications (CATA'2003), Hawaii, USA, pp. 384-388, March 2003.
- [2] Al-Mubaid H. and Truemper K., "Learning to Find Context-Based Spelling Errors," in Triantaphyllou E. and Felici G. (Eds), Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques, Kluwer Academic Publishers, 2006.
- [3] Bose B. E. R., Guyon I., and Vapnik V., "A Training Algorithm for Optimal Margin Classifiers," *in Proceedings of COLT*, USA, pp. 144-152, 1992.
- [4] Bruce R. and Wiebe J., "Word-Sense Disambiguation Using Decomposable Models," in Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL'94), USA, pp. 139-145, 1994.
- [5] Chen S. and Goodman J., "An Empirical Study of Smoothing Techniques for Language Modeling," *Technical Report TR-10-98*, Centre for Research in Computing Technology, Harvard University, Cambridge, Massachusetts, 1998.
- [6] Dumais S. T., Platt J., Heckerman D., and Sahami M., "Inductive Learning Algorithms and Representations for Text Categorization," *in Proceedings of the 7th International Conference on Information and Knowledge Management*, USA, pp. 148-155, 1998.
- [7] Even-Zohar Y. and Roth D., "A Classification Approach to Word Prediction," *in Proceedings* of the NAACL'00, USA, pp. 124-131, May 2000.
- [8] Even-Zohar Y., Roth D., and Zelenko D., "Word Prediction and Clustering," *The Bar-Ilan Symposium on the Foundations of Artificial Intelligence*, June 1999.
- [9] Fazly A., "The Use of Syntax in Word Completion Utilities," *Master Thesis*, University of Toronto, Canada, 2002.
- [10] Forman G., "An Extensive Empirical Study of Feature Selection Metrics for Text Classification," *JMLR*, vol. 3, no. 1, pp. 1289-1305, 2003.
- [11] Galavotti L., Sebastiani F., and Simi M., "Experiments on the Use of Feature Selection and Negative Evidence in Automated Text

Categorization," in Proce European Conference of Advanced Technology for (ECDL'00), Portugal, pp. 59

- [12] Gale W. A., Church K. W., Method for Disambiguating Large Corpus," *Computers* vol. 26, no. 1, pp. 415-439,
- [13] Garay-Vitoria N. and G "Intelligent Word-Prediction Input Rate," in Proceen International Conference Interfaces, pp. 241-244, Jan
- [14] Ginter F., Boberg J., Jarvir T., "New Techniques for Natural Language and T Biological Text," *JMLR*, vc 621, 2004.
- [15] Golding A. R. and Roth D., Approach to Context-Correction, in Machine Lea on Natural Language Lear pp. 107-130, 1999.
- [16] Joachims T., "Text Categor Vector Machines: Learning Features," in Proceedings Conference on Machine Le 1998.
- [17] Manning C. D. and Sch"utz Statistical Natural Langua Press, Cambridge, Massachu
- [18] Medline, Accessed Usin Interface, available at: nih.gov/entrez/query.fcgi, 2
- [19] MS WORD: Microsoft Corr http://www.microsoft.com/V
- [20] OpenOffice, A Multiplatfor Office Suite and Open-Sour and Sponsored by Sun Mic at: http://www.openoffice.or
- [21] Pedersen T., Bruce R., and ' Model Selection for Disambiguation," in Pr-Conference on Applied Processing (ANLP'97), W 388-395, 1997.
- [22] Pedersen T. and Bruce R Word Sense Disambiguation the 15th National Confe. Intelligence (AAAI'98), Mad
- [23] Pedersen T., "Search Tech Probabilistic Models t Disambiguation," in Proce Spring Symposium on Sec Problem Solving Under Incomplete Information, Pal

A Learning-Classification Based Approa

- [24] Reuters-21578, available at: http://www.david dlewis.com/resources/testcollections/reuters2157 8/, 2005.
- [25] Vapnik V., *The Nature of Statistical Learning Theory*, Springer, New York, USA, 1995.
- [26] Yang Y. and Pedersen J. P., "A Comparative Study on Feature Selection in Text Categorization," in Proceedings of the 4th International Conference on Machine Learning, Nashville, USA, pp. 412-420, 1997.

Hisham Al-Mubaid obtained his PhD degree in computer science from the University of Texas at Dallas, USA, in 2000. He worked one year as an assistant professor at State University of New York (SUNY), USA. He joined the

University of Houston-Clear Lake, USA, in 2001 as an assistant professor of computer science. His research interests and publications have been primarily centered around natural language processing, and include text categorization, machine learning, text mining, semantics and ontology. He also has interests and publications in bioinformatics and teaching-learning research. He serves in the technical and program committees of several journals and conferences.

271