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Quantum Computing for Solving a System of 
Nonlinear Equations over GF(q)
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Abstract: Grover’s quantum search algorithm is one of the most widely studied and has produced results in some search 
applications faster than their classical counterpart by a square-root. This paper modifies Grover’s algorithm to solve 
nonlinear equations over Galois Finite field GF(q) in O( mn2 ) iteration, while the best classical general solution takes O(2nm) 
iteration. The modification is done by using a register for each variable and represent it by n qubits. The paper also introduces 
the implementation of the suggested algorithm by using the simulator QCL 5.1. 
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1. Introduction
Quantum computation and quantum information are 
new fields in the computer science which rapidly 
gaining popularity and earning a lot of attention in the 
last decade. The main advantage of the quantum 
technology is the possibility to solve the hard problems 
efficiently, such as integer factorization, finding the 
hidden subgroup, lattice problems, and in general 
solving the NP complete problems in polynomial time. 
Furthermore quantum information offers a new 
cryptosystem suitable for the modern communication 
and computation.  
In 1985, David Deutsch developed the quantum 

Turing machine, showing that quantum circuits are 
universal and can simulate any other Turing machine 
efficiently [9]. In 1994, Shor showed how to factorize 
very large integers into primes, using a quantum 
algorithm that is exponentially faster than the best 
classical factoring algorithm [12]. The key idea of 
quantum factoring algorithm is the use of a Fourier 
transform to find the period of a sequence. Shor’s 
algorithm could theoretically break many of the 
cryptosystems in use today such as RSA and elliptic 
curve cryptography. In 1996, Lov Grover developed an 
algorithm to perform quantum search, which was 
quadratically faster than a classical computing search,
Grover’s algorithm can identify an item from an 
unsorted list with N entries in NO  steps and using O
(logN) storage space [4, 5], it can also be used for 
solving the collision problem, breaking Data 
Encryption Standard (DES), and estimating the median 
of a set of numbers [3, 7]. In 2001, IBM's Almaden 
Research Center demonstrated  the execution of Shor's 
algorithm using  7-qubit NMR computer. The number 

15 was factored using identical molecules, each 
containing 7 atoms [6].
The remainder of this paper is organized as follows. 

Section 2 presents the basic concepts of the quantum 
computer, and the superposition representation of n
qubits. Section 3 derives the quantum operations or 
gates from Schrödinger equation. Section 4 introduces 
the principles of the quantum algorithms such as 
quantum parallelism, interference and the 
measurement. In section 5, we introduce a new 
quantum algorithm to solve a system of nonlinear 
equations over GF(q). In section 6, we implement the 
suggested quantum algorithm by using the simulator 
QCL 5.1. Finally, section 7 concludes the paper.

2. The Basic Concepts of the Quantum 
Computer

The basic unity information in the quantum computer 
is the qubit, which has two possible states |0> or |1>, 
this can be realized by the spin of a particle, the 
polarization of a photon or by the ground state and an 
excited state of an ion. Unlike classical bits, a qubit can 
be forced into a superposition of the two states which 
is often represented as linear combination of states:    

|ψ> = α  |0> + β  |1>

for some α and β such that  |α|2 + |β|2 = 1.  There is no 
good classical explanation of superpositions: A
quantum bit representing 0 and 1 can neither be viewed 
as between 0 and 1 nor can it be viewed as a hidden 
unknown state that represents either 0 or 1 with a 
certain probability. However; the processes in the 
quantum computer are governed by Schrödinger 
equation which has no classical explanation.
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The quantum states can be represented as vectors in 
Hilbert space rather than classical variables such that:

|0 >= 
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 and |1 >= 
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and the superposition state is:
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The state of n qubits (a register) is represented by 
the tensor (⊗) product of the individual states of the 
qubits in it. For example, if we have two qubits in a 
register, and both have the state 0  then the register 
status is 00 , which corresponds to the vector

|0> ⊗ |0> = |00>=
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Similarly, 01 , 10 , and 11  correspond to the 
vectors:
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Respectively. The superposition of a 2-qubit register is:

|ψ> = 
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Where, |α1α2|2 + |α1β2|2 + |β1α2|2 + |β1β2|2 = 1. This 
can be generalized to n qubits easily [9]. 

3. Quantum Operations 
The second postulate of quantum mechanics describes 
the evolution of a closed system by the Schrödinger 
equation:

>>=
∂
∂ ψψ || H
t

ih

Where H is the Hamiltonian operator and h is Planck’s 
constant. In quantum physics, it is common to use a 
system of measurement where h = 1, so the discrete-
time solution of Schrödinger equation is:

|ψ >= U |ψ0 >

Where U is a unitary matrix.  A general 2-dimensional 
complex unitary matrix U can be written as:

U = eitH

The common single qubit unitary operations or 
gates on registers contain a qubit [10, 11]:
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Hadamard Gate:
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Phase- and π/8-Gate:
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The previous gates can be generalized to registers
that contain n qubit by applying tensor (⊗) product n 
times on the unitary operation itself. on the other hand,
the two common qubit operations or gates:

Controlled-Not Gate:

CNot =



















0100
1000
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0001

 or   CNot |x, y> → |x ⊕ y, y>

Swap-Gate:

      Swap =



















1000
0010
0100
0001
 or   Swap |x, y> → |y, x>

However, the universal set of quantum gates can be 
built by using CNot and single qubit operations which 
can be implemented by using a beam splitter and 
applying a radio frequency pulse.

4. Quantum Algorithm Principles 
The superposition of n qubits (or a register) allows 
each operation or quantum gate acts on all basis states 
simultaneously, this type of  computation  is the basis 
for quantum parallelism which leads to a completely 
new model of data processing. Shor’s algorithm is a 
good example of quantum superposition and 
parallelism. Let |ψ >= |0>|0 > be  the initial  state of a 
quantum computer, then the Hadamard operation on 
the first register leaves the quantum computer in the 
following superposition state:  

|ψ >= ∑
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Quantum parallelism exploited by applying a 
reversible function f on all states from  |0> to |2n – 1>
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simultaneously. In Shor’s algorithm, f (x) = xi  mod n, 
and the computer state becomes:

|ψ >= ∑
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However, the observation of the superposition of 
states makes it collapse to one of the states with a 
certain probability. For example, if we like to measure 
the quantum register:
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Then the superposition states will collapse to the state 
|x> with probability:

>=< ψψ ||)( x
t
xMMxp

and the state of the register after measurement:
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Where Mx = |x><x|. Fortunately, quantum interference 
can be used to improve the probability of obtaining a 
desired result by constructive interference and 
minimize the probability of obtaining an unwanted   
result by destructive interference. Thus, the challenge 
is to design quantum algorithms which utilize the 
interaction of the superposition states to maximize the 
chance of the interesting states [10, 11].

5. Quantum Algorithm for Solving  a 
System of  NLE Over GF(q)

Solving a system of nonlinear equations over Galois 
Finite field GF(q) (NLE) is an NP hard problem and 
the best known general solution is brute force. One of 
the most important applications of NLE is the 
cryptanalysis, where many cryptography methods can 
be expressed as a system of quadratic equations over 
GF(q).  
A system of nonlinear equations with m variables 

can be written as follows:

0),...,,( 21 =mj iiif , for all j = 1, 2, …, k

and the variables i1, i2, …, im are in the finite field 
GF(q), where  q is a prime number of length n or q =
2n. The best solution of above systems on the classical 
computers takes O (2nm) iteration, while this 
complexity can be reduced to  O( mn2 ) iteration on the 
quantum computers. 
      The following quantum algorithm can be used to 
solve nonlinear equations over GF(q) in O ( mn2 )
iteration:   

1. Initialize  m register to the state | 0>, where m is the 
number of variables.

2. Use n qubits in each register, where n is the number 
of bits in  q, and Let  z = 2nm. 

3. Convert the registers to the superposition states, 
thus the system status:
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4. Let s =  4/)*( zπ .
5. Repeat the steps 6-9 s times.
6. Change the state >>> miii |...|| 21  to 

>>>− miii |...|| 21  if and only if 0),...,,( 21 =mj iiif
for all j=1, 2,…, k.

7. |ψ >=⊗
nm

H  |ψ >.
8. Change the state >>> miii |...|| 21  to 

>>>− miii |...|| 21  if and only if ij = 0 for all j=1,
2,…,m.

9. |ψ >=⊗
nm

H  |ψ >.
10. Observe the s ystem.

For simplicity, we will assume that the system of 
nonlinear equations has an unique solution   

mxxx ,...,, 21 . Let |A>= >>> mxxx |...|| 21 , where 

mxxx ,...,, 21  are the correct solution and |B> = 
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m, then the system status at any iteration |ψ > = r |A>
+ t | B>, but after performing the steps 6-9 the system 
status is:

|ψ > = >
−

+
−

+>
−

+
− Bt

z
zr

z
At

z
zr

z
z |)22(|))1(22(

Let z/1sin2 =β , then we can show that by 
induction the system status after l iterations becomes:
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The superposition states |ψ > will collapse to the 
correct state |A> with high probability if and only if  
sin ((2l + 1)β is close to one. Thus the number of the 
required iterations is:
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However, we can obtain the correct solution with 
zero failure rate by using the modified version of 
Grover’s algorithm which introduced by Long [8].
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6. Quantum Algorithm Simulation
Although the quantum computers at this point in time 
are not efficient, many quantum simulators have been 
developed such as: OpenQubit, QCL and 
QuantumOctave [1, 10, 11]. Quantum Computation 
Language (QCL) is a high level, architecture 
independent programming language for quantum 
computers that includes program files for simulation of 
an implementation of Shor's algorithm and files for 
simulating other aspects of quantum computation. 
Figure 1 shows the implementation of the suggested 
quantum algorithm by using QCL 5.1, the 
implementation is restricted to 3 variables and any 
field size, but it can be generalized to any number of 
variables.
// m: The number of  the registers, but here is restricted to    
//3 registers
// n: The number of the qubits in the registers

Procedure find (int m, int n)
 {

Int s = floor (pi * sqrt (2 ^ (m * n)) / 4);  // the number of the               
                                                          //iterations

Int i;
Qureg x1 [n]; qureg x2 [n]; qureg x3 [n];
 reset;

    Mix (x1 & x2 & x3);   // convert the registers to the 
                                       // superpositions
     For i = 1 to s
        {
            Mark (x1, x2, x3);       // call 0),,( 321 =iiif j

                                               //and mark the correct solution 
            Mix(x1&x2&x3);        // apply ⊗

nm H

            Not(x1&x2&x3);
            // mark  x  if and only if ij = 0  for all j=1, 2, …, m.                        
            If x1&x2&x3 
              { 

          Phase(pi);
              }
           Not (x1& x2 & x3);
           Mix(x1& x2 & x3);         //  apply ⊗

nm H

           If  x1[0]  { Phase(pi); }
           If not x1[0]
            {
                 Phase (pi);

 }
Measure  x1& x2 & x3         //Observe the System

        }
 }
Figure 1. The implementation of the suggested quantum 
algorithm by using QCL 5.1.

7. Conclusion
Quantum computing outperforms the best classical 
techniques for some hard computation problems. The 
universal set of quantum gates can be built by using 
CNot and single qubit operations which can be 
implemented by using a beam splitter and applying a 
radio frequency pulse. This paper introduces a 
quantum algorithm to solve a system of nonlinear 

equations over Galois Finite field GF (q) in O ( mn2 ) 
iteration, which is considered faster than their classical 
counterpart by a square-root. The new algorithm uses a 
register for each variable and represents it by n qubits. 
The suggested algorithm can be implemented by using 
the simulator QCL 5.1. 
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