
The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 206

Tracking Morphophonemic Transformation in
Arabic Word Generation and Root Extraction

Sane Yagi1 and Jim Yaghi2
1Department of Linguistics & Phonetics, University of Jordan, Amman, Jordan

2Computer Science Department, MacQuire University, Sydney, Australia

Abstract: Performing root-based searching, concordancing, and grammar checking in Arabic requires an efficient method for
matching stems with roots and vice versa. Such mapping is complicated by the hundreds of manifestations of the same root;
the radicals often undergo replacement, fusion, inversion, and/or deletion. It is a challenge, therefore, to keep track of original
radicals. An algorithm based on methods used by native speakers is proposed here to track root radicals in the generation
process and the subsequent reversal process of root extraction. Verb roots are classified by the types of their radicals and the
stems they generate. Roots are molded with morphosemantic and morphosyntactic patterns to generate stems modified for
tense, voice, and mode, affixed for different subject number, gender, and person. The surface forms of applicable
morphophonemic transformation are then derived using finite state machines. This paper defines what is meant by `stem',
describes a stem generation engine that the authors developed, and outlines how a generated stem database is compiled for all
Arabic verbs.

Keywords: Arabic, morphology, generation, extraction, root, finite state.

Received October 9, 2005; accepted April 20, 2006

1. Introduction
Morphological parsers and analyzers for Arabic are
required to dissect an input word and analyze its
components in order to perform the even the simplest
of language processing tasks. The letters of the
majority of Arabic words undergo transformations
rendering their roots unrecognizable. Without the root,
it is difficult to identify a word's morphosemantic
template, which is necessary for pinpointing its
meaning, or its morphosyntactic pattern, which is
essential for realizing properties of the verb, such as its
tense, voice, mode, subject's number, gender, and
person. It is fundamental that an analyser be able to
reverse the transformations a word undergoes in order
to match the separated root and template with the
untransformed ones in its database. Unfortunately,
defining rules to reverse transformations is not simple.

Research in Arabic morphology has primarily
focused on morphological analysis rather than stem
generation. Sliding window algorithms [5] use an
approximate string matching approach of input words
against lists of roots, morphological patterns, prefixes,
and suffixes. Algebraic algorithms [4], on the other
hand, assign binary values to morphological patterns
and input words, then perform some simple algebraic
operations to decompose a word into a stem and
affixes. Permutation algorithms [2] use the input
word's letters to generate all possible trilateral or
quadrilateral sequences without violation of the
original order of the letters which is then compared

with items in a dictionary of roots until a match is
found. Linguistic algorithms [9, 11] remove letters
from an input word that belong to prefixes and suffixes
and place the remainder of the word into a list. The
members of this list are then tested for a match against
a dictionary of morphological patterns.

The primary drawback of many of these techniques
is that they attempt to analyze using the information
found in the letters of the input word. When roots form
words, root letters are often transformed by
replacement, fusion, inversion, or deletion, and their
positions are lost between stem and affix letters. Most
attempts use various closest match algorithms, which
introduce a high level of uncertainty. In this paper, we
define Arabic verb stems such that root radicals,
morphological patterns, and transformations are
formally specified. When stems are defined this way,
input words can be mapped to correct stem definitions,
ensuring that transformations match root radicals rather
than estimate them.

Morphological transformation in our definition is
largely built around finite state morphology [3] which
assumes that these transformations can be represented
in terms of regular relations between regular language
forms. Beesley [3] uses finite state transducers to
encode the intersection between roots, morphological
patterns, and the transformation rules that account for
morphophonemic phenomena such as assimilation,
deletion, epenthesis, metathesis, etc.

In this paper, a description of the database required
for stem generation is presented, followed by a

207 Tracking Morphophonemic Transformation in Arabic Word Generation and Root Extraction

definition of stem generation. Then the database
together with the definition are used to implement a
stem generation engine. This is followed by a
suggestion for optimizing stem generation. Finally, a
database of generated stems is compiled in a format
useful to various applications that the conclusion
alludes to.

In the course of this paper, roots are represented in
terms of their ordered sequence of three or four
radicals in a set notation, i. e., {F, M, L, Q}. When the
capitalized Roman characters F, M, L, and Q are used,
they represent a radical variable or place holder. They
stand for First radical (F), Medial radical (M), Last
radical in a trilateral root (L), and last radical in a
Quadrilateral root (Q).

For readability, all Arabic script used here is
followed by an orthographic transliteration between
parentheses, using the Buckwalter standard1.
Buckwalter's orthographic transliteration provides a
one-to-one character mapping from Arabic to US-
ASCII characters. With the exception of a few
characters, this transliteration scheme attempts to
match Arabic sounds to sounds of the Roman letters to
the Arabic ones. The following list of Arabic-Roman
pairs is a subset of the less obvious transliterations
used here: B (@); ;(Y) ى َ(a); ِ(i); ُ(u); ْ(o); and ّ(~).

2. Stem Generation Database
Arabic stems can be generated if lists of all roots and
all morphological patterns are provided. It is necessary
that this data be coupled with a database that links the
roots with their morphological patterns (or templates)
so that only valid stems are generated for each root.
The roots in this database may be molded with
morphosemantic and morphosyntactic patterns to
generate intermediate form stems. The stems may then
be transformed into final surface forms with a number
of specific morphophonemic rules using a finite state
transducer compiling language.

Figure 1 shows a summary of the stem generation
tables and their relations. The rootslist table contains
all verb roots from the popular Arabic dictionary, Al-
Waseet [1], with F, M, L, and Q representing the table
fields for up to four radicals per root. A root identifier
is used to link this table to the template table. The
template table lists all morphosemantic and
morphosyntactic patterns used to generate stems from
roots of a certain type. This table also specifies the
syntactic properties of stems (voice and tense)
generated by using the template entry. The
maindictionary table links the rootslist and template
tables together and specifies which entries apply to
which roots.

1The complete table of orthographic transliteration may be found at
http://www.qamus.org/transliteration.htm.

Stems generated with these tables are unaffixed
stems. The affix_id field links each entry to a subject
pronominal affix table that uses transformation rules to
generate affixed stems. Although object pronominal
affixes are not dealt with in this paper, they are
generally agglutinating in nature and; therefore; cause
no morphophonemic alterations to a stem. They can be
added for generation or removed for analysis without
affecting the stem at all.

Affixation and transformation rules are both
specified using PERL regular expressions [6]. Regular
expressions (Regexp) are an algebraic language that is
used for building Finite State Transducers (FSTs) that
accept regular language. In the next section, Regexp is
used to perform morphophonemic transformations and
to generate affixed forms of stems. If generated stems
are to be useful for root extraction and morphological
analysis, it is essential at every stage of generation to
be able to track exactly which letters are members of
the root radical set, which belong to the template, and
what transformations occur on the untransformed stem
to produce the final surface form.

Figure 1. The stem generation database tables and their relations.

3. Definition of Stem Generation
In order to be useful in analysis applications, Arabic
stems need to be in a surface form which will only
undergo agglutinating changes for any further
morphological modification. Stems should be defined
in terms of the root radicals, morphosemantic and
morphosyntactic template letters, and
morphophonemic alterations. By doing so, inverting
stem transformations becomes trivial. We require the
automatic stem generator to always be aware of the
origin of each of the letters in the stems it generates
and to be able to distinguish between letters in the
original radical set or in the template string. The stem
generator may then be used to compile a complete list
of all affixed stems from database roots while retaining
all transformation information. The resulting list of
stems may then be turned into a searchable index that
holds the complete morphological analysis and
classification for each entry.

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 208

Since Arabic words can have a maximum of four
root radicals, a root radical set R is defined in terms of
the ordered letters of the root as follows:

R = {rF, rM, rL, rQ} (1)

In the database, pattern, root, variant, and voice-
tense ids identify a particular morphological pattern s.
Templates are used to generate a stem from a root. The
text of s is defined in terms of the letters and diacritics
of the template in sequence (x1, ..., xl) and the radical
position markers or place holders (hF, hM, hL, and hQ),
that indicate the positions that letters of the root should
be slotted into:

S = x1 x2 … hF … hM … hL … hQ … xn (2)

Stem Generator (SG) uses regular expressions as the
language for compiling FSTs for morphophonemic
transformations. Transformation rules take into
account the context of root radicals in terms of their
positions in the template and the nature of the template
letters that surround them. Transformations are
performed using combinations of regular expression
rules applied in sequence, in a manner similar to how
humans are subconsciously trained to process the
individual transformations. The resulting template
between one morphophonemic transformation and the
next is an intermediate template. However, in order to
aid the next transformation, the transformed radicals
are marked by inserting their place holders before
them. For example, hFَرhMَسhLَم (FraMsaLma) is an
intermediate template formed by the root radical set R
,r}) { م ,س ,ر} = s, m}) and the morphological pattern s
= hF َhM َhL َ (FaMaLa).

To create the initial intermediate template i0 from
the radical set R and morphological pattern s, a
function Regexp (String, SrchPat, ReplStr) is defined
to compile FSTs from regular expressions. The
function accepts in its first argument a string that is
tested for a match with the search pattern (SrchPat) in
its second argument. If SrchPat is found, the matching
characters in String are replaced with the replace string
(ReplStr). This function is assumed to accept the
standard PERL regular expression syntax.

A function, CompileIntermediate (R, s), accepts the
radical set R and morphological pattern s to compile
the first intermediate template i0. A regular expression
is built to make this transformation. It searches the
morphological pattern text for radical place holders
and inserts their respective radical values after them.
Since Regexp performs substitutions instead of
insertions, replacing each marker with itself followed
by its radical value is effectively equivalent to inserting
its radical value after it. Let p be a search pattern that
matches all occurrences of place holders hF, hM, hL, or
hQ in the morphological pattern, then an initial
intermediate form i0 may be compiled in the following
manner:

i0 = CompilerIntermediate (R, s)
 = Regexp (s, p, pRp)
 = {x1 … hFrF … hM rM … hL rL … hQ rQ … xn}

(3)

Let T = {t1...tm} be the transformation rules applied
on each intermediate template to create subsequent
intermediate templates. Transformation rules are
defined as:

tj = (SrchPatj, ReplStrj) (4)

A second function transform (i, t) is required to
perform transformations. A subsequent intermediate
template ij + 1 is the recursive result of transforming the
current intermediate template ij with the next rule tj + 1.
Each transformation is defined as:

ij + 1 = (tj, tj + 1) for 0 ≤ j < m
= Regexp (ij, SrchPatj + 1, ReplStrj + 1) (5)

At any point in the transformation process, the
current transformed state of radicals (R') and template
string (s') may be decomposed from the current
intermediate template as follows:

CompilerIntermediate (-1ij) = (R', s') (6)

To turn final intermediate template im into a proper
stem, a regular expression is built that deletes the place
holders from the intermediate template. To do this with
a regular expression, the place holders matched are
replaced with the null string during the matching
process as follows:

Regexp (im, p, null) (7)

Basic stems are only modified for tense and voice.
Additional morphosyntactic templates or affixation
rules further modify proper stems for person, gender,
number, and mode. Affixation rules are regular
expressions like transformation rules. However, these
rules modify final intermediate templates by adding
prefixes, infixes, or suffixes, or by modifying or
deleting stem letters. They require knowledge of the
radical positions and occasionally their
morphophonemic origins. Adding affixes to a stem
operates on the intermediate template which retains the
necessary information.

Let a be the affixation rule that is being applied to a
certain intermediate template:

a = (SrchPat, ReplStr) (8)

Now using the function transform that was defined
earlier, affixes are added to im to produce the
intermediate affixed template im + 1:

im + 1 = Transform (im, a)
Regexp (im, SrchPat, ReplStr) (9)

To convert for output im + 1 to an affixed stem, one
may remove place holders using the following:

209 Tracking Morphophonemic Transformation in Arabic Word Generation and Root Extraction

Regexp Regexp (im + 1, p, null) (10)

With this definition, generated stems are described
by intermediate templates. Intermediate templates
retain knowledge of the current state of template and
radical letters without losing the ability to recall their
origins. This algorithm, therefore, would avoid
guesswork in the identification of root radicals.
Automatic rule-based stem generation and analysis are
both facilitated by this feature of intermediate
templates.

4. Stem Generation Engine
A stem generation engine may be built on the basis of
the definition just advanced. The three components,
stem transformer, affixer, and slotter, applied in
sequence, make up SG. Stem transformer applies the
appropriate transformation rules to the morphological
pattern, affixer adds specific affixes to the transformed
template; and slotter applies the radicals to the
transformed affixed template to produce the final
affixed stem. SG begins with a stem ID from the
maindictionary table as input to stem transformer (See
Figure 1). The root and entry associated with the stem
ID are used to identify the radicals of the root, the
morphological pattern string, a list of transformation
rules, and an affix table ID.

Stem transformer applies transformation rules that
are localized to the root radicals and letters of the
template in the contexts of one another. To prepare the
template and root for transformation, the engine begins
by marking radicals in the template. Stem transformer
is applied incrementally using the current radical set,
the template string, and one transformation rule per
pass, as in Figure 2. The output of each pass is fed
back into stem transformer in the form of the jth-rule-
transformed template string and radicals, along with
the (j + 1)th transformation rule. When all rules
associated with the template are exhausted, the
resultant template string and radicals are output to the
next phase.

To illustrate, assume the morphological pattern
s = �� hF� ��hM�hL�(AiFotaMaLa), the radical set R = {�, 	,

} ({@, k, r}), and the transformation rule set T = {1,
12}. Stem transformer generates a proper stem using
the following steps: Equation 3 above creates the initial
intermediate template when passed the radical set and
morphological template, thus producing:

i0 = CompilerIntermediate (R, s)
اِ = hFْ hM ذتَ َ ك hL رَ

(AiF@taMkaLra)

The first transformation rule t1 = 1, t1 ∈ T is a
regular expression that searches for a ت (t) following
hF and replaces ت (t) with a copy of rF. To transform i0
into i1 with rule t1, equation 5 is used, thus producing:

i1 = Transform (i0, t1)
hFْ اِ = hM ذذَ َ ك hL رَ
(AiF@o@aMkaLra)

Next, a gemination rule t2 = 12, t2 ∈ T is applied to
i1. The gemination regular expression searches for an
unvowelled letter followed by a vowelled duplicate
and replaces it with the geminated vowelled letter.
Once more, equation 5 is used to make the
transformation:

i2 = Transform (i1, t2)
� hM�hF اِ = َ ك hL رَ
(AiF@∼aMkaLra)

To obtain the proper stem from the intermediate
template, the final intermediate template i2 may be
substituted into equation 7:

Stem = Regexp (i2, p, null)
=
�����َ
(Ai@∼akara)

Figure 2. Stem transformer.

To summarize, the final output of stem transformer
is a root molded into a template and a template-
transformed radical set. These outputs are used as input
to the affixation phase which succeeds stem
transformation. Affixer, applied iteratively to the
product of stem transformer, outputs 14 different
subject-pronominally affixed morphosyntactic forms
for every input except the imperative which only
produces 5. There are 9 different tense-voice-mode
combinations per subject pr onominal affix, so most
roots produce 117 affixed stems per dictionary entry.
Affixer is run with different replace strings that are
specific to the type of affix being produced. It modifies
copies of the transformed stem from the previous
phase, as in Figure 3. Using the example cited shortly
before, affixer is passed the last intermediate template
im and the affix regular expression a. In this example, a
is a regular expression that searches for hLrL and

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 210

replaces it with hLrL^ً ت ْ(LrLato); this corresponds to the
past active third person feminine singular affix. Now
applying equation 9 produces:

i3 = Transform (i2, a)
hM ذhF̂ اِ = َ ك hL رَ تْ
(AiF@∼aMkaLrato)

In the last stage of stem generation, slotter as shown
in Figure 4, replaces the place holders in the
transformed template with the transformed radical set,
producing the final form of the affixed stem. For
example, the result of applying Equation 10 is:

Regexp (i3, p, null) = ��
������
(Ai@∼akarato)

Figure 3. Affixer phase.

5. Optimization
Data produced for the use of SG was designed initially
with no knowledge of the actual patterns and
repetitions that occur with morphophonemic and affix
transformation rules. In fact, SG is made to create
stems this way: A root is added to a morphosemantic
template, then morphosyntactic templates are applied
to it, inducing in some patterns morphophonemic
transformation. However, while this may be useful in
many language teaching tools, it is extremely
inefficient. The original data was used to discover
patterns that would allow stems to be created in an
optimal manner.

Following the classification in [8], there are 70 verb
root types associated with 44 theoretically possible
morphological patterns. There is an element of
repetition present in the classification. In addition, the
template table lists sequences of rules that operate on
morphological patterns in a manner similar to how
native speakers alter patterns phonemically. These

rules could be composed into a single FST that yields
the surface form.

For example, in the previous section, the
morphophonemic transformation rule set T = {1, 12}
could have been written into one rule. In its non-
optimized form the rule duplicates rF in place
of ت (t) creating intermediate form ِا hFْذ ذَ hM كَ hL رَ
(AiF@o@aMkaLra) and then deletes the first of the
duplicate letters and replaces it with a gemination
diacritic that is placed on the second repeated letter.
The resulting surface form is َ̀ aaَاِذ̂آ (Ai@~akara).
Instead, one rule could achieve the surface form by
replacing the letter ت (t) in the template with a
geminated ذ (@) yielding the same result.

Figure 4. Slotter phase.

Compiling separate regular expressions for each
transformation rule is costly in terms of processing
time especially when used with back-references, as SG
does. Back-references group a sub-pattern and refer to
it either in the search pattern or substitute string. Such
patterns are not constant and are required to be
recompiled for every string they are used with. It is
desirable, therefore, to minimise the number of times
patterns are compiled. To optimise further, the
transformation may be made on the morphological
pattern itself, thus producing a sound surface form
template. This procedure would eliminate the need to
perform morphophonemic transformations on stems.

Each template entry in the template table (see
Figure 1) is given a new field that contains the surface
form template. This is a copy of the morphological
pattern with morphophonemic transformations applied
to it. Hence, a coding scheme is adopted that would

211 Tracking Morphophonemic Transformation in Arabic Word Generation and Root Extraction

continue to retain letter origins and radical positions in
the template. Any transformations that affect the
morphological pattern alone are applied without further
consideration. The coding scheme uses the Roman
characters F, M, L, and Q to represent place holders in
the templates. Each place holder is followed by a
single digit indicating the type of transformation that
occurs to the radical slotted in that position. The codes
have the following meanings: 0 = no alteration, 1 =
deletion, 2 = substitution, 3 = gemination. If the code
used is 2, then the very next letter is used to replace the
radical to which the code belongs.

Take for example, the template table entry for the
root type 17 (all roots with F =� (w) and L = � (y)), its
morphological pattern ��hF � ��hM� hL� (AiFotaMaLa), and
its variant (ID 0). The morphophonemic transformation
rules applied to the template are T = {20, 12, 31, 34,
112}. These rules correspond to the following:

• 20 = Change rF to a duplicate of the next letter ت (t).
• 12 = Geminate duplicate letters.
• 31 = Delete diacritic after the ي (y) in position hL.
• 34 = Convert ي (y) to ا (A).
• 112 = Convert ا (A) to ى (Y).

The surface form template can be rewritten as
اِ hF hM0َت2̂ hL2ى (AiF2t~aM0aL2Y). This can be used
to form stems such as ىdَaêِا (Ait~adaY) by slotting the
root {ي ,د ,و} ({w,d,y}).

The affix tables use a similar notation for coding
their rules. Every affix rule indicates a change to be
made to the surface form template and begins with a
place holder followed by a code 0 or 2 unless the rule
redefines the entire template in which case the entry
begins with a 0. Radical place holders in affix rules
define changes to the surface form template. These
changes affect the template from the given radical
position to the very next radical position or the end of
the template, whichever is first.

Affix rules with code 0 following radical place
holders signify that no change should be made to that
section of the surface form template. However, a code
2 after a place holder modifies the surface form
template in that position by replacing the letter that
follows the code with the rest of that segment of the
rule. Affix rules using code 2 after place holders
override any other code for that position in the surface
form template because affixation modifies
morphophonemically transformed stems.

Creating affixed stems from templates and affixes
formatted in this way becomes far more optimal. If a
surface form template was specified as ِاrF2̂تrM0rَL2ى
(AiF2t~aM0aL2Y) and it was to be combined with the
affix rule rL2ْي تُ مَ then SG simply ,(L2yotumaA) ا
needs to align the affix rule with the surface form
template using the place holder symbol in the affix rule
and replace appropriately as in Table 1.

With the resulting affixed surface form, template
SG may retain the radicals of the original root where
they are unchanged, delete radicals marked with code 1
and 3, and substitute letters following code 2 in place
of their position holders. If the example above is used
with the root {و, , د :the final stem is ,({w, d, y}) { ي

dَaaêِاhijُkْ (Ait~adayotumaA, meaning “the two of you
have accepted compensation for damage”).

To use the original regular expression,
transformations would take an average of 18000
seconds to produce a total of 2.2 million valid stems in
the database. With the optimized coding scheme, the
time taken is reduced to a mere 720 seconds; that is 4%
of the original time taken.

Table 1. Surface form template aligned with an affix entry rule.

�� rF2�� rM0� rL2�Surface
Form (Ai F2t~a M0a L2Y)

rL2 �� ��� �� Affix
(L2yotumA)
�� rF2�� rM0� rL2 �� � �� �� Combined

Result (Ai F2t~a M0a L2yotumA)

6. Generated Stem Database Compiler
Once the dictionary database has been completed and
debugged, an implementation of SG generates for
every root, template, and affix the entire list of stems
derived from a single root and all the possible template
and affix combinations that may apply to that root
entry. The average number of dictionary entries that a
root can generate is approximately 2.5. Considering
that each entry generates 117 different affixed stems,
this yields an average of approximately 300 affixed
stems per root. However, some roots (e. g., {	, �, �}
({k, t, b})) produce 13 different entries, which makes
approximately 1,500 affixed stems for each of such
roots. The generated list is later loaded into a B-tree
structured database file that allows fast stem search and
entry retrieval. A web CGI has been built that would
use the stem generation engine to produce all affixed
stems of any given root. A section of the results of this
appears in Figure 5.

7. Conclusions
In this paper, we have discussed our attempt at
imitating the process used by Arabic speakers in
generating stems from roots. We formulated a
definition of the process, facilitating an encoding of
Arabic stems. The encoding represents stems in terms
of their components while still allowing a simple
mapping to their final surface forms. A stem's
components are a root, morphosemantic and
morphosyntactic templates, and any morphophonemic
alterations that the stem may have undergone. In doing
so, the problem has been reduced to the much smaller
task of obtaining stems for the words subject to

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 212

analysis, and then matching these against the surface
forms of the pre-analyzed stems. The encoding retains
most of the information essential to stem generation
and analysis, allowing us to trace the various
transformations that root radicals undergo when
inflected. Root extractors and morphological analyzers
can match an input word with a defined verb stem,
then use the information in the definition to determine
with certainty the stem's root and morphological
pattern's meaning. The authors intend to use a similar
strategy to define stems for Arabic nouns.

Figure 5. Output from the stem generator CGI.

Mapping from words to defined stems is now much
easier. The stem generation algorithm here attempts to
produce a comprehensive list of all inflected stems.
Any verb may be found in this list if some simple
conjoin removal rules are first applied. Conjoins are
defined here as single letter conjunctions, future or
question particles, emphasis affixes, or object
pronominal suffixes that agglutinate to a verb stem.
Because conjoins may attach to a verb stem in
sequence and without causing any morphological
alteration, extracting stems from Arabic words
becomes similar to extracting stems from English
words. In fact, many of the Arabic word analysis
approaches reviewed in the introduction to this paper
would yield more accurate results if applied to stem
extraction instead of root extraction. It would become
possible to use for this purpose conventional linguistic,
pattern matching, or alge braic algorithms.

The dictionary database described here can be used
to form the core of a morphological analyzer that
derives the root of an input word, identifies its stem,
and classifies its morphosemantic and morphosyntactic
templates. An analyzer based on these principles may
be used in many useful applications, some of which are
detailed in [8]. Example applications include root,
lemma based, and exact word analysis, searching,
incremental searching, and concordancing.

References
[1] Academy A. L., Al-Mu’jam Al-Waseet (Middle

Dictionary), Arabic Language Academy, Cairo,
Egypt, 1972.

[2] Al-Shalabi R. and Evens M., “A Computational
Morphology System for Arabic,” in Proceedings
of the COLING/ACL98, Montrreal, Canada, pp.
66-72, 1998.

[3] Beesley K. R., “Finite-State Morphological
Analysis and Generation of Arabic at Xerox
Research: Status and Plans in 2001,” in
Proceedings of ACL/EACL '2001 Arabic NLP
Workshop, Toulouse, France, pp. 1-8, 2001.

[4] El-Affendi M. A., “An Algebraic Algorithm for
Arabic Morphological Analysis,” The Arabian
Journal for Science and Engineering, vol. 16, no.
4, pp. 605-611, 1991.

[5] El-Affendi M. A., “Performing Arabic
Morphological Search on the Internet: A Sliding
Window Approximate Matching Algorithm and
Its Performance,” Technical Report, King Saud
University, 1999.

[6] Friedl Jeffery E. F., Mastering Regular
Expressions, O’Reilly, 2002.

[7] Hamandi L., Zantout R., and Guessoum A.,
“Design and Implementation of an Arabic
Morphological Analysis System,” in Proceedings
of the International Conference on Research
Trends in Science and Technology, Beirut,
Lebanon, pp. 325-331, 2002,

[8] Thalouth B. and Al-Dannan A., A
Comprehensive Arabic Morphological
Analyzer/Generator, IBM Kuwait Scientific
Center, Kuwait, 1987.

[9] Yaghi J., “Computational Arabic Verb
Morphology: Analysis and Generation,” Master
Thesis, University of Auckland, 2004.

[10] Yagi Sane M. and Harous S., “Arabic
Morphology: An Algorithm and Statistics,” in
Proceedings of the International Conference on
Artificial Intelligence (IC-AI'1999), Las Vegas,
Nevada, USA, pp. 19-25, 1999.

Sane Yagi obtained his BA from the
University of Jordan, his MA from
the University of Kansas, and his
PhD from the University of
Auckland. He is an associate
professor of computational
linguistics at the University of

Sharjah. He taught at universities in America, New
Zealand, Malaysia, Saudi Arabia, Oman, and the
United Arab Emirates. His research interests include
computational morphology and lexicography,
computer-assisted language learning, and English
education. He has co-authored number of papers in

213 Tracking Morphophonemic Transformation in Arabic Word Generation and Root Extraction

these fields and a group of software titles that are
currently in use at various educational institutions.

Jim Yaghi obtained his BInfSc
degree in mathematics from Massey
University, and BSc, PGDipSci, and
MSc degrees in computer science
from the University of Auckland.
Currently, he is a researcher at
DocRec Ltd, New Zealand for

Arabic document recognition and reconstruction. He
has published several works in Arabic computational
linguistics and pattern recognition. He has also written
software applications for language education, language
tools, Arabic morphology and lexicography, and image
and video processing and recognition.

