
The International Arab Journal of Information Technology,   Vol. 4,   No. 4,   October  2007 301

Updating Search Engines Using Meta-Updates
Ezz Hattab

Faculty of IS and Technology, Arab Academy for Banking and Financial Sciences, Jordan

Abstract: Web search engines provide an extremely valuable service by indexing web content. However, much of this content 
is fluid; it changes, moves, and occasionally disappears, which leads to novel challenge to keep search engines up-to-date. 
This paper investigates how to keep search engines up-to-date by proposing meta-updates technique. Meta updates keep useful
information about the behavior of a page to be provided to the spider of the search engine. The proposed technique saves 
many overheads in complex probabilities calculation suggested in the related works. 

Keywords: Web content management, web content up dates, search engines freshnes.

Received January 25, 2006 ; accepted September 14, 200 6

1. Introduction
It would be inappropriate to buy seven copies of a 
daily newspaper in advance to save shopping time for 
one week! The improper part is that most of the 
newspaper content has a lifetime that is one day, thus 
the content in the next day will be useless. 
Correspondingly, web as any other media holds 
information with a lifetime in which it is useful. For 
example, events (e. g., call for papers, items 
discounts…etc) with a restricted deadline like d will be 
stale information after d.

Regrettably, due to occasional indexing, current 
search engines are unable to maintain the updated web 
information. Web crawling is a challenging task since 
it involves interacting with hundreds of thousands of 
web servers, which needs massive processing and data 
transferring that may take days or even weeks [1]. 
Consequently, it takes up to six months for a newborn 
page to be indexed by popular web search engines and 
the data that are indexed by the search engines are 
often stale [8].

This fact leads to a mismatch between the actual 
published pages at web sites and the corresponding 
indexed pages at the search engines. For example, let a 
page P indexed by the search engine S with content ς1
at time τ1, and let ε a short period of time that is much 
less than the time needed to have an opportunity for 
another indexing. Suppose that at τ1 + ε, the content of 
the page P has been updated to content ς2 as illustrated 
in Figure 1. During that period, the page P will be out-
of-date for a time interval of length ri = τ2 – (τ1 + ε)
and thus any user query about ς2 issued by that search 
engine (after ε) will not be able to see the new content 
of page P. 

The user, as a result, may get irrelevant information 
to his query. Thus, a new issue of relevancy is the 
validity of the information passed by the search engine 
to the user queries. 

This paper is organized as follows. Section 2 
discusses the related work. Section 3 investigates how 
to keep search engines up-to-date by examining a kind 
of metadata. Section 4 introduces the architecture of 
the search engine crawler that parses the proposed 
meta-updates tag of change-frequency. Finally, section 
5 concludes the work.

Figure 1. Mismatches period between search engines and web 
servers.

2. Related Works  
Most of previous work [2, 4, 6] assumed that search 
engines are pulling updates from web servers. This is 
by estimating the frequency of changes and using it as 
a heuristic for a re-indexing process in the future. 

Coffman et al. [6] studied how often a crawler 
should visit a page when it knows how often the page 
changes. They built a theoretical model to minimize 
the fraction of time pages spend out-of-date. Also 
assuming Poisson page change processes and a general 
distribution for page access time, they similarly show 
that optimal results can be obtained by crawling pages 
as uniformly as possible.

They discussed the crawling process from a 
theoretical viewpoint, comparing it to the polling 
systems of queuing theory, that is, and multiple queue-
single server systems. Specifically, they assumed 
independent Poisson page change processes, and a 
general distribution for the page access time τ (i. e., τ2 
-τ1). They showed that, if τ is decreased in the 

Time

ςςςς1

P

τ1

ςςςς2

P

Indexed by search 
engines

Page updated by the 
author

ε

τ2

Next visit of Search 

Out-Of-Date period: τ2 - (τ1+ε)



302 The International Arab Journal of Information Technology,   Vol. 4,   No. 4,   October 2007

increasing convex ordering sense, then the out-of-date 
(ri) is decreased for all i under any scheduling policy, 
and that, in order to minimize expected total 
obsolescence time of any page, the accesses to that 
page should be as evenly spaced in time as possible. 
On the other hand, [2] assumed a local collection S = 
{e1, ..., eN} of N pages. Then they defined the freshness 
F of the collection as follows:

F (ei; t) = 


 −−

otherwise
ttimeatdatetoupiseif i

0
1

where ei is the local page, t is the time and up-to-date
means that the content of a local page equals that of its 
real-world counterpart. Thus, the freshness of the local 
collection S at time t is:

∑
=

=
N

i
i teF

N
tSF

1

);(1);(

The freshness is the fraction of the local collection 
that is up-to-date. For instance, F (S; t) will be one if 
all local pages are up-to-date, and F (S; t) will be zero 
if all local pages are out-of-date.
Further, they defined the age concept in order to 
capture how old a local page ei at time t is, which is 
expressed as follows:









−

−−
=

otherwiseeoftimeupdatet

ttimeatdatetoupiseif
)t;e(A

i

i

i

0

Then, the age of the local collocation S is 

∑
=

=
N

i
i teA

N
tSA

1

);(1);(

The age of S recall the average “age" of the local 
collection. For instance, if all real-world pages 
changed one day ago and we have not refreshed them 
since, then A(S; t) is one day.

The above definitions are given for time t to 
approximate the average of freshness over a long 
period of time ∞→t  then F is redefined:

∫∞→
=

t

iti dtteF
t

eF
0

);(1lim)(

∫∞→
=

t

t
dttSA

t
SA

0

);(1lim)(

As we have noted, most studies make the 
assumption that pages change at a variable rate, which 
may be approximated by a Poisson distribution (in the 
second stage of their study, Cho and Garcia-Molina [5] 
assume the broader gamma distribution for this change 
rate). Moreover, they prove that their particular model 
is valid for any distribution, and conclude that when 

pages change at varying rates, it is always better to 
crawl these pages at a uniform rate, that is ignoring the 
rate of change, than at a rate, which is proportional to 
the rate of change. To maximize freshness they found a 
closed form solution to their model, which provides an 
optimal crawling rate, which is better than the uniform 
rate.

These results were all derived for a batch or periodic 
crawler, where a fixed number of pages is crawled in a 
given time period. These pages are used to update a 
fixed size repository either by replacing existing 
repository pages with newer versions or by replacing 
less important pages with those deemed to be of 
greater importance.

In [5], researchers devised the architecture for an 
incremental crawler, and examined the use of an 
incremental versus a batch crawler under various 
conditions. Crawling a subset (720,000 pages from 270 
sites) of the web daily, they determined statistics on the 
rate of change of pages from different domains. They 
found, for example, that for the sites in their survey, 
40% of pages in the .com domain change daily in 
contrast to .edu and .gov domains where more than 
50% of pages did not change in the four months of the 
study. They showed that the rates of change of pages 
they crawled can be approximated by a Poisson 
distribution that change more often than daily or less 
often than four monthly are inaccurate. 

In [2, 10], researchers removed the memoryless 
assumption implicit in a poisson process by modeling 
the web changes as a renewal process. They further 
defined a freshness metric to characterize how up-to-
date a local information repository is computed to the 
web. This is some what undermined based on an 
extensive subset of the web by Brewington et al.
showing that most web pages are modified during US 
working hours, that is, 5 am to 5 pm, Monday to 
Friday. 

In [10], researchers estimated the cumulative 
probability function for the page age in days on a log 
scale as shown in Figure 2 and they estimate the 
cumulative probability of mean lifetime in days shown 
in Figure 3.

Figure 2. Cumulative probability distribution of page age in days.

Cumulative 
Probability

Pages ages 
(days) 

100 101 102 103

0.5

0.0

1.0



Updating Search Engines Using Meta-Updates 303

Figure 3. Cumulative probability distribution of mean lifetime e in 
days.

3. The Proposed Approach: Meta Updates
In [10], researchers showed that to be sure with 95% 
probability that a randomly chosen page is fresh up to a 
day ago, then web of 800M pages need a re-indexing 
period of 8.5 days, and a re-indexing period of 18 days 
is needed to be sure that the repository copy of a 
random page is fresh up to one week ago with 95% 
probability. 

At the same time, Inktomi and NEC Research 
Institute have completed a study that verifies that the 
web has grown to more than one billion unique pages 
[7].  

According to the observations in [3, 7] and 
assuming a web page has an average size of 12 
kilobytes, then a search engine should re-index the web 
every:

sec
Gbit3.1

page1
kbytes12

days5.8
10 9

=×

Obviously, the above simple calculation shows that 
such a scenario is impractical bearing in mind that the 
web size is doubling yearly [8].

We propose a non-uniform re-indexing through 
coordination between web servers and search engines. 
By the “coordination” we mean that a web server 
informs a search engine about the next expected 
change. This will facilitate the next visit of the search 
engine crawler to the web server. We propose a kind of 
meta data to represent such coordination. 

World Wide Web Consortium [9] proposed meta
tags that describe page properties like title, author, 
keywords, descriptions, etc. Typically, crawlers of 
generic search engines (e. g., Google, Yahoo, Alta 
vista, etc) follow these meta tags before downloading 
web pages. 

Based on meta tags, we have the chance to inform 
search engine crawlers about the next expected change 
of a page. Thus, we keep the index of search engines 
fresh with a minimum number of re-crawling. Further, 
we can avoid needless crawling of pages that change 
very slowly. Change frequency tag has three possible 
values: 

1. Static value indicating that a page has very little 
probability to be changed. By default we 
recommend Static = 90 (i. e., 3 months), which is 
the expected re-crawling time of the typical search 
engines.

2. Periodic value indicating a page changes in a 
uniform rate. 

3. A variable indicating a page changes in a non-
uniform rate. Static and periodic values are provided 
by webmasters, while non-uniform values are 
estimated by software applications. 

The proposed meta tag has the following general form:

Example 1 shows various forms of the proposed 
meta tag.

Example 1:
Forms of “Change-Frequency” Meta tag
Changing frequency in uniform rates:

1. <META NAME="Change-Frequency" 
CONTENT="STATIC"> indicates that the current page 
is static and no need for re-indexing.

2. <META NAME="Change-Frequency" 
CONTENT="PERIODIC=1"> indicates that the current 
page is changing every day (e. g., a Newspaper).

3. <META NAME="Change-Frequency" 
CONTENT="PERIODIC=7"> indicates that the current 
page is changing every week (e. g., a weekly magazine)

Non-uniform  frequency, thus only the next visit is provided:

 <META NAME="Change-Frequency" CONTENT="non-
uniform=<% Change_Frequency() %>">. Since the page 
changes in non-uniform frequency, the non-uniform value is 
generated dynamically by an application (e. g., ASP 
application server of Microsoft). 

Accordingly, a search engine could index the pages 
for maintenance purposes using the available meta-
update information. Roughly, pages could be indexed 
into barrels that hold pages’ change daily, weekly, 
monthly…etc as illustrated in Figure 4-a. As shown, 
there are three barrels that hold pages change daily, 
weekly and monthly. Each barrel is assigned for one 
crawler(s) that performs the re-crawling process. The 
re-crawling process is described in an algorithmic form 
in Figure 4-b.

In this case, the database of the search engine is 
modified by adding a field of “change-frequency” that 
holds the value of the meta tag as follows:

“Change-Frequency”
“STATIC” |
“PERIODIC = Number-Of- Days”
“non-uniform= “The-next-
change”

<META NAME=”attribute” CONTENT=”value”>

Pages ages 
(days)

101 102

Cumulative 
Probability

100 103

0.5

0.0

1.0



304 The International Arab Journal of Information Technology,   Vol. 4,   No. 4,   October 2007

PageID ECODE URLlen Pagelen URL Page Change-frequency

(a)

(b)
Figure 4. (a) Search engine with periodical indexing barrels (b) The 
modified algorithm.

4. Experimental Evaluation 
In this section, we build a search engine crawler that 
parses the proposed meta update tag of change-
frequency and achieves the crawling process according 
to the algorithm shown in Figure 4. The results are 
compared with the ordinary crawler in order to 
evaluate crawling with meta update.

Details of the Experiment: 

• Local Web: We have created local web that mirrors 
ten websites. This is done in order to be able to add 
the meta updates to web pages as we do not have 
such permission at the actual sites. This is achieved 
by launching a mirroring program that retrieves the 
specified URL. It can also retrieve recursively any 
link that a page references. 

• Instantiating Meta Updates: To instantiate meta
updates with static, periodic or proportional, we 
follow the following algorithm:

1. We count the number of changes per unit of time 
t (i. e., 7 days). Log the value into the database 
(counti = number-of-changes). The changes are 
detected daily by checking the last-modified date 
(i. e., HTTP header field). 

2. If count = 0, then we prefix this value by “Static” 
keyword and post it into the meta update tag. 

3. Otherwise, we post the value of “Periodic =
count”.

4. We check the value of count in a period of time τ
(where τ>t). For example, in four weeks we have 
(count1, count2, count3, count4). If the values of 
counts vary (i. e., count1 ≠ count2 ≠ count3 ≠
count4), we consider that the page changes in a 
non-uniform rate and post the last value to the 
meta update tag associated with “non-uniform =
counti” keyword. 

• Typical Crawling: We launched the typical crawler 
(that is based on the algorithm presented previously 
in Figure 2). The crawler downloads pages into the 
local repository named “Typical_Repository”. We 
set the typical crawler to fetch the page periodically 
every week regardless whether the page has been 
changed or not. This is to simulate the crawlers of 
typical search engines. 

• Crawling with Meta Update: At the same time, we 
launched the crawler that considers the meta update 
tag of change-frequency. The crawler downloads the 
pages into a local repository named 
“Updated_Reposi-toy”. The crawler is based on the 
algorithm shown in Figure 4. Obviously, the pages 
are downloaded according to the value of the 
change-frequency.

• Freshness and Needless Crawling: We log the last 
modified date for each page daily. This is to check 
whether the crawling process is well-suited for the 
actual change frequency or not. Thus, we examine 
the freshness and needless crawling.

• Period of Experiment: The monitoring period took 
six months. 

• Results: Table 1 and Table 2 present an extracts of 
the statistics for both typical and meta updates 
respectively. Since the chosen web sites are very 
dynamic, we extracted statistics of a page that 
changes in a non-uniform rate (i. e., 
http://www.sun.com/index.html).

As noticed, there are various patterns that occurred in 
both cases. For example, in the typical crawling and on 
Day5/Week1, a change on the site occurred that 
switched the freshness of the site to 0. On 
Day1/Week3, a needless crawling occurred as the 
crawler visited the site with no need (the freshness =
1). While crawling with meta updates support, gives a 
relatively higher freshness rate, there occurs some 
mismatch in the dates (almost in hours) that caused 

Storage Unit

Indexed barrels

Web Crawler(s) Repository

Query 
Processor(s)

Search 
Indexer(s) 

Maintenance 
Indexer(s) 

d

Scheduled-URLs � To-Do-List (Indexed-URLs) 
Re-crawl (change-frequency) 
{// according to Meta-updates found at d atabase of search engine 
    While ( Ordered-URLs is not Empty and not Visited and Permissible)

 {
Parse (Meta tags of HTML Head) 

  Modify search-engine-database
If-modified-since (last-crawl-date)
 {

 Download (URLs) {
 Get-Content (Page)
  Parse (Page)
 Extracted-URLs � Extract-URLs-from-page (Page)

     Visited � Add-to-visited-URLs (URLs)
 For each URL in Extracted-list {

 Add to Scheduled-URLs
}

}
}

}



Updating Search Engines Using Meta-Updates 305

both zero freshness on Day5/Week2 and needless 
crawling on Day3/Week2. 

Table 3 and Table 4 illustrate the overall freshness 
for each web site in both typical and meta updates 
crawling, respectively. 

Figure 5 shows a visual comparison between the 
typical crawling and the crawling that supports the 
meta-updates. It is obviously clear that the freshness is 
relatively better in the case of the meta-updates 
support.

Figure 5. Typical (Ordinary) vs. meta-updates crawlers (freshness 
average).

There is a trade-off between freshness and costs of 
search engines and web servers. As depicted in Figure 
6, there are many more crawling processes in crawling 
that supports meta-updates.

It is in the interest of web servers to support an 
efficient crawler refresh strategy because it can achieve 
higher freshness and could utilize the resources of 
search engines that are otherwise wasted in needless 
crawling to index newborn pages and thus leading to 
increase the indexed web size (i. e., 6%-12%)  [8]. 

Table 1. An extract of statistics that are collected by typical 
crawling (1 means the page is fresh; 0 otherwise).

http://www.sun.com/index.html

Week 
Number

Day 
Number

Did the 
Page 

Change?

Is the 
Page 

Crawled?

The 
Freshness 

is:

Is it a 
Needless 

Crawling?
Day1 Yes Yes 1 No
Day2 No No 1 -
Day3 No No 1 -
Day4 No No 1 -
Day5 Yes No 0 -
Day6 No No 0 -

Week1

Day7 No No 0 -
Day1 No Yes 1 No
Day2 No No 1 -
Day3 No No 1 -
Day4 No No 1 -
Day5 No No 1 -
Day6 No No 1 -

Week2

Day7 No No 1 -
Day1 No Yes 1 Yes
Day2 No No 1 -
Day3 Yes No 0 -
Day4 No No 0 -
Day5 Yes No 0 -
Day6 No No 0 -

Week3

Day7 No No 0 -
… … …

Table 2. An extract of statistics that are collected by meta updates 
crawling (1 means the page is fresh; 0 otherwise).

http://www.sun.com/index.html
Week 

Number
Day 

Number
Did the 
Page 

Change?

Is the Page 
Crawled?

The 
Freshness 

is:

Is it a 
Needless 

Crawling?
Day1 Yes Yes 1 No
Day2 No No 1 -
Day3 No No 1 -
Day4 No No 1 -
Day5 Yes Yes 1 No
Day6 No No 1 -

Week1

Day7 No No 1 -
Day1 No No 1 No
Day2 No No 1 -
Day3 No Yes 1 Yes
Day4 Yes No 0 -
Day5 No No 0 -
Day6 No No 0 -

Week2

Day7 No Yes 1 No
Day1 No Yes 1 Yes
Day2 No No 1 -
Day3 Yes No 1 -
Day4 No No 1 -
Day5 Yes No 1 -
Day6 No Yes 1 -

Week3

Day7 No No 1 -
… … …

Figure 6. Typical vs. meta-updates crawlers (number of crawling). 
 

Table 3. The results of crawling web pages using ordinary 
crawler (number of crawls are 24, i. e., one crawl per week). 

The 
Site ID

No. of 
Changes Freshness

No. of 
Needless 
Crawling

Websites (Pages)

1 540 0,045 8 www.oracle.com

2 470 0,051 4 www.ntua.gr

3 397 0,061 2 www.stanford.edu/

4 611 0,039 3 www.microsoft.com/

5 133 0,180 4 www.sun.com/

6 324 0,074 6 searchenginewatch.com

7 166 0,144 6 www.siliconvalley.com

8 198 0,121 4 usa.net

9 200 0,120 3 www.amazon.com/

10 90 0,266 10 www.harvard.edu/

5. Conclusion 
In this paper, we proposed meta-updates in order to 
schedule the next visit of crawlers. We evaluated the 
proposed approach by an experiment that compares the 
freshness degree in both typical crawling, which is 
used in generic search engines, and the crawling with 
meta-updates support. The experiment showed that 

C
ra

w
lin

g

200

150

100

50

0

1 2 3  4 5  6 7 8  9 10     Site ID

Meta
Typical

1

0.8

0.6

0.4

0.2

0.0

Ordinary Crawler

0   1   2   3   4     5     6     7   8     9 10    Site ID

Meta-update Crawler

   Freshness 



306 The International Arab Journal of Information Technology,   Vol. 4,   No. 4,   October 2007

meta-updates improve freshness by an average of 45% 
in most cases. On the other hand, meta-updates 
crawling needs a lot of resources that entails a trade-off 
selection between freshness and search engines’ 
resources.

Table 4. The results of crawling web pages using metadata crawler.
The 
Site 
ID

No. of 
Changes Freshness No. of 

Crawling

No. of 
Needless 
Crawling

Websites (pages)

1 540 0,334 180 2 www.oracle.com

2 470 0,383 180 1 www.ntua.gr

3 397 0,453 180 3 www.stanford.edu

4 611 0,294 180 2 www.microsoft.com

5 133 0,676 90 4 www.sun.com

6 324 0,555 180 3 searchenginewatch.com

7 166 0,542 90 2 www.siliconvalley.com

8 198 0,454 90 4 usa.net

9 200 0,900 180 2 www.amazon.com

10 90 1,000 90 1 www.harvard.edu

References 
[1] Brin S. and Page L., “The Anatomy of a Large-

Scale Hypertextual Web Search Engine,” 
Computer Networks and ISDN Systems, vol. 30, 
no. 1-7, pp. 107-117, 1998.

[2] Brewington B. E. and Cybenko G., “How 
Dynamic is the Web?” Computer Networks, vol. 
33, no. 1-6, pp. 257-276, 2000.

[3] Brewington B. and Cybenko G., “Keeping up 
with the Changing Web,” IEEE Computer, vol. 
333, no. 5, pp. 52-58, 2000.

[4] Cho J. and Garcia-Molina H., “Synchronizing a 
Database to Improve Freshness,” in Proceedings 
of the SIGMOD, USA, pp. 117-128, 2000.

[5] Cho J. and Garcia-Molina H., “The Evolution of 
the Web and Implications for an Incremental 
Crawler,” in Proceedings of the 26th

International Conference on Very Large 
Databases, Stanford, CA, pp. 200-209, 2000.

[6] Coffman E. G., Liu Z., and Weber R. R., 
“Optimal Robot Scheduling for Web search 
Engines,” Technical Report RR-3317, Institut 
National de Recherche en Informatique et en 
Automatique (INRIA), France, pp. 19, 1997.  

[7] Inktomi, “Web Surpassed One Billion 
Documents,” available at: http://www.inktomi. 
com/new/press/billion.html, 2000.

[8] Lawrence  S. and Giles C., “Accessibility and 
Distribution of Information on the Web,” Nature, 
vol. 400, pp.107-109, 1999.

[9] W3C Consortium: Meta Elements, available at:
URL: http://www.w3.org/TR/REC-html32, 1997.

[10] Wills C. and Mikhailov M., “Towards a Better 
Understanding of Web Resources and Server 
Responses For Improved Caching,” Computer 

Networks, vol. 31, no. 11-16, pp. 231-1243, 
1999.

Ezz Hattab has been awarded a 
scholarship from the EU to pursue 
his PhD in information technology. 
His PhD research was part of the 
Europe research project “The 
Webminer”, in which he proposed 
numerous algorithms and techniques 

that handle web information retrieval and search.  
Currently, he is working at Arab Academy for Banking 
and Financial Sciences. Previously, he held various 
academic positions at Applied Science University, 
Amman Ahlyyia University, and Amman Arab 
University. He is an active member of numerous 
professional and scientific societies, including the Arab 
Society of Computers (ASC), and Jordanian Society of 
Computers (JSC). He has 23 publications and 4 books 
in the area of Information Technology, e-business, and 
web applications. He is a member of the technical 
committee of The International Arab Journal of 
Information Technology (IAJIT), EBEL, e-Jordan and 
an associate editor of the International Journal of 
Mobile Learning and Organization (IJMLO). He is a 
member of the high supervision committee of 
Management Information Stream at the Ministry of 
Education.


