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1. Introduction 

UML suffers from ceaseless critics on the precision of 

its semantics when the verification of modeling 

correctness has become a key issue [16]. UML 2.0 

brings more precision on its semantics, but it remains 

informal and lacks tools for automatic analysis and 

validation [15]. We presented in [5] a methodology to 

automatically transform UML modeling in Petri nets 

[11] which are supported by lots of tools to verifying 

them. In the present paper, we carry on with this work 

by developing a technique to deal with the verification 

process. 

The Petri nets resulting from the derivation process 

are analyzed by means of PROD [19], a model checker 

tool for predicate /transition nets. To avoid the high 

learning cost of the model checker, we suggest that the 

designer specifies the system properties in Object 

Constraint Language (OCL) [17], which permits to 

formulate restrictions over UML models, in particular 

invariants. The latter are afterwards automatically 

translated to Linear Temporal Logic (LTL) properties 

in order to be verified by PROD during the Petri net 

analysis.  

The invariants are specified on the class diagram 

which models the static structure of a system, in terms 

of classes and relationships between classes. A class 

describes a set of objects encapsulating attributes and 

methods. An association abstracts the links between the 

class instances. It has at least two ends, named 

association ends, each one representing a set of end 

objects with a size limited by a multiplicity. 

However, a simple translation of OCL invariants to 

LTL properties is not sufficient for the property 

checking.  Indeed, OCL  expressions  refer to classifiers 

 
to evaluate their attributes and association ends. The 

latter can be updated (created, modified or read) on the 

statecharts by means of the link actions. So, in case 

the designer specifies OCL invariants for his models, 

we attract his attention on the necessity of modeling 

the actions treating the association ends in order his 

invariants could be adequately verified by PROD. In 

other words, he is called on to specify the association 

end update that provides the dynamics of the object 

through the roles it plays. In addition to the OCL 

invariant translation to LTL properties, we propose an 

approach to translate the link actions in Petri nets, to 

achieve the systematic formal verification of the OCL 

constraints. 

The remainder of this paper starts with a brief 

expose on the UML statecharts translation to Petri 

nets; that, constitutes the background of the present 

work. In sections 3 and 4, the proposed approach is 

presented and the techniques upon which it is based 

are developed. Section 5 presents the OCL invariant 

translation to LTL properties. We then, motivate our 

work and show its novelty and relevance versus 

related works. We conclude with some observations 

on the obtained results and recommendations on future 

research direction.  

 

2. Background 

We summarize in this section the work that we 

presented in [5] to derive UML statecharts to color 

Petri nets. This work supports the approach that we 

are developing in the present paper.  
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2.1. Statecharts 

A statechart describes the behavior of a class in terms 

of states and exchanged messages with other classes’ 

statecharts. A state is composed of two atomic actions 

(at its entry and its exit) and one activity. The states are 

linked by means of transitions annotated with the event 

that triggers the transition (event trigger) and atomic 

actions produced by the triggered transition. Due to 

their atomicity, the entry exit and transit actions are in 

fact generated events called: entry, exit or transit 

events, respectively, as shown in Figure 1. 

 
 

 

The event is of two types: send event and call event. 

These events are mentioned on the statechart as 

follows: «send» class () and «call» operation (). 

Examples of these events are given in the case study, as 

shown in Figure 3. 

More formally, the statechart can be defined by the 

5-tuple <S, Act, Tr Gen, Trg> where: 

• S = {s1, s2, …, sn,}  is a set of states.  

• Act = {act1, act2,…, actn}  is a set of activities. 

• Tr = {tr1, tr2, …, trn} is a set of transitions. 

• Gen = {gen1,gen2,…,genn} is a set of generated 

events. 

• Trg = {trg1, trg2,…, trgn} is a set of event triggers. 

 

 
 

We illustrate our study through a message server 

application where the main role of the server is to 

manage the communication between the connected 

stations. All the exchanged messages must go through 

this server, to be forwarded to the receivers. The 

corresponding class diagram is represented in Figure 2, 

where the server is modelled by the Server class and the 

stations by the Station class and the exchanged 

messages by the Message class.  

Figure 3 presents the statechart of a station which 

can, at all times, connect itself from the server. Its 

connection request is realized using the «send» 

connection event. The server confirms the station 

connection using the «send» okconnection events. 

When connected, a station can notify a message, 

receive a message or disconnect itself. It notifies by 

means of the «send» message event. After it receives a 

forwarded message from the server by means of the 

«send» message trigger, it is saved by using the «call» 

save event. Its disconnection is requested by the 

«send» disconnection event and confirmed by the 

«send» okdisconnection event. 
 

 

entry : «send» connection() 

 connected 

entry : «send» disconnection() 

disconnection 

connection 

«send» okconnection()   

 

«send» okdisconnection() 

reception 

exit : «call» save() 

«send» message()                           

entry : «send» message()   

 

notification 

 
 

Figure 3.  Statechart of the station class. 

 

2.2. Derivation Approach 

In [5], Petri nets have been selected as target 

formalism. We defined them by the 7-tuple <P, T, A, 

C, Pre, Post, M0,> where: 

• P = {p1, p2, …, pn} is a set of places.  

• T = {t1, t2, …, tn} is a set of transitions. 

• A ⊆ P × T ∪ T × P, is a set of arcs. 

• C = {C1, C2, …,  Cn} is a set of colours. 

• Pre: P× T →P(C) is a precondition function to the 

transition firing such that Pre (pi, ti) = {C1, C2…, 

Ck}. 

• Post: P× T →P(C) is a postcondition function to 

the transition firing such that Post (pi, ti) = {C1, 

C2…, Ck}. 

• Mo: P → C is the initial marking function. 

The derivation process is based onto an object-

oriented approach. Each statechart modelling 

interactive class behaviour is transformed to an object 

subnet called Dynamic Model (DM) (see Figure 4). To 

construct the DM, each state s ∈ S is converted to a 

place p ∈ P and each transition tr ∈ Tr is converted to 

a transition t ∈ T. 

To deal with Petri net simulation, we tackle the 

Petri net initial marking which may be of two types: 

static and dynamic. The static initial marking provides 

the class instances and their attribute values. These 

instances are extracted from the object diagram to 

initialize the Object place with tokens of object type. 

The dynamic initial marking provides the exchanged 

messages among the interactive objects. These 

 

adr : integer 

maxStation : integer 

 

* 

transmittedMessage 

1

 Server 

Station 
connectedStation 

adr : integer 

receivedMessage 

 «signal» 

Command 

Message 

 dest : integer 

info : chain 

 * 

 * 1 

1 

wait() 

connection() 

message() 

disconnection() 

okconnection() 

message() 

okdisconnection() 

 treat() 

 save() 

 
Figure 2.  Class diagram of the message server application. 

 
 

 

 

 

 

 

 
Figure 1.  Statechart’s events and activity. 
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messages are extracted from the sequence diagram to 

initialize the Scenario place with tokens of event type.  

The event triggers occur on the DM through the 

Input place. They are represented by arcs from the 

Input place to the transition on which they occur. 

Associated to the DM, the places Object, Scenario and 

Input, constitute an Object Petri Net model that we call 

OPN. To connect the different OPNs, we use the Link 

place through which all the exchanged messages should 

pass. Thus, for each OPN, a directed transition from the 

Link place to the Input place is built. This transition is 

fired by the events that trigger on the statechart. 

As for the generated events on the statechart, they 

are converted to arcs from the Scenario place to the 

transition to which they are related. Then, they are 

converted to arcs from this transition to the Link place.  

Figure 5 summarizes the translation of the different 

constructs of the statechart into their homologues in 

Petri nets. The dashed symbols represent other 

constructs than the ones concerned by the translation. 

Figure 6 represents the Petri net resulting from the 

conversion of the statechart of the station class. 
 

 

 

 

3. Initialization Technique 

To deal with the model simulation, starting from the 

generic model which we derive from the statecharts, as 

shown in Figure 4, two types of arguments must be 

initialized, namely, the system’s objects and the 

exchanged messages among these objects. Thus, we 

proceed two types of initialization that we call static 

and dynamic. 
 

 
3.1. Static Initialization 

We state for our approach requirements two types of 

objects: active and passive. The active objects interact 

exchanging passive objects. For example, in the server 

message application, the Server and Station objects 

are active while the Message object is passive. 

Thus, an object is formalized by the colored token 

<obj, attrib> where obj designates its identity 

expressed according to the UML notation which 

identifies an object by its name and its class name as 

follows: object:class. As for attrib, it designates the 

set {attrib1,… attribk} of the object’s attribute values.  

The objects and their attribute values are specified 

on the object diagrams. So, all the objects instantiated 

from the same class on the object diagram, are 

inserted in the Object place of the OPN translating the 

class’s statechart. Figure 7 shows an example of the 

object diagram of the message server application 

before any action (there is no links between the 

objects). For each station, the IP address is given. 
 

 

 

 

 

 

 

 

 
 

 

Figure 7.  Object initialization. 

 

3.2. Dynamic Initialization 

The sequence diagram allows the modeling of specific 

scenarios. It shows exchanged messages among 

lifelines. The lifelines represent the participants in the 

interaction where each participant is identified by its 
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Figure 4.  Petri nets interconnection architecture. 
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Figure 5.  Petri net of the station class. 
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Figure 6.  Petri net of the station class. 
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name concatenated to the class name as follows: 

object:class. The messages reflect events specified with 

their attribute values, as follows: «send» 

object:class(attrib), «call» operation(attrib) as shown 

in Figure 8. This specification permits the identification 

of the events that are dynamically generated on the 

statechart.  

The sequence diagram of Figure 8 shows a scenario 

related to the server message application presented in 

section 2.1. Two stations St1 and St2 request a 

connection from a server S. When done, St1 transmits a 

message M1 which is forwarded by S to St2. After that, 

St1 is disconnected. 
 

 
 

 
 

We formalize an interaction on the sequence 

diagram by the 5_tuple (ev, srce, targ, xobj, attrib). The 

component ev identifies the event («send» class (), 

«call» operation()). Srce and targ are the source and 

the target object’s identity, respectively. The 

component xobj gives the exchanged object’s identity 

(object:class) if a send event. As for attrib, it 

designates the set {attrib1 …, attribk} of the exchanged 

object’s attributes. 

The events are at the basis of three different types of 

initialization, depending on their provenance and the 

nature of the action which they produce: home events 

generated by the model’s objects, border events 

generated from the system environment or create      

/destroy events used to create or destroy objects. The 

latter may be home or border events. The home events 

are grouped together per class, so that for each object 

only the output events are retained. Once converted to 

tokens defined by <ev
(Sc)
, srce

(Sc)
, targ

(Sc)
, xobj

(Sc)
, 

attrib
(Sc)
>, the events are stored in the Scenario place of 

the DM corresponding to the class. Through this 

initialization, the Scenario place animates the Petri net 

with the event occurrences. Their source object being 

not represented on the model, all the border events are 

directly stored in the Link place which is common to all 

classes, as tokens of the form: <ev
(Li)
, srce

(Li)
, targ

(Li)
, 

xobj
(Li)
, attrib

(Li)
>. This permits the opening of the Petri 

net model using the Link place which is defined as an 

open place. 

The transformation of the sequence diagram of 

Figure 8, gives the following Scenario place for the 

OPN of the Station class: 

Scenario = <«send» connection, st1: station, s:server, 

connection,> + <«send» connection, st2:station, 

s:server, connection> + <«send» message, st1:station, 

s:server, m1:message, 92.168.0.12, Hello> + <«send» 

disconnection, st1:station, s:server, disconnection>. 

 

4. System Property Validation 

The model checking is based on the state space 

generation and the verification and validation of LTL 

properties on this space. The verification tackles the 

well construction of the model, using generic 

properties as deadlock, livelock, reject states, quasi-

liveness, boundedness and reinitializability. All these 

properties are automatically verified by the model 

checker PROD. As for the validation, it checks 

whether the model is constructed conforming to the 

customer initial requirements. For this purpose, 

specific properties of the system, written by the 

modeler, are used.  

Since the main motivation of this work is that the 

UML designer may reach a valid modeling without 

needs for knowledge of formal techniques, it is only 

reasonable that the system properties are expressed by 

the modeler in the OCL language and are 

automatically translated into LTL logic.  

OCL is mainly based on collection handling in 

order to specify object invariants. As these collections 

correspond to association ends, the latter must appear 

on Petri net specification so that the translated LTL 

properties (whose expression is essentially made of 

these constructs) can be verified. This lead us to the 

necessity of introducing the association end modelling 

onto the statecharts in order to get after their 

transformation, the equivalent Petri net constructs. 

This object flow modelling is realized by means of the 

link actions. However, the usefulness of the link 

actions does not concern explicitly the modelling of 

the object life cycle. When constructing his diagrams, 

the designer does not necessarily think to model these 

concepts which are rather specific to the link and end 

object updates. For example, for connecting a station 

to the server, the connection request and connection 

confirmation actions are naturally and systematically 

modelled by the designer, but the addition of the 

connected station to the association end is usually 

omitted from the modelling, see Figures 3 and 9. That 

is why we recommend specifying the link actions on 

the statechart so that the OCL invariants can be 

verified. But, we release him from this modeling on 

the sequence diagram and take in charge the 

treatments related to the initialization of these actions. 

UML action semantics was defined in [18] for 

model execution and transformation. It is a practical 

framework for formal descriptions. For this work, we 

  «send» connection() 

    «send» okConnection() 
«send» connection() 

   «send» okConnection() 

«send» m1:message(192. 

168.0.12, Hello) 

  «send» disconnection() 

  «send» okDisonnection() 

 «send»  m1:message(192. 

  168.0.12, Hello) 

  

Figure 8. A scenario from the message server application. 

St1: Station S: Server St2: Station 
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are particularly interested in the create link, and destroy 

link actions. The create link action permits to add a 

new end object in the association end. The destroy link 

action removes an end object from the association end. 

These actions will be represented on the statechart as 

tagged values of the form 

{linkAction(associationEnd)}, following the event 

which provokes the association end update.  

On Figure 9, after confirmation of its connection or 

disconnection («send» okconnection or «send» okdis-

connection), the station adds or removes itself from the 

association end connectedStation, using 

{createLink(connectedStation)} or {destroyLink 

(connectedStation)}. It adds a notifed or received 

message with {createLink(transmittedMessage)} or 

{createLink(receivedMessage)},respectively. 
 

 

entry : «send» connection() 

 connected 

entry : «send» disconnection() 

disconnection 

connection 

                «send» okconnection() 

  {createLink(connectedStation)}  

«send» okdisconnection()  

{destroyLink(connectedStation)} 

 

reception 

exit : «call» save() 

  «send» message() 

 {createLink(receivedMessage)} 

entry : «send» message() 

{createLink(transmittedMessage)} 

notification 

 
 

Figure 9.  Statechart of the station class with link actions. 

 

The link actions may concern an active or passive 

end object. The object-oriented approach, on which 

both UML and Object Petri nets rely, is based on 

modularity and encapsulation principles. To deal with 

modularity, association end should appear and be 

manipulated in only one statechart. In Petri nets, the 

association end is translated in a place of role type. 

This place holds the name of the association end and 

belongs to the DM translating the statechart. 

Furthermore, an association end regrouping active 

objects must be updated within the statechart of these 

objects’ class, in order to comply with the 

encapsulation concept. Indeed, since the end object is 

saved in the role place with its attributes, these 

attributes must be accessible when updating the 

association end. The exchanged objects are usually 

manipulated by the interactive objects and are not 

specified by dynamic models. So, the association end 

representing them could be updated in the statechart of 

the class that is at the opposite end. For exchanged 

objects, the encapsulation constraint is lifted given that 

the exchanged object’s attributes are transmitted within 

the message and so, accessible by the active objects. 

In Petri nets, the create link action is semantically 

equivalent to an arc from the transition related to the 

association end update towards the place specifying the 

association end, adding an object within. This is 

formalized by Algorithm 1 in section 4.1. The destroy 

link action is semantically equivalent to an arc from the 

association end place to the transition corresponding 

to the link action, removing an object, see Algorithm 2 

in section 4.2.  

The object to be added-to /removed-from the 

association end is extracted from the components of 

the token (whose global form is <ev, srce, targ, xobj, 

attrib>) corresponding to the event that provokes the 

association end update. This token is situated in the 

Scenario place if the event is generated. It is located in 

the Link place if the event occurs. The added /removed 

object may be the source object (src) or the exchanged 

object (xobj) if the link action follows a generated 

event. It is the target object (targ) or the exchanged 

object (xobj) if the link action follows an event trigger. 

In Petri nets, the association end objects are colored 

tokens of role type. They are of the form <assoc, obj, 

attrib>, where obj is the object to be added to 

/removed from the association end and assoc is the 

object at the opposite end.  

Considering the new treatments that we introduce 

on the statechart, we propose to complete its syntax as 

follows: <S, Act, Tr Gen, Trg, O, U, R, r>, where: 

• O = {o1, o2 …, on} n∈∠, is a set of active objects. 

• U = {u1, u2 …, un} is a set of exchanged objects. 

• R = {r1, r2 …, rn} n∈∠, is a set of association 

ends. 

• ri = {y1, y2, …, yk} is a set of objects of the 

association end ri,  yk ∈ O  ∨  yk ∈ U. 
 

4.1. Algorithm 1 

A. Conversion of an association end 

  For each ri ∈ R, create roli ∈ P   
B. Conversion of a createLink() action 

 For each createLink(ri), ri ∈ R, after a generated 

event : create an arc  tp→roli ∈ T ×  P,  such that : 

-   if ri ⊂ O : Post(roli, tp) = <targ, srce, attrib> 

-   if ri ⊂ U : Post(roli, tp) = <srce, xobj, attrib> 

 For each createLinki(ri), ri ∈ R, after an event trigger 

: create an arc  tp→roli ∈ T ×  P,  such that : 

-   if ri ⊂ O : Post(roli, tp) = <srce, targ, attrib> 

-   if ri ⊂ U : Post(roli, tp) = <targ, xobj, attrib> 
 

An example on the translation of a create link action 

is presented in Figure 10.  
 

 
 

 

 

 

connectedStation 

 RdP Statechart 

derivation 

 «send» okconnection() 

{createLink(connectedStation)} 

 

  connected 

 

connected 

 
Figure 10.  Conversion of a create link action after an event trigger. 
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4.2. Algorithm 2 

The conversion of the destroyLink() action is treated in 

a similar manner as the createLink() action, applying 

the  only two following changes:  

• The arc incoming the role place is replaced by an arc 

outgoing this place. 

• The Post () function is replaced by the Pre () 

function holding exactly the same tokens, as shown 

in Figure 11. 

 

Figure 11 shows the transformed statechart of the 

station class considering the link actions. 
 

 
 

5. Mapping OCL Invariants to LTL Logic 

An OCL invariant is a stereotyped constraint that must 

be true for all instances at any time. In general, it is 

given using the global expression: 

Context Object: Class inv: OCL-expr 

Where the context keyword introduces the classifier on 

which the expression is evaluated. The verification is 

performed on all instances. The keyword inv denotes 

the stereotype «invariant» which means that the 

constraint will be verified on all states of the system. It 

is followed by the OCL expression ocl-expr which 

specifies the condition to be verified. 

PROD supports LTL logic. LTL formulas express 

properties of a linear system behavior on more than one 

state. The LTL PROD grammar that we retain to build 

a formula f is given by: 

f: = prod-expr | not f | f and f | f or f | f implies f | 
henceforth f | eventually f 

where henceforth means always and eventually i.e., 

exists.  

For OCL invariants, the condition is entirely 

evaluated on each state of the system. The time 

precedence which involves the property evaluation on 

more than one state is not supported by OCL. In other 

words, when mapping an OCL invariant to LTL logic, 

the sole potential used operator is always.  

In order to better exploit the LTL logic and permit 

the expression of more properties, we propose to 

introduce optionally in the OCL invariant, the 

keyword will which means that the condition will be 

verified in the future. So, the new form of the OCL 

invariant is: 

Context Object: Class inv : ocl-expr [will ocl-expr] 

We note that T:OCL invariant→LTL property is  
the translation function that transforms an OCL 

invariant to LTL property. It is written for each object 

of the context as follows: 

T (Context object:class inv : ocl-expr [will ocl-expr]) 

= henceforth (T(ocl-expr) [eventually T(ocl-expr)]). 

T (ocl-exp) gives a predicate of first-order logic 

independent of temporal constraints, namely prod-

expr. We define prod-exp according to the following 

PROD grammar: 

prod-expr → prod-expr op prod-expr 
                      | marking ‘:’ field-form  

                      | ‘card(‘ marking ‘)’ | expression 

field-form → field-expr | field-expr log-op field-expr 

field-expr → ‘field[‘ comp ‘]’ rel-op ‘field[‘ comp ‘]’ 
                      |‘field[‘ comp ‘]’ rel-op cstvar 

expression → marking | cstvar 

op → rel-op | log-op | math-op 

rel-op → ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘<’ | 
‘>’  

log-op → ‘&&’ | ‘||’ 

math-op → ‘+’ | ‘-‘ | ‘&’ | ‘or’ 

where marking is the place marking, comp is the 

component number of the tuple, and cstvar is a 

constant or a variable. 

To translate the OCL expressions, we rely on the 

metamodel of Figure 12. 
 

 
 

A literalExp is an expression whose value is 

 oclExpression 

propertyExp  ifExp varExp literalExp 

 

 

navigationExp attributeExp operationExp 

 
Figure 12.  OCL expression metamodel. 
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Figure 11.  Petri net of the station class with link actions. 
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identical to the expression symbol. This includes 

constants like the integer 1 or literal strings like ‘this is 

a LiteralExp’. This expression is unchanged when 

translated into PROD syntax. 

A variableExp is modeled in Petri nets using a place 

and its value is rendered by the number of tokens in the 

place such that:  T (variable) = card (placevariable) – 1. 

A navigationExp is a reference to an association end 

defined in a UML model. It is used to determine for an 

object, the collection of its linked objects. The object is 

matched with the association end using a '.' as follows: 

object.associationEnd. As seen in section 4, an 

association end is translated in Petri nets using a place 

of role type, with the name of the association end. The 

tokens of this place are of the form <assoc, obj, attrib1 

…, attribn>, where assoc is the object linked to the 

collection including the object obj. The expression is 

translated for each object of the context by: 

T (object.associationEnd) = placeassociationEnd: field [0] 

== object, where the symbol ':' introduces a condition, 

and field [0] designates the first component of the tuple 

of the place associationEnd. 

An attributeExp is a reference to an attribute of a 

classifier defined in a UML model. It may be applied to 

the objects of the contextual class using the expression 

object.attribute. The translation of this expression gives 

for each contextual object (which may be at any place 

of the DM from which we exclude the role places and 

note DM
*
):  

T (object.attribute) = ∪ (placeDM*class: field [0] == 
object: field [attributeNumber]) where attributeNumber 

is the attribute number in the tuple that specifies the 

object. We recall that the tokens of the DM
*
 places are 

of the form :< obj, attrib1,…, attribn>.  

An operationExp refers to two categories of 

operations. The first consists of the usual logical and 

mathematical operations applied to OCL expressions. 

The second concerns predefined OCL operations 

applicable to collections of objects. The translation of 

the logical and mathematical operations is given by: 

T(ocl-expr log-op /math-op ocl-expr) = T(ocl-expr) 

T(log-op /math-op) T(ocl-expr) 

The operations on collections are of the form 

collection→operation. Their translation is given by the 

Table 1. For short, we replace object.associationEnd by 

col. 

An IfExp is of the form if if-ocl-expr then then-ocl-

expr else else-ocl-expr. It is translated to: 

T(if-ocl-expr) implies T(then-ocl-expr) or T(! if-ocl-

exp) implies T(else-ocl-expr) 

We propose in what follows, to express two 

properties extracted from the message server  

 

 

application. These properties are first expressed into a 

paraphrased (textual) form. They are after, specified as 

OCL invariants and finally translated into LTL 

properties. To make easier the comprehension of the 

properties refer to the class diagram of the server 

message application on Figure 2. 

 

Property 1 

The number of connected stations is limited to 

maxStation. 
 

Property 1 Expression in OCL 

Context s:Server inv: s.connectedStation→size <= 

s.maxStation 

 

Property 1 Expression in PROD 

For each server s and for each place of its DM
*
 write 

the property: 

# verify henceforth (card (connectedStation: field [0] 

== s) <= (placeDM*server: field [2]))  

where field[0] designates the first component (assoc) 

of the connectedStation’s token, and field[2] 

designates the third component (attrib2 = maxStation) 

of the tokens of DM* of the server. 

Property 2 

While a station r is connected, it receives all the 

messages that are transmitted from a station t. 

Property 2 Expression in OCL 

Context station inv: s.connectedStation→includes(r) 

and    t.transmittedMessage→includes (msg) implies   

will   r.receivedMessage→includes (msg) 
 

 

 

Table 1. Mapping OCL operations to temporal logic formulas. 
 

OCL Operations Temporal Logic Formulas 

col.→size() card(T(col.)) 

col.→isEmpty() (T (col.)) == empty 

col.→notEmpty() (T(col.)) != empty 

col.→union(col.2) T (col.) + T (col.2) 

col.→intersection (col.2) T (col.) & T (col.2) 

col.→including(object) T (col.) + T (object) 

col.→excluding(object) T (col.) - T (object) 

col.→count(object) card(T(col.) : field[0/1]* == 

object) 

col.→includes(object) (T(col.) : field[0/1]* == object) != 

empty 

col.→excludes(object) (T(col.) : field[0/1]* == object) == 

empty 

col.→includesAll(col.2) T (col.) >= T (col.2) 

col.→excludesAll(col.2) (T (col.) & T (col.2)) == empty 

col.→select(ocl-expr) T (col.) : T (ocl-expr) 

col.→reject(ocl-expr) T (col.) : T ( ! ocl-expr) 

col.→exists(ocl-expr) (T (col.) : T (ocl-expr)) != empty 

col.→one(ocl-expr) card(T(col.) : T(ocl-expr)) == 1 

 

*field[0/1] == object means that if the object comes from a collection that models class instances, it is translated in a token of the form <obj, 

attrib1, …, attribn> and so, we write field[0] == object. Otherwise, the object belongs to an association end, it is modeled by a token of the 

form <assoc, obj, attrib1…, attribn> and so, we write field [1] == object.  Likewise, T (object) = <obj, attrib1, …, attribn> if object models a 

class instance. It is equal to <assoc, obj, attrib1, … , attribn> if object models an association end. 
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Property 2 Expression in PROD 

For each connected client r, each transmitter t and each 

transmitted message msg write the property: 

# verify henceforth ((connectedStation : field[0] == s 

&&    field[1] == r) != empty && (transmitted Message 

: field[0]==t  && field[1] == msg) != empty     implies 

eventually (receivedMessage : field[0] == r &&   

field[1] == msg) != empty)        

where connectedStation: field[0]==s && field[1]==r 

designates the 1
st
 and 2

nd
 components of the 

connectedStation’s tokens,  

transmittedMessage:field[0]==t && field[1]== msg 

designate the 1
st
  and 2

nd
 components of the 

transmittedMessage’s tokens, and receivedMessage: 

field[0]==r && field[1]== msg designate the 1
st
 and 

2
nd

 components of the receivedMessage’s tokens. 

 

6. Contribution Versus Related Work 

Formalization of UML statechart semantics [12, 22, 24] 

and integration in the statecharts of languages state-

oriented [2, 14] or property-oriented [2, 21] are widely 

investigated in the research area. The OCL language 

has also been integrated within the statecharts in 

various works, in particular, those of Flake [8, 9] who 

extends it with temporal logics to express properties 

over time. However, through our multiple 

investigations, we have never encountered works that 

tackle the integration within the statecharts, of the 

object movement in the association ends. This 

formalization allows the use of the OCL navigation 

expression and OCL attribute expression to formalize 

and then, validate the object flows. 

Translation of OCL invariant in other formalisms 

such as Object-z [20], B [13], first-order predicate logic 

[3] or object-based temporal logics [7], allows the 

validation of the system properties using the target 

formalism. Other works tackled OCL invariant 

extension with temporal operations [6, 8]. As far as we 

are concerned, we first, extend the OCL invariants with 

a temporal operator in order to benefit from all 

capabilities of the target logics. We after, automate the 

OCL property translation to the temporal logics 

expressed in PROD syntax. The relevance of such a 

mapping is of a practical nature. It presents the merit of 

providing a specific translation that takes the PROD 

tool’s characteristics into account. This automated 

translation also, spares the designer the hard effort of 

specifying using unknown languages.  

Sequence diagrams are generally combined with the 

statecharts in order to connect the object life cycles [4, 

25]. They are also, transformed separately in other 

formalisms to validate specific scenarios [10] or 

composed together to describe the system’s overall 

behaviour [23]. As far as we are concerned, we 

introduce a novel use of the sequence diagram 

exploiting it to animate the modeling with the events of 

the scenario that will be verified.  

On the other hand, data formalization is usually 

given by means of state-oriented languages as Z or B 

[1, 2]. We propose to specify data using the object 

diagrams. This data provides the Petri net initial 

marking with objects named by identities and attribute 

values. 

 

7. Conclusion 

This paper presents an approach to systematically 

validate the UML modeling without need for the user 

to know formal checking techniques. The verification 

concerns both the correctness of the model 

construction and the faithfulness of the modeling. The 

latter is allowed, thanks to the system awaited 

properties which are expressed by the modeler in OCL 

language and then automatically translated into LTL 

properties. To efficiently deal with the property 

validation, we propose introducing an object flow 

specification into the object’s control flow model 

(statechart), using predefined actions on the 

association ends. 

Among the prospects of this work, the analysis of 

the validation /verification results and their feedback 

to the user are explored. These results must be 

presented to the designer in an interpreted form, where 

the error in modeling is simply and clearly pointed 

out. Since the methodology calls for UML designer to 

provide the input specifications, it is only reasonable 

for the output results to be meaningful to that user.  
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