
The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008 7

Integration of the Association Ends within

UML State Diagrams

Thouraya Bouabana-Tebibel
1
 and Mounira Belmesk

2

1
National Institute of Computer Science, INI BP 68 M Oued-Smar 16309, Algiers

2
Edouard Monpetit College, longueuil, Canada

Abstract: UML currently still lacks a rigorously defined semantics for its models, which makes formally analyzing a model and

verifying its properties extremely difficult. To remedy that, we first present a technique for transforming the UML statechart

diagrams into Petri nets. Then we develop an approach based on the class association ends. This approach shows how to

validate the system invariants, expressed in the Object Constraint Language, on the Petri nets derived from the UML models.

System property validation starts with an initialization of the model, extracted from the object and sequence diagrams. A case

study is given throughout the paper to illustrate the methodology.

Keywords: UML, OCL, Petri nets, temporal logics, verification.

Received March 19, 2006; accepted September 7, 2006

1. Introduction

UML suffers from ceaseless critics on the precision of

its semantics when the verification of modeling

correctness has become a key issue [16]. UML 2.0

brings more precision on its semantics, but it remains

informal and lacks tools for automatic analysis and

validation [15]. We presented in [5] a methodology to

automatically transform UML modeling in Petri nets

[11] which are supported by lots of tools to verifying

them. In the present paper, we carry on with this work

by developing a technique to deal with the verification

process.

The Petri nets resulting from the derivation process

are analyzed by means of PROD [19], a model checker

tool for predicate /transition nets. To avoid the high

learning cost of the model checker, we suggest that the

designer specifies the system properties in Object

Constraint Language (OCL) [17], which permits to

formulate restrictions over UML models, in particular

invariants. The latter are afterwards automatically

translated to Linear Temporal Logic (LTL) properties

in order to be verified by PROD during the Petri net

analysis.

The invariants are specified on the class diagram

which models the static structure of a system, in terms

of classes and relationships between classes. A class

describes a set of objects encapsulating attributes and

methods. An association abstracts the links between the

class instances. It has at least two ends, named

association ends, each one representing a set of end

objects with a size limited by a multiplicity.

However, a simple translation of OCL invariants to

LTL properties is not sufficient for the property

checking. Indeed, OCL expressions refer to classifiers

to evaluate their attributes and association ends. The

latter can be updated (created, modified or read) on the

statecharts by means of the link actions. So, in case

the designer specifies OCL invariants for his models,

we attract his attention on the necessity of modeling

the actions treating the association ends in order his

invariants could be adequately verified by PROD. In

other words, he is called on to specify the association

end update that provides the dynamics of the object

through the roles it plays. In addition to the OCL

invariant translation to LTL properties, we propose an

approach to translate the link actions in Petri nets, to

achieve the systematic formal verification of the OCL

constraints.

The remainder of this paper starts with a brief

expose on the UML statecharts translation to Petri

nets; that, constitutes the background of the present

work. In sections 3 and 4, the proposed approach is

presented and the techniques upon which it is based

are developed. Section 5 presents the OCL invariant

translation to LTL properties. We then, motivate our

work and show its novelty and relevance versus

related works. We conclude with some observations

on the obtained results and recommendations on future

research direction.

2. Background

We summarize in this section the work that we

presented in [5] to derive UML statecharts to color

Petri nets. This work supports the approach that we

are developing in the present paper.

8 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

2.1. Statecharts

A statechart describes the behavior of a class in terms

of states and exchanged messages with other classes’

statecharts. A state is composed of two atomic actions

(at its entry and its exit) and one activity. The states are

linked by means of transitions annotated with the event

that triggers the transition (event trigger) and atomic

actions produced by the triggered transition. Due to

their atomicity, the entry exit and transit actions are in

fact generated events called: entry, exit or transit

events, respectively, as shown in Figure 1.

The event is of two types: send event and call event.

These events are mentioned on the statechart as

follows: «send» class () and «call» operation ().

Examples of these events are given in the case study, as

shown in Figure 3.

More formally, the statechart can be defined by the

5-tuple <S, Act, Tr Gen, Trg> where:

• S = {s1, s2, …, sn,} is a set of states.

• Act = {act1, act2,…, actn} is a set of activities.

• Tr = {tr1, tr2, …, trn} is a set of transitions.

• Gen = {gen1,gen2,…,genn} is a set of generated

events.

• Trg = {trg1, trg2,…, trgn} is a set of event triggers.

We illustrate our study through a message server

application where the main role of the server is to

manage the communication between the connected

stations. All the exchanged messages must go through

this server, to be forwarded to the receivers. The

corresponding class diagram is represented in Figure 2,

where the server is modelled by the Server class and the

stations by the Station class and the exchanged

messages by the Message class.

Figure 3 presents the statechart of a station which

can, at all times, connect itself from the server. Its

connection request is realized using the «send»

connection event. The server confirms the station

connection using the «send» okconnection events.

When connected, a station can notify a message,

receive a message or disconnect itself. It notifies by

means of the «send» message event. After it receives a

forwarded message from the server by means of the

«send» message trigger, it is saved by using the «call»

save event. Its disconnection is requested by the

«send» disconnection event and confirmed by the

«send» okdisconnection event.

entry : «send» connection()

 connected

entry : «send» disconnection()

disconnection

connection

«send» okconnection()

«send» okdisconnection()

reception

exit : «call» save()

«send» message()

entry : «send» message()

notification

Figure 3. Statechart of the station class.

2.2. Derivation Approach

In [5], Petri nets have been selected as target

formalism. We defined them by the 7-tuple <P, T, A,

C, Pre, Post, M0,> where:

• P = {p1, p2, …, pn} is a set of places.

• T = {t1, t2, …, tn} is a set of transitions.

• A ⊆ P × T ∪ T × P, is a set of arcs.

• C = {C1, C2, …, Cn} is a set of colours.

• Pre: P× T →P(C) is a precondition function to the

transition firing such that Pre (pi, ti) = {C1, C2…,

Ck}.

• Post: P× T →P(C) is a postcondition function to

the transition firing such that Post (pi, ti) = {C1,

C2…, Ck}.

• Mo: P → C is the initial marking function.

The derivation process is based onto an object-

oriented approach. Each statechart modelling

interactive class behaviour is transformed to an object

subnet called Dynamic Model (DM) (see Figure 4). To

construct the DM, each state s ∈ S is converted to a

place p ∈ P and each transition tr ∈ Tr is converted to

a transition t ∈ T.

To deal with Petri net simulation, we tackle the

Petri net initial marking which may be of two types:

static and dynamic. The static initial marking provides

the class instances and their attribute values. These

instances are extracted from the object diagram to

initialize the Object place with tokens of object type.

The dynamic initial marking provides the exchanged

messages among the interactive objects. These

adr : integer

maxStation : integer

*

transmittedMessage

1

 Server

Station
connectedStation

adr : integer

receivedMessage

 «signal»

Command

Message

 dest : integer

info : chain

 *

 * 1

1

wait()

connection()

message()

disconnection()

okconnection()

message()

okdisconnection()

 treat()

 save()

Figure 2. Class diagram of the message server application.

Figure 1. Statechart’s events and activity.

State

entry: event
do: activity

exit: event

Trigger/transit event

State

entry: event

do: activity

exit: event

Integration of the Association Ends within UML State Diagrams 9

messages are extracted from the sequence diagram to

initialize the Scenario place with tokens of event type.

The event triggers occur on the DM through the

Input place. They are represented by arcs from the

Input place to the transition on which they occur.

Associated to the DM, the places Object, Scenario and

Input, constitute an Object Petri Net model that we call

OPN. To connect the different OPNs, we use the Link

place through which all the exchanged messages should

pass. Thus, for each OPN, a directed transition from the

Link place to the Input place is built. This transition is

fired by the events that trigger on the statechart.

As for the generated events on the statechart, they

are converted to arcs from the Scenario place to the

transition to which they are related. Then, they are

converted to arcs from this transition to the Link place.

Figure 5 summarizes the translation of the different

constructs of the statechart into their homologues in

Petri nets. The dashed symbols represent other

constructs than the ones concerned by the translation.

Figure 6 represents the Petri net resulting from the

conversion of the statechart of the station class.

3. Initialization Technique

To deal with the model simulation, starting from the

generic model which we derive from the statecharts, as

shown in Figure 4, two types of arguments must be

initialized, namely, the system’s objects and the

exchanged messages among these objects. Thus, we

proceed two types of initialization that we call static

and dynamic.

3.1. Static Initialization

We state for our approach requirements two types of

objects: active and passive. The active objects interact

exchanging passive objects. For example, in the server

message application, the Server and Station objects

are active while the Message object is passive.

Thus, an object is formalized by the colored token

<obj, attrib> where obj designates its identity

expressed according to the UML notation which

identifies an object by its name and its class name as

follows: object:class. As for attrib, it designates the

set {attrib1,… attribk} of the object’s attribute values.

The objects and their attribute values are specified

on the object diagrams. So, all the objects instantiated

from the same class on the object diagram, are

inserted in the Object place of the OPN translating the

class’s statechart. Figure 7 shows an example of the

object diagram of the message server application

before any action (there is no links between the

objects). For each station, the IP address is given.

Figure 7. Object initialization.

3.2. Dynamic Initialization

The sequence diagram allows the modeling of specific

scenarios. It shows exchanged messages among

lifelines. The lifelines represent the participants in the

interaction where each participant is identified by its

OPN

 Link

OPN

OPN DM
 Input

Object

Scenario

Figure 4. Petri nets interconnection architecture.

S

 Statechart constructs Petri net constructs

S

do : act
act act

 entry : ev

exit : ev

Link

/ ev

t

 t

derivation

derivation

derivation

derivation

derivation

derivation

Scenario

Link Scenario

Link Scenario

ev / derivation

Input

Figure 5. Petri net of the station class.

 connection

Input
notification

 disconnection

reception

 connected

Link

 Scenario Object
 t1

t2

 t3

 t4

 t5

t6

t7

 t8

Figure 6. Petri net of the station class.

derivation
ObjectStation

Station:1st

adr=192.168.0.11

Station:2st

adr=192.168.0.12

<st1:station,192.168.0.11>

<st2:station,192.168.0.12>

10 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

name concatenated to the class name as follows:

object:class. The messages reflect events specified with

their attribute values, as follows: «send»

object:class(attrib), «call» operation(attrib) as shown

in Figure 8. This specification permits the identification

of the events that are dynamically generated on the

statechart.

The sequence diagram of Figure 8 shows a scenario

related to the server message application presented in

section 2.1. Two stations St1 and St2 request a

connection from a server S. When done, St1 transmits a

message M1 which is forwarded by S to St2. After that,

St1 is disconnected.

We formalize an interaction on the sequence

diagram by the 5_tuple (ev, srce, targ, xobj, attrib). The

component ev identifies the event («send» class (),

«call» operation()). Srce and targ are the source and

the target object’s identity, respectively. The

component xobj gives the exchanged object’s identity

(object:class) if a send event. As for attrib, it

designates the set {attrib1 …, attribk} of the exchanged

object’s attributes.

The events are at the basis of three different types of

initialization, depending on their provenance and the

nature of the action which they produce: home events

generated by the model’s objects, border events

generated from the system environment or create

/destroy events used to create or destroy objects. The

latter may be home or border events. The home events

are grouped together per class, so that for each object

only the output events are retained. Once converted to

tokens defined by <ev
(Sc)
, srce

(Sc)
, targ

(Sc)
, xobj

(Sc)
,

attrib
(Sc)
>, the events are stored in the Scenario place of

the DM corresponding to the class. Through this

initialization, the Scenario place animates the Petri net

with the event occurrences. Their source object being

not represented on the model, all the border events are

directly stored in the Link place which is common to all

classes, as tokens of the form: <ev
(Li)
, srce

(Li)
, targ

(Li)
,

xobj
(Li)
, attrib

(Li)
>. This permits the opening of the Petri

net model using the Link place which is defined as an

open place.

The transformation of the sequence diagram of

Figure 8, gives the following Scenario place for the

OPN of the Station class:

Scenario = <«send» connection, st1: station, s:server,

connection,> + <«send» connection, st2:station,

s:server, connection> + <«send» message, st1:station,

s:server, m1:message, 92.168.0.12, Hello> + <«send»

disconnection, st1:station, s:server, disconnection>.

4. System Property Validation

The model checking is based on the state space

generation and the verification and validation of LTL

properties on this space. The verification tackles the

well construction of the model, using generic

properties as deadlock, livelock, reject states, quasi-

liveness, boundedness and reinitializability. All these

properties are automatically verified by the model

checker PROD. As for the validation, it checks

whether the model is constructed conforming to the

customer initial requirements. For this purpose,

specific properties of the system, written by the

modeler, are used.

Since the main motivation of this work is that the

UML designer may reach a valid modeling without

needs for knowledge of formal techniques, it is only

reasonable that the system properties are expressed by

the modeler in the OCL language and are

automatically translated into LTL logic.

OCL is mainly based on collection handling in

order to specify object invariants. As these collections

correspond to association ends, the latter must appear

on Petri net specification so that the translated LTL

properties (whose expression is essentially made of

these constructs) can be verified. This lead us to the

necessity of introducing the association end modelling

onto the statecharts in order to get after their

transformation, the equivalent Petri net constructs.

This object flow modelling is realized by means of the

link actions. However, the usefulness of the link

actions does not concern explicitly the modelling of

the object life cycle. When constructing his diagrams,

the designer does not necessarily think to model these

concepts which are rather specific to the link and end

object updates. For example, for connecting a station

to the server, the connection request and connection

confirmation actions are naturally and systematically

modelled by the designer, but the addition of the

connected station to the association end is usually

omitted from the modelling, see Figures 3 and 9. That

is why we recommend specifying the link actions on

the statechart so that the OCL invariants can be

verified. But, we release him from this modeling on

the sequence diagram and take in charge the

treatments related to the initialization of these actions.

UML action semantics was defined in [18] for

model execution and transformation. It is a practical

framework for formal descriptions. For this work, we

 «send» connection()

 «send» okConnection()
«send» connection()

 «send» okConnection()

«send» m1:message(192.

168.0.12, Hello)

 «send» disconnection()

 «send» okDisonnection()

 «send» m1:message(192.

 168.0.12, Hello)

Figure 8. A scenario from the message server application.

St1: Station S: Server St2: Station

Integration of the Association Ends within UML State Diagrams 11

are particularly interested in the create link, and destroy

link actions. The create link action permits to add a

new end object in the association end. The destroy link

action removes an end object from the association end.

These actions will be represented on the statechart as

tagged values of the form

{linkAction(associationEnd)}, following the event

which provokes the association end update.

On Figure 9, after confirmation of its connection or

disconnection («send» okconnection or «send» okdis-

connection), the station adds or removes itself from the

association end connectedStation, using

{createLink(connectedStation)} or {destroyLink

(connectedStation)}. It adds a notifed or received

message with {createLink(transmittedMessage)} or

{createLink(receivedMessage)},respectively.

entry : «send» connection()

 connected

entry : «send» disconnection()

disconnection

connection

 «send» okconnection()

 {createLink(connectedStation)}

«send» okdisconnection()

{destroyLink(connectedStation)}

reception

exit : «call» save()

 «send» message()

 {createLink(receivedMessage)}

entry : «send» message()

{createLink(transmittedMessage)}

notification

Figure 9. Statechart of the station class with link actions.

The link actions may concern an active or passive

end object. The object-oriented approach, on which

both UML and Object Petri nets rely, is based on

modularity and encapsulation principles. To deal with

modularity, association end should appear and be

manipulated in only one statechart. In Petri nets, the

association end is translated in a place of role type.

This place holds the name of the association end and

belongs to the DM translating the statechart.

Furthermore, an association end regrouping active

objects must be updated within the statechart of these

objects’ class, in order to comply with the

encapsulation concept. Indeed, since the end object is

saved in the role place with its attributes, these

attributes must be accessible when updating the

association end. The exchanged objects are usually

manipulated by the interactive objects and are not

specified by dynamic models. So, the association end

representing them could be updated in the statechart of

the class that is at the opposite end. For exchanged

objects, the encapsulation constraint is lifted given that

the exchanged object’s attributes are transmitted within

the message and so, accessible by the active objects.

In Petri nets, the create link action is semantically

equivalent to an arc from the transition related to the

association end update towards the place specifying the

association end, adding an object within. This is

formalized by Algorithm 1 in section 4.1. The destroy

link action is semantically equivalent to an arc from the

association end place to the transition corresponding

to the link action, removing an object, see Algorithm 2

in section 4.2.

The object to be added-to /removed-from the

association end is extracted from the components of

the token (whose global form is <ev, srce, targ, xobj,

attrib>) corresponding to the event that provokes the

association end update. This token is situated in the

Scenario place if the event is generated. It is located in

the Link place if the event occurs. The added /removed

object may be the source object (src) or the exchanged

object (xobj) if the link action follows a generated

event. It is the target object (targ) or the exchanged

object (xobj) if the link action follows an event trigger.

In Petri nets, the association end objects are colored

tokens of role type. They are of the form <assoc, obj,

attrib>, where obj is the object to be added to

/removed from the association end and assoc is the

object at the opposite end.

Considering the new treatments that we introduce

on the statechart, we propose to complete its syntax as

follows: <S, Act, Tr Gen, Trg, O, U, R, r>, where:

• O = {o1, o2 …, on} n∈∠, is a set of active objects.

• U = {u1, u2 …, un} is a set of exchanged objects.

• R = {r1, r2 …, rn} n∈∠, is a set of association

ends.

• ri = {y1, y2, …, yk} is a set of objects of the

association end ri, yk ∈ O ∨ yk ∈ U.

4.1. Algorithm 1

A. Conversion of an association end

 For each ri ∈ R, create roli ∈ P
B. Conversion of a createLink() action

 For each createLink(ri), ri ∈ R, after a generated

event : create an arc tp→roli ∈ T × P, such that :

- if ri ⊂ O : Post(roli, tp) = <targ, srce, attrib>

- if ri ⊂ U : Post(roli, tp) = <srce, xobj, attrib>

 For each createLinki(ri), ri ∈ R, after an event trigger

: create an arc tp→roli ∈ T × P, such that :

- if ri ⊂ O : Post(roli, tp) = <srce, targ, attrib>

- if ri ⊂ U : Post(roli, tp) = <targ, xobj, attrib>

An example on the translation of a create link action

is presented in Figure 10.

connectedStation

 RdP Statechart

derivation

 «send» okconnection()

{createLink(connectedStation)}

 connected

connected

Figure 10. Conversion of a create link action after an event trigger.

12 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

4.2. Algorithm 2

The conversion of the destroyLink() action is treated in

a similar manner as the createLink() action, applying

the only two following changes:

• The arc incoming the role place is replaced by an arc

outgoing this place.

• The Post () function is replaced by the Pre ()

function holding exactly the same tokens, as shown

in Figure 11.

Figure 11 shows the transformed statechart of the

station class considering the link actions.

5. Mapping OCL Invariants to LTL Logic

An OCL invariant is a stereotyped constraint that must

be true for all instances at any time. In general, it is

given using the global expression:

Context Object: Class inv: OCL-expr

Where the context keyword introduces the classifier on

which the expression is evaluated. The verification is

performed on all instances. The keyword inv denotes

the stereotype «invariant» which means that the

constraint will be verified on all states of the system. It

is followed by the OCL expression ocl-expr which

specifies the condition to be verified.

PROD supports LTL logic. LTL formulas express

properties of a linear system behavior on more than one

state. The LTL PROD grammar that we retain to build

a formula f is given by:

f: = prod-expr | not f | f and f | f or f | f implies f |
henceforth f | eventually f

where henceforth means always and eventually i.e.,

exists.

For OCL invariants, the condition is entirely

evaluated on each state of the system. The time

precedence which involves the property evaluation on

more than one state is not supported by OCL. In other

words, when mapping an OCL invariant to LTL logic,

the sole potential used operator is always.

In order to better exploit the LTL logic and permit

the expression of more properties, we propose to

introduce optionally in the OCL invariant, the

keyword will which means that the condition will be

verified in the future. So, the new form of the OCL

invariant is:

Context Object: Class inv : ocl-expr [will ocl-expr]

We note that T:OCL invariant→LTL property is
the translation function that transforms an OCL

invariant to LTL property. It is written for each object

of the context as follows:

T (Context object:class inv : ocl-expr [will ocl-expr])

= henceforth (T(ocl-expr) [eventually T(ocl-expr)]).

T (ocl-exp) gives a predicate of first-order logic

independent of temporal constraints, namely prod-

expr. We define prod-exp according to the following

PROD grammar:

prod-expr → prod-expr op prod-expr
 | marking ‘:’ field-form

 | ‘card(‘ marking ‘)’ | expression

field-form → field-expr | field-expr log-op field-expr

field-expr → ‘field[‘ comp ‘]’ rel-op ‘field[‘ comp ‘]’
 |‘field[‘ comp ‘]’ rel-op cstvar

expression → marking | cstvar

op → rel-op | log-op | math-op

rel-op → ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘<’ |
‘>’

log-op → ‘&&’ | ‘||’

math-op → ‘+’ | ‘-‘ | ‘&’ | ‘or’

where marking is the place marking, comp is the

component number of the tuple, and cstvar is a

constant or a variable.

To translate the OCL expressions, we rely on the

metamodel of Figure 12.

A literalExp is an expression whose value is

 oclExpression

propertyExp ifExp varExp literalExp

navigationExp attributeExp operationExp

Figure 12. OCL expression metamodel.

 connection

Input
notification

 transmitted-

 Message

 disconnection

reception

received-

Message

 connected

connectedStation

Link

 Scenario Object
t1

t2

t3

 t4

 t5

t6

t7

 t8

Figure 11. Petri net of the station class with link actions.

Integration of the Association Ends within UML State Diagrams 13

identical to the expression symbol. This includes

constants like the integer 1 or literal strings like ‘this is

a LiteralExp’. This expression is unchanged when

translated into PROD syntax.

A variableExp is modeled in Petri nets using a place

and its value is rendered by the number of tokens in the

place such that: T (variable) = card (placevariable) – 1.

A navigationExp is a reference to an association end

defined in a UML model. It is used to determine for an

object, the collection of its linked objects. The object is

matched with the association end using a '.' as follows:

object.associationEnd. As seen in section 4, an

association end is translated in Petri nets using a place

of role type, with the name of the association end. The

tokens of this place are of the form <assoc, obj, attrib1

…, attribn>, where assoc is the object linked to the

collection including the object obj. The expression is

translated for each object of the context by:

T (object.associationEnd) = placeassociationEnd: field [0]

== object, where the symbol ':' introduces a condition,

and field [0] designates the first component of the tuple

of the place associationEnd.

An attributeExp is a reference to an attribute of a

classifier defined in a UML model. It may be applied to

the objects of the contextual class using the expression

object.attribute. The translation of this expression gives

for each contextual object (which may be at any place

of the DM from which we exclude the role places and

note DM
*
):

T (object.attribute) = ∪ (placeDM*class: field [0] ==
object: field [attributeNumber]) where attributeNumber

is the attribute number in the tuple that specifies the

object. We recall that the tokens of the DM
*
 places are

of the form :< obj, attrib1,…, attribn>.

An operationExp refers to two categories of

operations. The first consists of the usual logical and

mathematical operations applied to OCL expressions.

The second concerns predefined OCL operations

applicable to collections of objects. The translation of

the logical and mathematical operations is given by:

T(ocl-expr log-op /math-op ocl-expr) = T(ocl-expr)

T(log-op /math-op) T(ocl-expr)

The operations on collections are of the form

collection→operation. Their translation is given by the

Table 1. For short, we replace object.associationEnd by

col.

An IfExp is of the form if if-ocl-expr then then-ocl-

expr else else-ocl-expr. It is translated to:

T(if-ocl-expr) implies T(then-ocl-expr) or T(! if-ocl-

exp) implies T(else-ocl-expr)

We propose in what follows, to express two

properties extracted from the message server

application. These properties are first expressed into a

paraphrased (textual) form. They are after, specified as

OCL invariants and finally translated into LTL

properties. To make easier the comprehension of the

properties refer to the class diagram of the server

message application on Figure 2.

Property 1

The number of connected stations is limited to

maxStation.

Property 1 Expression in OCL

Context s:Server inv: s.connectedStation→size <=

s.maxStation

Property 1 Expression in PROD

For each server s and for each place of its DM
*
 write

the property:

verify henceforth (card (connectedStation: field [0]

== s) <= (placeDM*server: field [2]))

where field[0] designates the first component (assoc)

of the connectedStation’s token, and field[2]

designates the third component (attrib2 = maxStation)

of the tokens of DM* of the server.

Property 2

While a station r is connected, it receives all the

messages that are transmitted from a station t.

Property 2 Expression in OCL

Context station inv: s.connectedStation→includes(r)

and t.transmittedMessage→includes (msg) implies

will r.receivedMessage→includes (msg)

Table 1. Mapping OCL operations to temporal logic formulas.

OCL Operations Temporal Logic Formulas

col.→size() card(T(col.))

col.→isEmpty() (T (col.)) == empty

col.→notEmpty() (T(col.)) != empty

col.→union(col.2) T (col.) + T (col.2)

col.→intersection (col.2) T (col.) & T (col.2)

col.→including(object) T (col.) + T (object)

col.→excluding(object) T (col.) - T (object)

col.→count(object) card(T(col.) : field[0/1]* ==

object)

col.→includes(object) (T(col.) : field[0/1]* == object) !=

empty

col.→excludes(object) (T(col.) : field[0/1]* == object) ==

empty

col.→includesAll(col.2) T (col.) >= T (col.2)

col.→excludesAll(col.2) (T (col.) & T (col.2)) == empty

col.→select(ocl-expr) T (col.) : T (ocl-expr)

col.→reject(ocl-expr) T (col.) : T (! ocl-expr)

col.→exists(ocl-expr) (T (col.) : T (ocl-expr)) != empty

col.→one(ocl-expr) card(T(col.) : T(ocl-expr)) == 1

*field[0/1] == object means that if the object comes from a collection that models class instances, it is translated in a token of the form <obj,

attrib1, …, attribn> and so, we write field[0] == object. Otherwise, the object belongs to an association end, it is modeled by a token of the

form <assoc, obj, attrib1…, attribn> and so, we write field [1] == object. Likewise, T (object) = <obj, attrib1, …, attribn> if object models a

class instance. It is equal to <assoc, obj, attrib1, … , attribn> if object models an association end.

14 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

Property 2 Expression in PROD

For each connected client r, each transmitter t and each

transmitted message msg write the property:

verify henceforth ((connectedStation : field[0] == s

&& field[1] == r) != empty && (transmitted Message

: field[0]==t && field[1] == msg) != empty implies

eventually (receivedMessage : field[0] == r &&

field[1] == msg) != empty)

where connectedStation: field[0]==s && field[1]==r

designates the 1
st
 and 2

nd
 components of the

connectedStation’s tokens,

transmittedMessage:field[0]==t && field[1]== msg

designate the 1
st
 and 2

nd
 components of the

transmittedMessage’s tokens, and receivedMessage:

field[0]==r && field[1]== msg designate the 1
st
 and

2
nd

 components of the receivedMessage’s tokens.

6. Contribution Versus Related Work

Formalization of UML statechart semantics [12, 22, 24]

and integration in the statecharts of languages state-

oriented [2, 14] or property-oriented [2, 21] are widely

investigated in the research area. The OCL language

has also been integrated within the statecharts in

various works, in particular, those of Flake [8, 9] who

extends it with temporal logics to express properties

over time. However, through our multiple

investigations, we have never encountered works that

tackle the integration within the statecharts, of the

object movement in the association ends. This

formalization allows the use of the OCL navigation

expression and OCL attribute expression to formalize

and then, validate the object flows.

Translation of OCL invariant in other formalisms

such as Object-z [20], B [13], first-order predicate logic

[3] or object-based temporal logics [7], allows the

validation of the system properties using the target

formalism. Other works tackled OCL invariant

extension with temporal operations [6, 8]. As far as we

are concerned, we first, extend the OCL invariants with

a temporal operator in order to benefit from all

capabilities of the target logics. We after, automate the

OCL property translation to the temporal logics

expressed in PROD syntax. The relevance of such a

mapping is of a practical nature. It presents the merit of

providing a specific translation that takes the PROD

tool’s characteristics into account. This automated

translation also, spares the designer the hard effort of

specifying using unknown languages.

Sequence diagrams are generally combined with the

statecharts in order to connect the object life cycles [4,

25]. They are also, transformed separately in other

formalisms to validate specific scenarios [10] or

composed together to describe the system’s overall

behaviour [23]. As far as we are concerned, we

introduce a novel use of the sequence diagram

exploiting it to animate the modeling with the events of

the scenario that will be verified.

On the other hand, data formalization is usually

given by means of state-oriented languages as Z or B

[1, 2]. We propose to specify data using the object

diagrams. This data provides the Petri net initial

marking with objects named by identities and attribute

values.

7. Conclusion

This paper presents an approach to systematically

validate the UML modeling without need for the user

to know formal checking techniques. The verification

concerns both the correctness of the model

construction and the faithfulness of the modeling. The

latter is allowed, thanks to the system awaited

properties which are expressed by the modeler in OCL

language and then automatically translated into LTL

properties. To efficiently deal with the property

validation, we propose introducing an object flow

specification into the object’s control flow model

(statechart), using predefined actions on the

association ends.

Among the prospects of this work, the analysis of

the validation /verification results and their feedback

to the user are explored. These results must be

presented to the designer in an interpreted form, where

the error in modeling is simply and clearly pointed

out. Since the methodology calls for UML designer to

provide the input specifications, it is only reasonable

for the output results to be meaningful to that user.

References

[1] Amálio N. and Polack F., “Comparison of

Formalization Approaches of UML Class

Constructs in Z and Object-Z,” in Proceedings of

the International Conference of Z and B Users,

LNCS, vol.2561, 2003.

[2] Attiogbé C., Poizat P., and Salaun G.,

“Integration of Formal Datatypes within State

Diagrams,” in Proceedings of Fundamental

Approaches to Software Engineering

(FASE’2003), LNCS, vol. 2621, 2003.

[3] Beckert B., Keller U. and Schmitt P.,

“Translating the Object Constraints Language

into First-order Predicate Logic,” in Proceedings

of Verify, Workshop at Federated Logic

Conferences, Copenhagen, 2002.

[4] Bernardi S., Donatelli S., and Merseguer J.,

“From UML Sequence Diagrams and Statecharts

to Analysable Petri Net Models,” in Proceedings

of the Third International Workshop on

Software and Performance, Rome, Italy, ACM

Press, pp. 35-45, 2002.

[5] Bouabana-Tebibel T. and Belmesk M.,

“Formalization of UML Object Dynamics and

Behavior,” in Proceedings of the 2004 IEEE

Integration of the Association Ends within UML State Diagrams 15

International Conference on Systems, Man &

Cybernetics, Netherlands, 2004.

[6] Cengarle JM. and Knapp A., “Towards OCL/RT,”

in Proceedings of Formal Methods: Getting IT

Right, LNCS, vol. 2391, pp. 389-408, 2002.

[7] Distefano D., Katoen J., and Rensink A., “On a

Temporal Logic for Object-Based Systems,” in

Proceedings of the 4
th
 International Conference

on Formal Methods for Open Object-Based

Distributed Systems (FMOOD'2000), Stanford,

USA, 2000.

[8] Flake S. and Mueller W., “Past- and Future-

Oriented Temporal Time-Bounded Properties

with OCL,” in Proceedings of the 2nd

International Conference on Software

Engineering and Formal Methods, China, IEEE

Computer Society Press, 2004,

[9] Flake S., “UML-Based Specification of State-

oriented Real-time Properties,” PhD Thesis,

Faculty of Computer Science, Electrical

Engineering and Mathematics, Paderborn

University, Germany, 2003.

[10] Harel D., Kugler H., and Pnueli A., “Synthesis

Revisited: Generating Statechart Models from

Scenario-Based Requirements,” in Proceedings of

the Formal Methods in Software and System

Modeling, LNCS, vol. 3393, pp. 309-324, 2005.

[11] Jensen K., Coloured Petri Nets, Basic Concepts,

Springer, vol. 1, 1992.

[12] Kuske S., “A Formal Semantics of UML State

Machines Based on Structured Graph

Transformation,” in Proceedings of UML: The

Unified Mode-ling Language, Modeling

Languages, Concepts and Tools, LNCS, vol.

2185, pp. 241-256, 2001.

[13] Marcano R. and Lévy N., “Transformation Rules

of OCL Constraints into B Formal Expressions,”

in University of Versailles Saint-Quentin-en-

Yvelines eds., May 2002.

[14] Meyer E., “Développements Formels Par Objets:

Utilisation Conjointe De B Et D’uml,” PhD

Thesis, University of Nancy 2, France, 2001.

[15] Object Management Group, UML 2.0

Superstructure Specification, 2004.

[16] Object Management Group, Unified Modeling

Language Specification, version 1.5, 2003.

[17] Object Management Group, UML 2.0 OCL

Specification, October 2003.

[18] Object Management Group, The UML Action

Semantics, November 2001.

[19] PROD 3.4, An Advanced Tool for Efficient

Reachability Analysis, Laboratory for Theoretical

Computer Science, Helsinki University of

Technology, Espoo, Finland, 2004.

[20] Roe D., Broda K., and Russo A., “Mapping UML

Models Incorporating OCL Constraints into

Object-Z,” Imperial College, Technical Report,

no. 2003/9, 2003.

[21] Royer J., “Temporal Logic Verifications for

UML, the Vending Machine Example,” RSTI -

L'objet, 4
th
 Rigorous Object-Oriented Methods

Workshop, vol. 9, no. 4, 2003.

[22] Truong N. and Souquières J., “Verification of

Behavioral Elements of UML Models Using B,”

in Proceedings of the 20th Annual ACM

Symposium on Applied Computing, USA, 2005.

[23] Uchitel S., Kramer J., and Magee J., “Synthesis

of Behavioral Models from Scenarios,” IEEE

Transactions on Software Engineering, vol. 29,

no. 2, pp. 99-115, 2003.

[24] Varro D., “A Formal Semantics of UML

Statecharts by Model Transition Systems,” in

Proceedings of the 1st International Conference

on Graph Transformation, Spain, 2002.

[25] Ziadi T., Hélouët L., and Jézéquel J., “Revisiting

Statechart Synthesis with an Algebraic

Approach,” in Proceedings of the 26
th

International Conference on Software

Engineering (ICSE’04), ACM, Edimburgh, UK,

pp. 242-251, 2004.

Thouraya Bouabana-Tebibel
obtained the BSc degree in

computer science from Houari-

Boumédième Technology and

Science University (USTHB),

Algeria and the MSc degree in

industrial engineering from

Polytechnic National School, Algeria, and the PhD

degree in computer science from the USTHB

University. She works as an associate professor in the

National Institute of Computer Science, Algeria. She

is also a Cisco instructor in the network area. Her

research interests include object-oriented specification

in particular UML and object Petri nets, simulation,

validation, and verification of interactive systems.

Mounira Belmesk obtained the

BSc degree, the MSc degree and the

PhD degree in computer science

from Houari-Boumédième

Technology and Science University,

Algeria. She is now a professor at

Edouard MonPetit College, Canada.

