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Abstract: With the wide increase in using distributed object-oriented databases, it became important to find an  efficient  
technique to store large-scale databases on the different sites. The allocation of object-oriented database involves allocation 
of both methods and attributes within the classes. The main objective of this paper is to introduce a new technique for 
allocating the distributed object-oriented database methods and attributes among N sites. The proposed technique uses  
genetic algorithm to find the best allocation (optimal or near optimal) of the object-oriented database methods and attributes  
to the available sites. A cost function that computes the total data transfer during the execution of queries is developed. The 
genetic algorithm steps use this cost function to evaluate the possible allocations of methods. Validation of the proposed 
technique is done via simulation. The experimental results of the proposed technique depict that it has a great impact in 
reducing the total time required to find the best allocation and in most of the cases it reaches the optimal allocation of the 
methods. 
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1. Introduction

Database systems have been applied to a wide range of 
applications including, for example, computer-aided 
design and multimedia databases [8, 24]. Those new 
applications need to handle audio, video, text, and 
graphics data. The relational model due to its 
limitations is unable to manage such type of data. 
Thus, new data models, new query languages, new 
transaction models, and new fragmentation techniques 
are required for those applications. As a result, 
database researchers introduced new data models, such 
as the object-oriented, to overcome the relational 
model's limitations [3, 5, 6, 8, 11]. However, the 
object-oriented model presented new features that were 
not available at the relational model such as 
inheritance, encapsulation, object identity and complex 
objects, which will require different techniques for 
data management [1, 3]. 

 Accompanied  with  the  database  evolution  is  the 
vast  need  for  distributed  system  producing  the 
Distributed  Database  Systems  (DDBS).  DDBS  is  a 
decentralized  DB  system  spread  over  different  sites 
which  are  connected  by  underlining  communication 
networks. Each site contains a portion of the global DB 
system.  Since  data  and  applications  are  spread  over 
different  sites  over  the  network,  DDBS  can  provide 
higher reliability and availability. DDBS also promises 
to  provide  improved  performance  obtained  by 

distributed processing. Local queries and transactions 
tend to be much faster since the local database is just a 

portion  of  the  global  database  and  is  much  smaller 
compared to a centralized one [24].

 However, DDBS adds more complexity in terms of 
its design and implementation [8, 24]. The design of 
distributed database enhances the performance of the 
application in two ways [20]: by reducing the amount 
of irrelevant data accessed by the applications and by 
reducing the amount of data transferred in processing 
the  applications.  There  are  two  main  activities  in 
distributed database design: partitioning and allocation, 
which  refers  to  partitioning  the  data  and  allocating 
fragments to various sites, respectively.  The result of 
an  allocation  process  is  an  allocation  schema.  The 
research work in relational database has proved that the 
allocation process is an NP complete problem [2, 5]. 
The distribution of database to the available sites is the 
backbone  of  the  DDBS  success.  There  exist  many 
distribution possibilities,  one of  them can be several 
order of magnitudes faster than another. It is therefore 
important to carefully use a technique that finds a good 
(i.e. faster) distribution of data, ideally the best one if 
possible.  Techniques  that  may  assist  designers  in 
determining the optimal  fragmentation and allocation 
of the fragments are important, especially in the early 
stages  of  designing  a  reliable  distributed  database 
system,  which  in  turn  will  affect  the  overall 
performance for the system later on [4 ]. 
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Traditionally  in  relational  database,  fragmentation 
can be classified into three types: vertical, horizontal, 
and hybrid. The vertical fragmentation aims to break 
up a relation into a set of relations while the horizontal 
fragmentation  aims  to  break  the  large  number  of 
instants  into  disjoint  subsets  each  of  which  will  be 
allocated to different sites [1, 21, 22, 24]. The hybrid 
fragmentation  first  divides  the  relation  horizontally, 
and  then  splits  each  of  the  obtained  fragments 
vertically  or  vice  versa.  Many  allocation  techniques 
have  been  introduced  for  allocating  the  produced 
fragments [2, 10, 21].  In [2] the allocation technique 
aimed to minimize the total transfer cost,  while [10] 
proposed  a  strategy  that  integrates  the  treatment  of 
relation assignment and query strategy to optimize the 
performance  of  DDBS.  A site-independent  fragment 
dependency  graph  representation  was  developed  in 
[21] to model the dependencies between the fragments. 
Then the data allocation problem was formulated as a 
mapping  problem,  which  can  be  mapped  to  a 
maximum flow minimum cost problem to achieve an 
optimal solution.

In  Object-Oriented  DataBases  (OODB),  many 
research have been introduced in the field of vertical, 
horizontal, mixed fragmentation [7, 11, 12, 14, 20, 23]. 
Others  have  concentrated  on  the  allocation  of  these 
fragments [8, 9] while few concentrated on the direct 
allocation of methods and attributes [4, 5, 20].  

In this paper, a new technique is proposed for the 
allocation  of  OODB  methods  and  attributes  to  a 
number  of  given  sites  based  on  Genetic  Algorithm 
(GA). The main objective of this technique is to obtain 
an  allocation  schema  that  minimizes  the  total  data 
transfer cost. The proposed technique, while using GA 
for search [9, 13, 17], aims to overcome the problems 
associated  with  previous  search  techniques,  such  as: 
hill-climbing  [4],  exhaustive  search  or  Branch  and 
Bound. Through iterative steps, the genetic algorithm 
searches  the  solution  space  for  possible  allocations, 
evaluating them using a developed cost function and 
finally finds  the  best  allocation schema that  in  most 
cases is the optimal one. 

2. Basic Object-Oriented Databases 
Concepts

The OODB differs from the relational databases in that 
instead of having records, OODB has objects. Each 
object has an object identity. Identity is that property 
of an object, which distinguishes it from all other 
objects [3, 6, 16]. Any object belongs to a specific 
class. A class is a set of objects that share a common 
structure and a common behavior. A class summarizes 
the common features of a set of objects; a class has 
attributes, which constitutes the data within the object, 
and a set of operations using which the user can 
manipulate the object’s attributes. A class (called 
subclass) can inherit some (or all) of the properties of 

another class (called superclass) and adds to it. 
Inheritance is the ability of a subclass to receive all 
data and operations coming from its superclass. 

The internal structure of the object is hidden from 
the user using what so called encapsulation. 
Encapsulation means an object contains both programs 
and data and offers to the world an interface and an 
implementation part called methods. The interface part 
is the specification of the set of operations that can be 
performed on the object; the implementation part 
describes the implementation of each operation. In 
most OODB, even data specification is part of the 
interface. Objects can be simple or complex; complex 
objects are built from simpler ones by applying 
constructors to them. The object constructors must be 
orthogonal, this means any constructor should apply to 
any object. Users of the system may define additional 
operations on complex objects.

2.1. Previous Work

In OODB the main objective of vertical fragmentation is 
to break a class into a set of smaller classes (called 
fragments) to permit user applications to execute using 
one fragment located at local sites which means minimum 
user application execution time [8, 9, 24]. The horizontal 
fragmentation in OODB aims to break the instants 
(objects) of the class into fragments to reduce the query 
execution time by minimizing the number of irrelevant 
objects accessed and reducing the data transfer among 
sites [20, 23]. Horizontal fragmentation is subdivided into 
two steps: primary and derived fragmentation. Primary 
fragmentation basically optimizes set operations over a 
class extension first by reducing the amount of irrelevant 
data accessed and secondly by permitting applications to 
be executed concurrently. The derived fragmentation 
clusters objects of distinct classes in the disk. The hybrid 
fragmentation in OODB divides the classes both 
vertically then horizontally or vice versa. Vertical class 
partitioning is a type of vertical fragmentation that 
partitions the database classes to reduce irrelevant disk-
stored data in local site [7, 14, 15, 18, 19]. 

There is only little research work directed towards the 
allocation of OODB methods and attributes relatively to 
those directed to the relational model due to the 
complexities added by the object-oriented model. Some 
of the previous work like [11, 12, 23] concentrated on 
allocating fragments produced by other fragmentation 
techniques. The fragmentation techniques are first used to 
obtain methods and attributes fragments as in [11, 12]. 
Then an allocation technique is used to allocate those 
fragments. The research work in [15] tackled the problem 
of vertical class partitioning and based the partitioning 
algorithm on a developed cost model rather than affinity. 

However, little work focused on the method allocation 
problem for OODB such as [4, 5, 20]. Karlapalem et al. 
[2] tackled the problem of the allocation in two 
directions: class fragments allocation and methods 
allocation. However, their algorithm was not effective to 
solve the problem. In [5] the problem of class fragments 
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allocation in Distributed Object Oriented Database 
(DOODB) has been addressed. They introduced a general 
taxonomy based on the data model, degree of redundancy 
and design objectives. A valuable work introduced by 
Bellartreche et el. [4] considered the allocation of OODB 
methods and attributes using hill-climbing algorithm that 
enhances the quality of an initial allocation solution. They 
proved that through hill climbing technique, the initial 
allocation solution can be improved and in many cases 
reach the optimal solution. They developed and used a 
cost function to evaluate the solutions. However, hill-
climbing algorithm has the disadvantage of getting stuck 
in local minima while the search for optimal solution. 
Another possible way of finding the optimal allocation is 
to use either exhaustive search or Branch and Bound 
search technique. Both of them suffer from long search 
time.

2.2. Method Execution in DOODS

In object-oriented classes, there are basically two kinds of 
methods; simple and complex. Simple methods are those 
that do not invoke other methods of other classes when 
executing.  Complex  methods  are  those  that  can invoke 
methods of the same or of other classes when executing. 
Those invoked methods may also be simple or complex 
and  so  on.  User  applications  that  access  attributes  and 
methods of a class are of three types namely as follows 
[11, 12]: 

• Those running directly on this class.
• Those running on descendants of this class.
• Those  running  on  methods  of  other  classes  in  the 

database that use methods of this class.

Another issue to consider is that during the execution of 
any method there could be a need for objects that are not 
available  on  the  site  containing  this  method  (remote 
objects).  Thus,  these objects  must be transferred to the 
executing  site  in  order  to  complete  the  method’s 
execution.

3. Problem Definition

In this paper,  the problem of distributing (allocation) 
the OODB methods and attributes to the available sites 
was tackled. The distribution process aimed to find the 
best (possibly the optimal) allocation of methods and 
attributes that gives the minimum query execution time 
for a specific set of queries. One possibility is to use a 
traditional search technique that will enumerate all the 
possible allocation solutions that are then evaluated to 
get  the  best  one.  Unfortunately,  for  the  current 
available  OODBs  that  contain  large  number  of 
methods  and  attributes,  this  process  can  take 
considerable  execution  time.  Thus,  heuristic 
algorithms, such hill-climbing, were proposed to solve 
this  problem.  However,  these  techniques  lack  the 
accuracy where in many cases they do not reach the 
optimal  solutions.  So,  a  fast  yet  efficient  search 
technique is required that enables the designer to find 

the best allocation schema in smaller time and with the 
same accuracy of the optimal  one.  This is  important 
especially for the situations of rapid changing database 
systems. 
 
3.1. The Proposed Allocation Technique

This paper presents a new technique for allocation of 
object-oriented database methods and attributes to a 
number of given sites based on GA. The proposed 
technique while using GA for search aims to overcome 
the problems associated with previous techniques, such 
as: exhaustive search, Branch and Bound and hill-
climbing. Through iterative steps, the genetic algorithm 
searches the solution space for possible allocations, 
evaluating them using a developed cost function and 
finally finds the best allocation that in most cases is the 
optimal one. The GA uses a cost function that is 
developed through this paper to evaluate the quality of 
each possible allocation in terms of total methods 
execution time. This cost function computes the total 
cost of executing the queries in terms of data transferred 
between the sites participating in executing the queries. 

 The proposed technique uses two different algorithms 
for allocation. First, it uses GA to obtain an allocation of 
database methods to the available sites. For each possible 
methods allocation, the attributes of the database are 
allocated using method-attribute affinity approach found 
in [11, 12]. The GA uses a cost function to evaluate the 
possible allocations. Through the iterative steps of GA, 
the search space of the problem is explored and a final 
best solution that may be the optimal or near optimal one 
is provided.

3.2. Developing the Cost Function 

The most significant cost to consider in DOODB 
system is the cost of transferring data between the 
sites. The derived cost function in this paper computes 
the total methods’ cost incurred by all methods in the 
database when it is called from the different sites. The 
cost of calling a method is simply expressed by the 
sum of all communicational cost (data transferred) 
between the site containing this method and the sites 
calling it. Thus, when computing the execution time of 
any method, its type should be identified first. If it is a 
simple method, then the only cost to consider is the 
cost of transferring the resultant data from executing 
the method to the calling site. While if it is a complex 
one, the cost of the invoked methods should be 
included in the cost equation. We also have to know if 
it requires any remote objects transfer. This occurs 
when the method requires objects for execution that is 
not available on this site. Thus, it has to import it from 
another site to complete the execution of the method. 
If so, the cost of transferring these objects is also 
included in the cost function. Therefore, the cost of 
any method may include the following terms [4]:
• Cost of data returned to the calling sites
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• Cost of remote objects transfer
• Cost of invoked methods 

Each of these costs will be separately considered in the 
following sections. For simplicity, all the methods in 
the database are grouped and given a unique single 
subscript (mi) instead of two subscript (mi,j). In order to 
compute this cost, we first have to define the 
parameters used as illustrated in Table 1.

Table 1.  Summary and description of parameters used.

 

3.3. Cost Function for Simple Method

For a simple method, the only type of cost accounted 
for is the cost of returning the final results to the 
calling site. To clearly understand the cost incurred 
during calling a method from other sites, let’s have an 
example as shown in Figure 1. If method mk is 
allocated to site Si, the cost of executing this method 
will be the sum of all the costs of transferring the data 
returned to the calling sites from the site containing 
the method (sum of data returned(h, i) and data 
returned(b, i)).

Figure 1. Query and data transferred between Si and other sites.

The cost of returning the resultant data to the 
calling site is based on the following criteria: 
• Method Usage (MU) by the application which 

represents if or not this method is used by a query.
• Access Frequency (AF) of the applications which 

represents the number of times each query is 
initiated. 

• Amount of Data Returned (ADT) after the 
execution of this method.  

• Speed of Data Transferred (SDT) between the pairs 
of sites which sometimes called the link capacity. 

So, for any query in the system, if we can determine 
whether or not it uses the method mk (where its 
MU=1), and for this method if we know the amount of 
data returned after executing it (ADT), we can 
compute the communication cost of executing this 
method by dividing (ADT) by the speed of data 
transferred (SDT) between these two site. Multiplying 
this cost by the access frequency of the query from 
this site, we can compute the total cost due to this 
query. If we added all costs values for all queries from 
all sites that use mk, we can get the total cost of this 
method. Thus, the cost of executing a simple method 

mk allocated to site Si, as illustrated in Figure 1, can be 
given by the following equation:  
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3.4. Cost Function for Remote Objects 
Transfer

The cost of transferring the remote objects to the 
executing site depends on the size of objects 
transferred and the speed of data transfer between the 
two sites. It also depends on the access frequency of 
the applications to this method and the method usage 
by the application. We have to note that there could be 
more than one source of remote objects, thus the 
equation will sum all costs of remote objects transfer 
as follows (Figure 2):
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Figure 2.  Remote objects transferred between Si and other sites.

Symbol Description

 qj
 Query number j

 N  Total number of queries

 mi
 Method  number i

 M  Total number of methods in the database

 Si
 Site number i

 S  Total number of sites

 AF(qi ,Sj)
 The applications frequency of users queries (qi) from 
idifferent sites Sj

 SDT(Si ,Sj )
 The speed of data transferred between sites (Si, Sj) per unit 
itime where Si is client site and Sj is server site

 MU(qi,mj)
 The method usage of query qi to method mj. MU(qi,mj)= 1 
iwhen query qi  invokes method mj, otherwise MU(qi,mj)=0.

 ADT(mj)
 The amount of data returned after the execution of method 
imj.

 MMR(mi, mj)

 Method-Method Reference, MMR(mi, mj)=1 if method mi 

iis a complex method that invokes method mj. If method mi 

iis simple, this value =0.

 Obj_size(mj)  Size of objects required to execute method mj

 MAR(Mj , Ai)
 Method-Attribute reference that determines the attributes 
ireferenced (used) by a method use.

S
i

m
kS

h

Query(h,i)

S
b

Query(b,i)

Data returned(h,i) Data returned(b,i)

S
i

m
k

S
h

Query(h,i)

S
b

Data returned(h,i)
Remote 
objects(b,i)

S
nRemote 

objects(n,i)



A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases… 
21

3.5. Cost Function for Invoked Methods

For complex methods, the cost equation becomes very 
complicated. A complex method calls (invokes) other 
methods (called invoked methods) during its 
execution. This type of relation between methods is 
called method-method dependency where a complex 
method mi calls another method md in the same class 
or in a different class. The dependency of methods can 
be detected through the Method-Method Reference 
(MMR)  matrix as described in Table 1. We have to 
include the effect of a complex method by adding the 
cost of its invoked methods to the cost equation. 

To better understand the terms participating in 
computing the complex method's cost, let's assume that 
mk is a complex method allocated to site Si. This 
method uses method md allocated at site Sb during its 
execution. Figure 3 illustrates the scenario of querying 
mk from a third site Sh. There are two amount of data 
transferred during the execution of the complex 
method mk: data returned1 and data returned2. The first 
amount (data returned1) is returned from site Sb (that 
holds the invoked method md) to Si (that holds the 
complex method mk) after executing md. This partial 
results is required to complete the execution of the 
complex method mk. While the second amount (data 
returned2) is the final results returned to site Sh from Si 

after executing mk. 
Thus, the cost of executing md is the cost of 

returning the partial results (data returned2) to the site 
holding the complex method. This cost depends on the 
amount of data returned and the speed of data transfer 
between the two sites. Note that this cost will equal to 
zero if both mk and mj are allocated to the same site and 
if method mk is simple method (as MMR=0 means no 
invoked methods). If the complex method invokes 
more than one method then the cost will e the sum of 
all these costs as follows:
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mk : complex method
md: invoked method
Sh : querying site
Si: allocation site of mk
Sb: allocation site of mj

Figure 3.  Data transferred when executing a complex method.

In many cases the invoked method itself is a 
complex method, thus its cost value must include the 
cost of the invoked methods it requires and so on. It 

also may need remote objects from other sites which 
will require adding the cost of remote objects transfer 
to its cost equation. Thus, in general, we can express 
the cost of invoking a method as: 

COST/
d(mk) = COSTd(mk) + COSTo(md) + COSTd(md)      (4)

where the first term, which accounts for the basic cost 
of the invoked method(s) required by mk, is computed 
using equation 3, the second term, which accounts for 
the possible remote objects cost by the invoked 
method md, is computed using equation 2 and the third 
term, which accounts for any invoked method(s) 
called by md itself, is computed using equation 3 in 
recursive manner. 
Finally, the total cost of any method is expressed as:

COST(mk)= COSTs(mk) + COSTo(mk) + COST/
d(mk)         (5)

The last two terms may be zero if the method is 
simple. The cost function that computes the total cost 
of all methods in the database (simple or complex) is 
given by:
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Equation 6 represents the general form of total 
methods cost that is used by the GA to evaluate the 
possible allocations.

3.6. Method-Attribute Affinity Approach

After generating the methods allocation, the second 
stage of the proposed technique extends each method 
allocation produced in the previous stage to 
incorporate all attributes accessed by methods on this 
site. This is accomplished based on the affinity 
between the attributes and the methods. Also for 
simplicity, all the attributes in the database are 
grouped and given a unique single subscript (Ai) 
instead of two subscript (Ai,j). The following steps are 
used to generate the attributes allocation:

• The method-attribute reference information of the 
methods is used to include for each site all 
attributes accessed by methods on this site.

• There are cases when some attributes overlap in 
more than one site that occurs when the same 
attribute of a class belongs to the method attribute 
reference sets of two different methods at two 
different sites. Since our objective is to find a final 
non-overlapping method/attribute allocation, a 
technique is needed to decide at which site it is most 
beneficial to keep an overlapping attribute.

To solve such problem we use the Affinity Rule in [11] 
to decide which site will keep each overlapping 
attribute. This rule determines the affinity between the 
overlapping attribute and each of the sites containing it 
using the Attribute Fragment Affinity (AFA) statistics. 
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Attribute Fragment Affinity AFA(Ai,Sj) is a measure 
of the affinity between an attribute Ai and the methods 
allocated on a specific site Sj. For each attribute, the 
affinity is measured to all the available sites using the 
following equation [11, 12]:
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where m is the number of methods on the site Sj, N is 
the number of user queries and S is the number of 
sites, MAR(Ai, mk) is the attributes accessed by method 
mk, MU(qp, mk) is the method usage of query qp to 
method mk, and AF(qp, Sl) is the application access 
frequency from site Sl. It then places the attribute on 
the site with the highest affinity measure produced by 
the previous equation and removes it from every other 
site.

4. Genetic Algorithms

Genetic Algorithms (GAs) are robust and adaptive 
methods for solving search and optimization problems. 
They navigate through the large search space of complex 
problems to get the best solution [9, 13, 17]. They 
overcome some of the problems of traditional search 
methods such as hill-climbing [4] which can cause 
missing the global optimum (best solution) by getting 
stuck at local optimum points. GA attempts to solve the 
problems in a fashion similar to the way in which human 
genetic process seems to operate. GA traditionally works 
with a population of items (individuals), as candidate 
solutions of search space. Population most commonly 
contains 10-200 items that are usually fixed-length 
strings where each string is an encoding of the problem 
input data. Fitness function is defined to evaluate the 
quality of the strings in population. For each string, the 
objective function is calculated which determines the 
fitness or quality value of that individual. Probabilistic 
rules (not deterministic) are used to direct the search for 
the best solution in the algorithm. The genetic algorithm 
uses the current population of individuals to create a new 
one such that the individuals in the new population are, 
on average, better than those in the current population. 

GA has three operators in order to get the new 
population from the old one: selection and reproduction, 
crossover and mutation. These operators are used 
iteratively for a number of iterations called generations 
to reach the best solution as shown in Figure 4. 
Theoretically, the best number of generations is the one 
that makes 95% of the individual optimal solution.
GA uses the described operators iteratively as follows:

1. Generate an initial population, repeating random 
strings of fixed size.

2. Do the selection, reproduction, crossover and 
mutation operations of the all population.

3. Replace the old population with the new one.

4. Repeat steps (2, 3) until number of iterations is 
finished.

5. Display the best answer found (which has the 
highest-fitness).

Figure 4. The basic genetic steps.

There are two key issues to be considered before 
using GA, which are how to represent the solution in 
GA domain and how to evaluate each solution.

4.1. Solution Representation in GA Domain

GA works on a population set of strings (or 
individuals). Each string of a population is a proposed 
solution and is encoded based on input data of the 
target application. In our work, a string is divided into 
M elements (parts) each corresponds to a method in 
the database. Each element will hold an integer 
number that represents the site number at which this 
method is proposed to be allocated. Thus, if we have a 
total of M methods in the database to be allocated to S 
available sites, the solution string is M bits long and 
the numbers found in each element will be between 1 
and S. Figure 5 shows the solution representation of 
the problem. 

        m1          m2         m3                                                                mM

                    M- bits long

Figure 5. Solution representation in GA domain.

As an example, let's assume having 5 methods and 
3 sites. One of the proposed allocation solutions is 
shown in Figure 6. This solution indicates that m1 and 
m4 are allocated to site 1, m2 and m5 are allocated to 
site 2, and m3 is allocated to site 2 (as shown in Figure 
7). 

Figure 6. An example of solution representation.

New PopulationOld Population

Mutation

Mating

Selection

Crossover

Evaluation

Site 1

m
1

m
4

Site 2

m
3

Site 3

m
2

m
5

1 3 2 1 2

m
1

m
2

m
3

m
4

m
5



A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases… 
23

Figure 7. An allocation solution corresponding to the example.

4.2. Fitness Function Computation

For each solution (string), an objective function is 
calculated which determines the fitness or quality value 
of the solution. The objective function in our problem 
will be the total communication cost of that solution. The 
cost function developed in section 3.3 is used to evaluate 
the fitness of each of the proposed solution. The 
solution that has the minimum fitness will be the best 
solution.

4.3. The Genetic Algorithm Operators

The first basic step of the genetic algorithm is to 
initialize the population either totally random or 
partially random seeded with one or more initial 
solutions. The initial solution is obtained using an 
algorithm described later. The proposed allocation 
provides methods allocation. To complete the 
distribution of the database, the attributes have to be 
allocated. The allocation of attributes is performed 
using method-attribute affinity algorithm discussed 
earlier. The fitness function is then computed for each 
individual. A new population will be generated from 
the old one by applying the genetic algorithm 
operators to the old population. GA has three 
operators: selection and reproduction, crossover and 
mutation. These operators will be discussed next.

4.3.1. Generating an Initial Solution

Through previous use of GA in other research areas, I 
found that the convergence of GA towards the optimal 
solution is accelerated if it is seeded with at least one 
proper initial solution [13]. The algorithm used to 
generate the initial solution differs according to the 
application. In this work, the following steps are used 
to generate an initial allocation solution that will be 
added to the random solutions:

1. Consider all the methods in the database to be 
simple (for simplicity and speed).

2. For each method, compute the cost of allocation to 
each of the available sites using equation 1.

3. From these results, for each method, choose the site 
that gives the minimum cost for allocating this 
method.

4. Repeat steps 2 and 3 for all methods until each 
method has a specific site for allocation.

5. Represent the solution string as described in section 
4.1

4.3.2.  The Selection and Reproduction Operator

The selection and reproduction operator selects 
individuals from the old population according to their 
fitness to perform the crossover on them. The individuals 
with lower-fitness (lower cost value) will have a higher 
probability of being chosen than the higher-fitness 
(higher cost value) individuals. The lower-fitness 
individuals in our case represent the solutions with lower 
communication cost that we desire to keep.

4.3.3. The Crossover Operator

From those selected individuals, pairs are selected 
randomly to perform the crossover on them to 
reproduce a new pair of individuals. The crossover 
operator combines the different parts of the selected 
strings around the crossover point to form new pair of 
strings that it is assumed to have better fitness than their 
parents. Crossover can be one-point or two points. in the 
proposed algorithm, only one-point crossover is used as 
Fig. 8 shows. The crossover point is located after a 
number of elements in the solution string. The result of 
the mating (or crossover) is only accepted and added to 
the new population if it has better fitness than its parents. 
The new generated individuals will replace the poor 
performance individuals presented in the old population.

                    Old solutions                         New solutions

Figure 8. One-point crossover in GA.

4.3.4.  The Mutation Operator

After  performing  the  crossover  and  storing  the  new 
population, the mutation operator should be applied to 
the whole generated population. In our work, this step 
is  only performed  on  the  worst  fitness  individuals 
(having higher fitness which means higher total  cost 
values)  hoping  to  generate  better  individuals  from 
them. At the same time, it provides a way to explore 
new  regions  of  the  search  space  and  generate  new 
alternatives without destroying the current good low-
fitness  solutions.  One  type  of  mutation  operator  (as 
Figure 9 shows) is  to exchange the positions of  two 
elements of the solution string. The two elements will 
be  selected  randomly  from  the  string  bits.  The 
generated  individual's  fitness  is  computed  and  the 
individual is kept in its place in the population if it has 
better fitness than the old one. Otherwise, the old non-
mutated individual is kept.

Performing all the operators on the old population 
will  generate  a new population.  The new population 
will  consist  of  the  best  individuals  in  the  old 
population and the new generated individuals that has 
better fitness than the old ones. These individuals will 
replace  the  worst  fitness  individuals  of  the  current 
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generation keeping the total number of individuals in 
each  generation  constant.  The  GA  steps  will  be 
repeated  until  convergence  to  the  optimal  solution 
occurs or until  the number of possible generations is 
reached. If convergence occurs, all the solutions in the 
new generation will be copies of one solution that is 
the optimal one.

Figure 9. Mutation in GA.
In  general,  the  larger  the  population  size  and  the 

number of iterations used, the better the chance that an 
optimal  solution  will  be  found.  A trade-off  must  be 
made  between  these  two  parameters  (the  population 
size and the number  of  iterations) and the execution 
time cost of the GA. The number of generations must 
be adjustable, too big numbers can take a long time to 
converge,  while  small  one  can  cause  missing  the 
optimal solution by not converging. In our work, due 
to  the  precedence  and  the  system  constraints,  the 
algorithm gives excellent results (as discussed next) in 
a reasonable search time.

5. Experimental Results and Analysis

The proposed GA was experimented using a number of 
randomly  generated  test  cases.   The  data  for  the 
computation process for each test case such as number 
of  classes,  number  of  methods,  number  of  sites, 
network  link  speeds,  number  of  queries,  etc  …..are 
also randomly produced. The proposed technique starts 
by producing an initial  solution,  which is  a possible 
allocation  of  methods  to  the  available  sites,  after 
encoding  the  solution  in  GA  domain.  Then,  GA's 
population  is  generated  randomly  and  the  initial 
solution  is  injected  among  the  individuals.  The 
algorithm  when  a  convergence  occurs  or  when  the 
number  of  generations ends reaches  a  final  solution. 
This  solution  represents  the  best  allocation  of  the 
methods.  However,  the  algorithm  gives  a  list  of 
obtained  solutions  produced  through  the  search  for 
further analysis by the designer. The produced solution 
is  compared  to  the  optimal  solution  produced  by 
Branch and Bound technique. 

Table  2  lists  the  results  of  the  experiments 
conducted and shows the number of methods, number 
of sites, solutions generated by the proposed algorithm, 
the approximated time required to reach convergence 
to the optimal solution by GA algorithm and the time 
required to reach the optimal solutions by Branch and 
Bound. 

Table 2. Results of the proposed technique and the Branch and 
Bound technique.

No. of 
Methods

No. of
Sites

No. of 
Solutions

GA Time B&B Time

5 3 15 120 530
10 4 37 230 4320
15 5 48 310 7250
20 6 69 370 9130
25 10 94 530 12450

      
From  these  results,  it  can  be  concluded  that  the 

proposed algorithm that uses GA effectively produced 
optimal results in most cases and near optimal results 
in  few  cases.  In  these  cases,  the  algorithm  can  be 
repeated to get the optimal solution. However, the time 
required by the proposed algorithm is far smaller than 
the time required by Branch and Bound technique to 
produce the results.

Table 3. GA vs hill climbing produced solutions.

No. of 
Methods

No. of 
Sites

GA Time to 
Optimal

Hill Climbing Time to 
Optimal

5 3 120 210
10 4 230 290
15 5 310 Not reached
20 6 370 Not reached
25 10 530 Not reached

The  proposed  algorithm is  also  compared  against 
the hill-climbing algorithm in [4]  and the results  are 
shown in Table 3. From these results we can see that 
GA  outperforms  hill-climbing  algorithm,  which  in 
many cases fails to reach the optimal solution, in terms 
of the ability to reach the optimal solution and in term 
of time required to reach the optimal solution.

6. Conclusions 

With the wide spread of databases, new generations of 
database model  have evolved introducing the object-
oriented database model. The object model is suitable 
for the new trend in applications that uses multimedia 
data  instead  of  regular  types  of  data.  A  problem 
associated  with  the  massive  amount  of  data  is  their 
distribution among different sites. Efficient allocation 
of data can drastically minimize the time required to 
execute any query by locating the right data in the right 
site and excluding the irrelevant data. 

This  paper  introduced  a  novel  technique  for 
allocation of the object-oriented database methods that 
aimed  to  obtain  the  best  allocation  of  methods  and 
attributes.  The optimal  allocation is  the  one that  has 
minimum data transfer cost among different sites thus 
minimum  the  query  execution  time.  The  proposed 
technique used the genetic algorithm to find the best 
allocation  of  methods  and  method-attribute  affinity 
approach  to  find  the  attribute  allocation.  A  cost 
equation  is  derived  in  this  paper  and  used  by  the 
genetic algorithm search technique to evaluate the cost 
of the solutions. The experimental results verified that 
the proposed algorithm is capable of finding the best 
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allocation of  the  methods  to  the  available  sites.  The 
performance  of  the  proposed  algorithm  also  was 
compared against an existing algorithm that uses hill-
climbing search technique and Branch and Bound. The 
results  of  the  proposed  algorithm  showed  that  GA 
outperforms the technique that uses hill  climbing for 
search in reaching better results for allocation in terms 
of required search time and the quality of the produced 
solution as it  was able to reach the optimal  solution 
without falling into a local minimum solution as hill-
climbing  did.  It  also  showed  better  performance  in 
terms of time required to reach optimal solution when 
compared to the Branch and Bound search technique.
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