
The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009 17

A New Allocation Technique for Methods and
Attributes in Distributed Object-Oriented

Databases Using Genetic Algorithms
Amany Sarhan

Faculty of Engineering,Tanta University, Egypt

Abstract: With the wide increase in using distributed object-oriented databases, it became important to find an efficient
technique to store large-scale databases on the different sites. The allocation of object-oriented database involves allocation
of both methods and attributes within the classes. The main objective of this paper is to introduce a new technique for
allocating the distributed object-oriented database methods and attributes among N sites. The proposed technique uses
genetic algorithm to find the best allocation (optimal or near optimal) of the object-oriented database methods and attributes
to the available sites. A cost function that computes the total data transfer during the execution of queries is developed. The
genetic algorithm steps use this cost function to evaluate the possible allocations of methods. Validation of the proposed
technique is done via simulation. The experimental results of the proposed technique depict that it has a great impact in
reducing the total time required to find the best allocation and in most of the cases it reaches the optimal allocation of the
methods.

Keywords: Object-oriented database, allocation, methods, attributes, genetic algorithm, distributed database.

Received November 19, 2006; accepted June 17, 2007

1. Introduction

Database systems have been applied to a wide range of
applications including, for example, computer-aided
design and multimedia databases [8, 24]. Those new
applications need to handle audio, video, text, and
graphics data. The relational model due to its
limitations is unable to manage such type of data.
Thus, new data models, new query languages, new
transaction models, and new fragmentation techniques
are required for those applications. As a result,
database researchers introduced new data models, such
as the object-oriented, to overcome the relational
model's limitations [3, 5, 6, 8, 11]. However, the
object-oriented model presented new features that were
not available at the relational model such as
inheritance, encapsulation, object identity and complex
objects, which will require different techniques for
data management [1, 3].

 Accompanied with the database evolution is the
vast need for distributed system producing the
Distributed Database Systems (DDBS). DDBS is a
decentralized DB system spread over different sites
which are connected by underlining communication
networks. Each site contains a portion of the global DB
system. Since data and applications are spread over
different sites over the network, DDBS can provide
higher reliability and availability. DDBS also promises
to provide improved performance obtained by

distributed processing. Local queries and transactions
tend to be much faster since the local database is just a

portion of the global database and is much smaller
compared to a centralized one [24].

 However, DDBS adds more complexity in terms of
its design and implementation [8, 24]. The design of
distributed database enhances the performance of the
application in two ways [20]: by reducing the amount
of irrelevant data accessed by the applications and by
reducing the amount of data transferred in processing
the applications. There are two main activities in
distributed database design: partitioning and allocation,
which refers to partitioning the data and allocating
fragments to various sites, respectively. The result of
an allocation process is an allocation schema. The
research work in relational database has proved that the
allocation process is an NP complete problem [2, 5].
The distribution of database to the available sites is the
backbone of the DDBS success. There exist many
distribution possibilities, one of them can be several
order of magnitudes faster than another. It is therefore
important to carefully use a technique that finds a good
(i.e. faster) distribution of data, ideally the best one if
possible. Techniques that may assist designers in
determining the optimal fragmentation and allocation
of the fragments are important, especially in the early
stages of designing a reliable distributed database
system, which in turn will affect the overall
performance for the system later on [4].

18 The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009

Traditionally in relational database, fragmentation
can be classified into three types: vertical, horizontal,
and hybrid. The vertical fragmentation aims to break
up a relation into a set of relations while the horizontal
fragmentation aims to break the large number of
instants into disjoint subsets each of which will be
allocated to different sites [1, 21, 22, 24]. The hybrid
fragmentation first divides the relation horizontally,
and then splits each of the obtained fragments
vertically or vice versa. Many allocation techniques
have been introduced for allocating the produced
fragments [2, 10, 21]. In [2] the allocation technique
aimed to minimize the total transfer cost, while [10]
proposed a strategy that integrates the treatment of
relation assignment and query strategy to optimize the
performance of DDBS. A site-independent fragment
dependency graph representation was developed in
[21] to model the dependencies between the fragments.
Then the data allocation problem was formulated as a
mapping problem, which can be mapped to a
maximum flow minimum cost problem to achieve an
optimal solution.

In Object-Oriented DataBases (OODB), many
research have been introduced in the field of vertical,
horizontal, mixed fragmentation [7, 11, 12, 14, 20, 23].
Others have concentrated on the allocation of these
fragments [8, 9] while few concentrated on the direct
allocation of methods and attributes [4, 5, 20].

In this paper, a new technique is proposed for the
allocation of OODB methods and attributes to a
number of given sites based on Genetic Algorithm
(GA). The main objective of this technique is to obtain
an allocation schema that minimizes the total data
transfer cost. The proposed technique, while using GA
for search [9, 13, 17], aims to overcome the problems
associated with previous search techniques, such as:
hill-climbing [4], exhaustive search or Branch and
Bound. Through iterative steps, the genetic algorithm
searches the solution space for possible allocations,
evaluating them using a developed cost function and
finally finds the best allocation schema that in most
cases is the optimal one.

2. Basic Object-Oriented Databases
Concepts

The OODB differs from the relational databases in that
instead of having records, OODB has objects. Each
object has an object identity. Identity is that property
of an object, which distinguishes it from all other
objects [3, 6, 16]. Any object belongs to a specific
class. A class is a set of objects that share a common
structure and a common behavior. A class summarizes
the common features of a set of objects; a class has
attributes, which constitutes the data within the object,
and a set of operations using which the user can
manipulate the object’s attributes. A class (called
subclass) can inherit some (or all) of the properties of

another class (called superclass) and adds to it.
Inheritance is the ability of a subclass to receive all
data and operations coming from its superclass.

The internal structure of the object is hidden from
the user using what so called encapsulation.
Encapsulation means an object contains both programs
and data and offers to the world an interface and an
implementation part called methods. The interface part
is the specification of the set of operations that can be
performed on the object; the implementation part
describes the implementation of each operation. In
most OODB, even data specification is part of the
interface. Objects can be simple or complex; complex
objects are built from simpler ones by applying
constructors to them. The object constructors must be
orthogonal, this means any constructor should apply to
any object. Users of the system may define additional
operations on complex objects.

2.1. Previous Work

In OODB the main objective of vertical fragmentation is
to break a class into a set of smaller classes (called
fragments) to permit user applications to execute using
one fragment located at local sites which means minimum
user application execution time [8, 9, 24]. The horizontal
fragmentation in OODB aims to break the instants
(objects) of the class into fragments to reduce the query
execution time by minimizing the number of irrelevant
objects accessed and reducing the data transfer among
sites [20, 23]. Horizontal fragmentation is subdivided into
two steps: primary and derived fragmentation. Primary
fragmentation basically optimizes set operations over a
class extension first by reducing the amount of irrelevant
data accessed and secondly by permitting applications to
be executed concurrently. The derived fragmentation
clusters objects of distinct classes in the disk. The hybrid
fragmentation in OODB divides the classes both
vertically then horizontally or vice versa. Vertical class
partitioning is a type of vertical fragmentation that
partitions the database classes to reduce irrelevant disk-
stored data in local site [7, 14, 15, 18, 19].

There is only little research work directed towards the
allocation of OODB methods and attributes relatively to
those directed to the relational model due to the
complexities added by the object-oriented model. Some
of the previous work like [11, 12, 23] concentrated on
allocating fragments produced by other fragmentation
techniques. The fragmentation techniques are first used to
obtain methods and attributes fragments as in [11, 12].
Then an allocation technique is used to allocate those
fragments. The research work in [15] tackled the problem
of vertical class partitioning and based the partitioning
algorithm on a developed cost model rather than affinity.

However, little work focused on the method allocation
problem for OODB such as [4, 5, 20]. Karlapalem et al.
[2] tackled the problem of the allocation in two
directions: class fragments allocation and methods
allocation. However, their algorithm was not effective to
solve the problem. In [5] the problem of class fragments

A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases…
19

allocation in Distributed Object Oriented Database
(DOODB) has been addressed. They introduced a general
taxonomy based on the data model, degree of redundancy
and design objectives. A valuable work introduced by
Bellartreche et el. [4] considered the allocation of OODB
methods and attributes using hill-climbing algorithm that
enhances the quality of an initial allocation solution. They
proved that through hill climbing technique, the initial
allocation solution can be improved and in many cases
reach the optimal solution. They developed and used a
cost function to evaluate the solutions. However, hill-
climbing algorithm has the disadvantage of getting stuck
in local minima while the search for optimal solution.
Another possible way of finding the optimal allocation is
to use either exhaustive search or Branch and Bound
search technique. Both of them suffer from long search
time.

2.2. Method Execution in DOODS

In object-oriented classes, there are basically two kinds of
methods; simple and complex. Simple methods are those
that do not invoke other methods of other classes when
executing. Complex methods are those that can invoke
methods of the same or of other classes when executing.
Those invoked methods may also be simple or complex
and so on. User applications that access attributes and
methods of a class are of three types namely as follows
[11, 12]:

• Those running directly on this class.
• Those running on descendants of this class.
• Those running on methods of other classes in the

database that use methods of this class.

Another issue to consider is that during the execution of
any method there could be a need for objects that are not
available on the site containing this method (remote
objects). Thus, these objects must be transferred to the
executing site in order to complete the method’s
execution.

3. Problem Definition

In this paper, the problem of distributing (allocation)
the OODB methods and attributes to the available sites
was tackled. The distribution process aimed to find the
best (possibly the optimal) allocation of methods and
attributes that gives the minimum query execution time
for a specific set of queries. One possibility is to use a
traditional search technique that will enumerate all the
possible allocation solutions that are then evaluated to
get the best one. Unfortunately, for the current
available OODBs that contain large number of
methods and attributes, this process can take
considerable execution time. Thus, heuristic
algorithms, such hill-climbing, were proposed to solve
this problem. However, these techniques lack the
accuracy where in many cases they do not reach the
optimal solutions. So, a fast yet efficient search
technique is required that enables the designer to find

the best allocation schema in smaller time and with the
same accuracy of the optimal one. This is important
especially for the situations of rapid changing database
systems.

3.1. The Proposed Allocation Technique

This paper presents a new technique for allocation of
object-oriented database methods and attributes to a
number of given sites based on GA. The proposed
technique while using GA for search aims to overcome
the problems associated with previous techniques, such
as: exhaustive search, Branch and Bound and hill-
climbing. Through iterative steps, the genetic algorithm
searches the solution space for possible allocations,
evaluating them using a developed cost function and
finally finds the best allocation that in most cases is the
optimal one. The GA uses a cost function that is
developed through this paper to evaluate the quality of
each possible allocation in terms of total methods
execution time. This cost function computes the total
cost of executing the queries in terms of data transferred
between the sites participating in executing the queries.

 The proposed technique uses two different algorithms
for allocation. First, it uses GA to obtain an allocation of
database methods to the available sites. For each possible
methods allocation, the attributes of the database are
allocated using method-attribute affinity approach found
in [11, 12]. The GA uses a cost function to evaluate the
possible allocations. Through the iterative steps of GA,
the search space of the problem is explored and a final
best solution that may be the optimal or near optimal one
is provided.

3.2. Developing the Cost Function

The most significant cost to consider in DOODB
system is the cost of transferring data between the
sites. The derived cost function in this paper computes
the total methods’ cost incurred by all methods in the
database when it is called from the different sites. The
cost of calling a method is simply expressed by the
sum of all communicational cost (data transferred)
between the site containing this method and the sites
calling it. Thus, when computing the execution time of
any method, its type should be identified first. If it is a
simple method, then the only cost to consider is the
cost of transferring the resultant data from executing
the method to the calling site. While if it is a complex
one, the cost of the invoked methods should be
included in the cost equation. We also have to know if
it requires any remote objects transfer. This occurs
when the method requires objects for execution that is
not available on this site. Thus, it has to import it from
another site to complete the execution of the method.
If so, the cost of transferring these objects is also
included in the cost function. Therefore, the cost of
any method may include the following terms [4]:
• Cost of data returned to the calling sites

20 The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009

• Cost of remote objects transfer
• Cost of invoked methods

Each of these costs will be separately considered in the
following sections. For simplicity, all the methods in
the database are grouped and given a unique single
subscript (mi) instead of two subscript (mi,j). In order to
compute this cost, we first have to define the
parameters used as illustrated in Table 1.

Table 1. Summary and description of parameters used.

3.3. Cost Function for Simple Method

For a simple method, the only type of cost accounted
for is the cost of returning the final results to the
calling site. To clearly understand the cost incurred
during calling a method from other sites, let’s have an
example as shown in Figure 1. If method mk is
allocated to site Si, the cost of executing this method
will be the sum of all the costs of transferring the data
returned to the calling sites from the site containing
the method (sum of data returned(h, i) and data
returned(b, i)).

Figure 1. Query and data transferred between Si and other sites.

The cost of returning the resultant data to the
calling site is based on the following criteria:
• Method Usage (MU) by the application which

represents if or not this method is used by a query.
• Access Frequency (AF) of the applications which

represents the number of times each query is
initiated.

• Amount of Data Returned (ADT) after the
execution of this method.

• Speed of Data Transferred (SDT) between the pairs
of sites which sometimes called the link capacity.

So, for any query in the system, if we can determine
whether or not it uses the method mk (where its
MU=1), and for this method if we know the amount of
data returned after executing it (ADT), we can
compute the communication cost of executing this
method by dividing (ADT) by the speed of data
transferred (SDT) between these two site. Multiplying
this cost by the access frequency of the query from
this site, we can compute the total cost due to this
query. If we added all costs values for all queries from
all sites that use mk, we can get the total cost of this
method. Thus, the cost of executing a simple method

mk allocated to site Si, as illustrated in Figure 1, can be
given by the following equation:

∑ ∑
= ≠=

=
N

j

S

ill li

kljkj

ssSDT

mADTsqAFmqMU

1 ,1
k),(

)(*),(*),(
)COST(m

(1)

3.4. Cost Function for Remote Objects
Transfer

The cost of transferring the remote objects to the
executing site depends on the size of objects
transferred and the speed of data transfer between the
two sites. It also depends on the access frequency of
the applications to this method and the method usage
by the application. We have to note that there could be
more than one source of remote objects, thus the
equation will sum all costs of remote objects transfer
as follows (Figure 2):

∑ ∑
= ≠=

=
N

j

S

ill li

kljkj

ssSDT

msizeObjsqAFmqMU

1 ,1
ko

),(

)(_*),(*),(
)(mCOST

(2)

Figure 2. Remote objects transferred between Si and other sites.

Symbol Description

 qj
 Query number j

 N Total number of queries

 mi
 Method number i

 M Total number of methods in the database

 Si
 Site number i

 S Total number of sites

 AF(qi ,Sj)
 The applications frequency of users queries (qi) from
idifferent sites Sj

 SDT(Si ,Sj)
 The speed of data transferred between sites (Si, Sj) per unit
itime where Si is client site and Sj is server site

 MU(qi,mj)
 The method usage of query qi to method mj. MU(qi,mj)= 1
iwhen query qi invokes method mj, otherwise MU(qi,mj)=0.

 ADT(mj)
 The amount of data returned after the execution of method
imj.

 MMR(mi, mj)

 Method-Method Reference, MMR(mi, mj)=1 if method mi

iis a complex method that invokes method mj. If method mi

iis simple, this value =0.

 Obj_size(mj) Size of objects required to execute method mj

 MAR(Mj , Ai)
 Method-Attribute reference that determines the attributes
ireferenced (used) by a method use.

S
i

m
kS

h

Query(h,i)

S
b

Query(b,i)

Data returned(h,i) Data returned(b,i)

S
i

m
k

S
h

Query(h,i)

S
b

Data returned(h,i)
Remote
objects(b,i)

S
nRemote

objects(n,i)

A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases…
21

3.5. Cost Function for Invoked Methods

For complex methods, the cost equation becomes very
complicated. A complex method calls (invokes) other
methods (called invoked methods) during its
execution. This type of relation between methods is
called method-method dependency where a complex
method mi calls another method md in the same class
or in a different class. The dependency of methods can
be detected through the Method-Method Reference
(MMR) matrix as described in Table 1. We have to
include the effect of a complex method by adding the
cost of its invoked methods to the cost equation.

To better understand the terms participating in
computing the complex method's cost, let's assume that
mk is a complex method allocated to site Si. This
method uses method md allocated at site Sb during its
execution. Figure 3 illustrates the scenario of querying
mk from a third site Sh. There are two amount of data
transferred during the execution of the complex
method mk: data returned1 and data returned2. The first
amount (data returned1) is returned from site Sb (that
holds the invoked method md) to Si (that holds the
complex method mk) after executing md. This partial
results is required to complete the execution of the
complex method mk. While the second amount (data
returned2) is the final results returned to site Sh from Si

after executing mk.
Thus, the cost of executing md is the cost of

returning the partial results (data returned2) to the site
holding the complex method. This cost depends on the
amount of data returned and the speed of data transfer
between the two sites. Note that this cost will equal to
zero if both mk and mj are allocated to the same site and
if method mk is simple method (as MMR=0 means no
invoked methods). If the complex method invokes
more than one method then the cost will e the sum of
all these costs as follows:

∑∑
≠==

=
M

bi,1d bi

dkdlj
N

1j
kd

)s,s(SDT

)m,m(MMR*)m(ADT*)s,q(AF
)(mCOST

(3)

mk : complex method
md: invoked method
Sh : querying site
Si: allocation site of mk
Sb: allocation site of mj

Figure 3. Data transferred when executing a complex method.

In many cases the invoked method itself is a
complex method, thus its cost value must include the
cost of the invoked methods it requires and so on. It

also may need remote objects from other sites which
will require adding the cost of remote objects transfer
to its cost equation. Thus, in general, we can express
the cost of invoking a method as:

COST/
d(mk) = COSTd(mk) + COSTo(md) + COSTd(md) (4)

where the first term, which accounts for the basic cost
of the invoked method(s) required by mk, is computed
using equation 3, the second term, which accounts for
the possible remote objects cost by the invoked
method md, is computed using equation 2 and the third
term, which accounts for any invoked method(s)
called by md itself, is computed using equation 3 in
recursive manner.
Finally, the total cost of any method is expressed as:

COST(mk)= COSTs(mk) + COSTo(mk) + COST/
d(mk) (5)

The last two terms may be zero if the method is
simple. The cost function that computes the total cost
of all methods in the database (simple or complex) is
given by:

 ∑
=

=
m

k
kmCOST

1

)(TOTAL_COST

(6)
Equation 6 represents the general form of total
methods cost that is used by the GA to evaluate the
possible allocations.

3.6. Method-Attribute Affinity Approach

After generating the methods allocation, the second
stage of the proposed technique extends each method
allocation produced in the previous stage to
incorporate all attributes accessed by methods on this
site. This is accomplished based on the affinity
between the attributes and the methods. Also for
simplicity, all the attributes in the database are
grouped and given a unique single subscript (Ai)
instead of two subscript (Ai,j). The following steps are
used to generate the attributes allocation:

• The method-attribute reference information of the
methods is used to include for each site all
attributes accessed by methods on this site.

• There are cases when some attributes overlap in
more than one site that occurs when the same
attribute of a class belongs to the method attribute
reference sets of two different methods at two
different sites. Since our objective is to find a final
non-overlapping method/attribute allocation, a
technique is needed to decide at which site it is most
beneficial to keep an overlapping attribute.

To solve such problem we use the Affinity Rule in [11]
to decide which site will keep each overlapping
attribute. This rule determines the affinity between the
overlapping attribute and each of the sites containing it
using the Attribute Fragment Affinity (AFA) statistics.

S
i

m
k

S
h

Query

S
b

Call m
d

Data returned
2

Data returned
2

m
d

22 The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009

Attribute Fragment Affinity AFA(Ai,Sj) is a measure
of the affinity between an attribute Ai and the methods
allocated on a specific site Sj. For each attribute, the
affinity is measured to all the available sites using the
following equation [11, 12]:

),()S, AF(q)S,AFA(A
1 1 1),()(1

lpji

,

kp

M

k

N

p MqMUMAMAR

S

l

mqMU
kpKi

∑∑ ∑ ∑
= = =∧ =

 =

(7)

where m is the number of methods on the site Sj, N is
the number of user queries and S is the number of
sites, MAR(Ai, mk) is the attributes accessed by method
mk, MU(qp, mk) is the method usage of query qp to
method mk, and AF(qp, Sl) is the application access
frequency from site Sl. It then places the attribute on
the site with the highest affinity measure produced by
the previous equation and removes it from every other
site.

4. Genetic Algorithms

Genetic Algorithms (GAs) are robust and adaptive
methods for solving search and optimization problems.
They navigate through the large search space of complex
problems to get the best solution [9, 13, 17]. They
overcome some of the problems of traditional search
methods such as hill-climbing [4] which can cause
missing the global optimum (best solution) by getting
stuck at local optimum points. GA attempts to solve the
problems in a fashion similar to the way in which human
genetic process seems to operate. GA traditionally works
with a population of items (individuals), as candidate
solutions of search space. Population most commonly
contains 10-200 items that are usually fixed-length
strings where each string is an encoding of the problem
input data. Fitness function is defined to evaluate the
quality of the strings in population. For each string, the
objective function is calculated which determines the
fitness or quality value of that individual. Probabilistic
rules (not deterministic) are used to direct the search for
the best solution in the algorithm. The genetic algorithm
uses the current population of individuals to create a new
one such that the individuals in the new population are,
on average, better than those in the current population.

GA has three operators in order to get the new
population from the old one: selection and reproduction,
crossover and mutation. These operators are used
iteratively for a number of iterations called generations
to reach the best solution as shown in Figure 4.
Theoretically, the best number of generations is the one
that makes 95% of the individual optimal solution.
GA uses the described operators iteratively as follows:

1. Generate an initial population, repeating random
strings of fixed size.

2. Do the selection, reproduction, crossover and
mutation operations of the all population.

3. Replace the old population with the new one.

4. Repeat steps (2, 3) until number of iterations is
finished.

5. Display the best answer found (which has the
highest-fitness).

Figure 4. The basic genetic steps.

There are two key issues to be considered before
using GA, which are how to represent the solution in
GA domain and how to evaluate each solution.

4.1. Solution Representation in GA Domain

GA works on a population set of strings (or
individuals). Each string of a population is a proposed
solution and is encoded based on input data of the
target application. In our work, a string is divided into
M elements (parts) each corresponds to a method in
the database. Each element will hold an integer
number that represents the site number at which this
method is proposed to be allocated. Thus, if we have a
total of M methods in the database to be allocated to S
available sites, the solution string is M bits long and
the numbers found in each element will be between 1
and S. Figure 5 shows the solution representation of
the problem.

 m1 m2 m3 mM

 M- bits long

Figure 5. Solution representation in GA domain.

As an example, let's assume having 5 methods and
3 sites. One of the proposed allocation solutions is
shown in Figure 6. This solution indicates that m1 and
m4 are allocated to site 1, m2 and m5 are allocated to
site 2, and m3 is allocated to site 2 (as shown in Figure
7).

Figure 6. An example of solution representation.

New PopulationOld Population

Mutation

Mating

Selection

Crossover

Evaluation

Site 1

m
1

m
4

Site 2

m
3

Site 3

m
2

m
5

1 3 2 1 2

m
1

m
2

m
3

m
4

m
5

A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases…
23

Figure 7. An allocation solution corresponding to the example.

4.2. Fitness Function Computation

For each solution (string), an objective function is
calculated which determines the fitness or quality value
of the solution. The objective function in our problem
will be the total communication cost of that solution. The
cost function developed in section 3.3 is used to evaluate
the fitness of each of the proposed solution. The
solution that has the minimum fitness will be the best
solution.

4.3. The Genetic Algorithm Operators

The first basic step of the genetic algorithm is to
initialize the population either totally random or
partially random seeded with one or more initial
solutions. The initial solution is obtained using an
algorithm described later. The proposed allocation
provides methods allocation. To complete the
distribution of the database, the attributes have to be
allocated. The allocation of attributes is performed
using method-attribute affinity algorithm discussed
earlier. The fitness function is then computed for each
individual. A new population will be generated from
the old one by applying the genetic algorithm
operators to the old population. GA has three
operators: selection and reproduction, crossover and
mutation. These operators will be discussed next.

4.3.1. Generating an Initial Solution

Through previous use of GA in other research areas, I
found that the convergence of GA towards the optimal
solution is accelerated if it is seeded with at least one
proper initial solution [13]. The algorithm used to
generate the initial solution differs according to the
application. In this work, the following steps are used
to generate an initial allocation solution that will be
added to the random solutions:

1. Consider all the methods in the database to be
simple (for simplicity and speed).

2. For each method, compute the cost of allocation to
each of the available sites using equation 1.

3. From these results, for each method, choose the site
that gives the minimum cost for allocating this
method.

4. Repeat steps 2 and 3 for all methods until each
method has a specific site for allocation.

5. Represent the solution string as described in section
4.1

4.3.2. The Selection and Reproduction Operator

The selection and reproduction operator selects
individuals from the old population according to their
fitness to perform the crossover on them. The individuals
with lower-fitness (lower cost value) will have a higher
probability of being chosen than the higher-fitness
(higher cost value) individuals. The lower-fitness
individuals in our case represent the solutions with lower
communication cost that we desire to keep.

4.3.3. The Crossover Operator

From those selected individuals, pairs are selected
randomly to perform the crossover on them to
reproduce a new pair of individuals. The crossover
operator combines the different parts of the selected
strings around the crossover point to form new pair of
strings that it is assumed to have better fitness than their
parents. Crossover can be one-point or two points. in the
proposed algorithm, only one-point crossover is used as
Fig. 8 shows. The crossover point is located after a
number of elements in the solution string. The result of
the mating (or crossover) is only accepted and added to
the new population if it has better fitness than its parents.
The new generated individuals will replace the poor
performance individuals presented in the old population.

 Old solutions New solutions

Figure 8. One-point crossover in GA.

4.3.4. The Mutation Operator

After performing the crossover and storing the new
population, the mutation operator should be applied to
the whole generated population. In our work, this step
is only performed on the worst fitness individuals
(having higher fitness which means higher total cost
values) hoping to generate better individuals from
them. At the same time, it provides a way to explore
new regions of the search space and generate new
alternatives without destroying the current good low-
fitness solutions. One type of mutation operator (as
Figure 9 shows) is to exchange the positions of two
elements of the solution string. The two elements will
be selected randomly from the string bits. The
generated individual's fitness is computed and the
individual is kept in its place in the population if it has
better fitness than the old one. Otherwise, the old non-
mutated individual is kept.

Performing all the operators on the old population
will generate a new population. The new population
will consist of the best individuals in the old
population and the new generated individuals that has
better fitness than the old ones. These individuals will
replace the worst fitness individuals of the current

h
1

t
1

h
2

 t
2

h
1

 t
2

h
2

 t
1

24 The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009

generation keeping the total number of individuals in
each generation constant. The GA steps will be
repeated until convergence to the optimal solution
occurs or until the number of possible generations is
reached. If convergence occurs, all the solutions in the
new generation will be copies of one solution that is
the optimal one.

Figure 9. Mutation in GA.
In general, the larger the population size and the

number of iterations used, the better the chance that an
optimal solution will be found. A trade-off must be
made between these two parameters (the population
size and the number of iterations) and the execution
time cost of the GA. The number of generations must
be adjustable, too big numbers can take a long time to
converge, while small one can cause missing the
optimal solution by not converging. In our work, due
to the precedence and the system constraints, the
algorithm gives excellent results (as discussed next) in
a reasonable search time.

5. Experimental Results and Analysis

The proposed GA was experimented using a number of
randomly generated test cases. The data for the
computation process for each test case such as number
of classes, number of methods, number of sites,
network link speeds, number of queries, etc …..are
also randomly produced. The proposed technique starts
by producing an initial solution, which is a possible
allocation of methods to the available sites, after
encoding the solution in GA domain. Then, GA's
population is generated randomly and the initial
solution is injected among the individuals. The
algorithm when a convergence occurs or when the
number of generations ends reaches a final solution.
This solution represents the best allocation of the
methods. However, the algorithm gives a list of
obtained solutions produced through the search for
further analysis by the designer. The produced solution
is compared to the optimal solution produced by
Branch and Bound technique.

Table 2 lists the results of the experiments
conducted and shows the number of methods, number
of sites, solutions generated by the proposed algorithm,
the approximated time required to reach convergence
to the optimal solution by GA algorithm and the time
required to reach the optimal solutions by Branch and
Bound.

Table 2. Results of the proposed technique and the Branch and
Bound technique.

No. of
Methods

No. of
Sites

No. of
Solutions

GA Time B&B Time

5 3 15 120 530
10 4 37 230 4320
15 5 48 310 7250
20 6 69 370 9130
25 10 94 530 12450

From these results, it can be concluded that the

proposed algorithm that uses GA effectively produced
optimal results in most cases and near optimal results
in few cases. In these cases, the algorithm can be
repeated to get the optimal solution. However, the time
required by the proposed algorithm is far smaller than
the time required by Branch and Bound technique to
produce the results.

Table 3. GA vs hill climbing produced solutions.

No. of
Methods

No. of
Sites

GA Time to
Optimal

Hill Climbing Time to
Optimal

5 3 120 210
10 4 230 290
15 5 310 Not reached
20 6 370 Not reached
25 10 530 Not reached

The proposed algorithm is also compared against
the hill-climbing algorithm in [4] and the results are
shown in Table 3. From these results we can see that
GA outperforms hill-climbing algorithm, which in
many cases fails to reach the optimal solution, in terms
of the ability to reach the optimal solution and in term
of time required to reach the optimal solution.

6. Conclusions

With the wide spread of databases, new generations of
database model have evolved introducing the object-
oriented database model. The object model is suitable
for the new trend in applications that uses multimedia
data instead of regular types of data. A problem
associated with the massive amount of data is their
distribution among different sites. Efficient allocation
of data can drastically minimize the time required to
execute any query by locating the right data in the right
site and excluding the irrelevant data.

This paper introduced a novel technique for
allocation of the object-oriented database methods that
aimed to obtain the best allocation of methods and
attributes. The optimal allocation is the one that has
minimum data transfer cost among different sites thus
minimum the query execution time. The proposed
technique used the genetic algorithm to find the best
allocation of methods and method-attribute affinity
approach to find the attribute allocation. A cost
equation is derived in this paper and used by the
genetic algorithm search technique to evaluate the cost
of the solutions. The experimental results verified that
the proposed algorithm is capable of finding the best

A New Allocation Technique for Methods and Attributes in Distributed Object-Oriented Databases…
25

allocation of the methods to the available sites. The
performance of the proposed algorithm also was
compared against an existing algorithm that uses hill-
climbing search technique and Branch and Bound. The
results of the proposed algorithm showed that GA
outperforms the technique that uses hill climbing for
search in reaching better results for allocation in terms
of required search time and the quality of the produced
solution as it was able to reach the optimal solution
without falling into a local minimum solution as hill-
climbing did. It also showed better performance in
terms of time required to reach optimal solution when
compared to the Branch and Bound search technique.

References

[1] Agrawal S., Narasayya V., and Yang B.,
“Integrating Vertical and Horizontal Partitioning
into Automated Physical Database Design,” in
Proceedings of the SIGMOD International
Conference, Paris, pp. 359-365, 2004.

[2] Apres P., “Data Allocation in Distributed
Database Systems,” ACM Transactions on
Database Systems, vol. 13, no. 3, pp 263-304,
1988.

[3] Atkinson M., Bancilhon F., DeWitt D., Dittrich
K., Maier D., and Zdonik S., The Object-
Oriented Database System Manifesto, Deductive
and Object-Oriented Databases, Elsevier Science
Publishers, USA, 1989.

[4] Bellatreche L., Karlapalem K., and Li Q.,
“Complex Methods and Class Allocation in
Distributed Object Oriented Databases,” in
Proceedings of the 5th International Conference
on Object Oriented Information Systems
(OOIS'98), Paris, pp. 239-256, 1998.

[5] Bhar S. and Barker K., “Static Allocation in
Distributed Object base Systems: A Graphical
Approach,” in Proceedings of the 6th

International Conference on Information System
and Data Management, CISMOD’95, Lecture
Notes in Computer Science 1006, India, pp. 92-
114, 1995.

[6] Burleson K., Inside the Database Object Model,
CRC Press LLC, 1999.

[7] Chinchwadkar G. and Goh A., “An Overview of
Vertical Partitioning in Object Oriented
Databases,” Computer Journal, vol. 42, no. 1, pp.
230-236, 1999.

[8] Connolly T. and Begg C., Database Systems,
Pearson Education limited, 2004.

[9] Corcoran A. and Hale J., “A Genetic Algorithm
for Fragment Allocation in a Distributed
Database System,” in Proceedings of ACM
Symposium on Applied Computing, USA, 1994.

[10] Cornell D. and Yu P., “An Optimal Site
Assignment for Relations in the Distributed

Database Environment,” IEEE Transactions on
Computers, vol. 15, no. 5, pp. 1004-1009, 1989.

[11] Ezeife C. and Barker K., “Vertical Fragmentation
for Advanced Object Models in a Distributed
Object Based System,” in Proceedings of the 8th

International Conference on Computing and
Information, pp. 50-67, Canada, 1995.

[12] Ezeife C. and Barker K., “Distributed Object
Based Design: Vertical Fragmentation of
Classes,” International Journal on Distributed
and Parallel Databases, vol. 6, no. 4, PP. 317-
350, 1998.

[13] Fergany T. and Sarhan A., “Efficient Allocation
of Distributed Object-Oriented Tasks to a Pre-
Defined Scheduled System,” International
Journal of Computers and Applications, vol. 28,
no. 1, pp. 35-42, 2006.

[14] Fung C., Karlapalem K., and Li Q., “An
Evaluation of Vertical Class Partitioning for
Query Processing in Object-Oriented Databases,”
IEEE Transactions on Knowledge and Data
Engineering, vol. 14, no. 5, pp. 1095-1118, 2002.

[15] Fung C., Karlapalem K., and Li Q., “Cost-Driven
Vertical Class Partitioning for Methods in Object
Oriented Databases,” VLDB Journal, vol. 12, no.
3, pp.187-210, April 2003.

[16] Hull R., Tanaka K., and Yoshikawa M.,
“Behavior Analysis of Object-Oriented
Databases: Method Structure, Execution Trees,
and Reachability,” in Proceedings of the 3rd

International Conference (FODO), pp. 39-48,
New York, 1989.

[17] Jozef K., Dusan T., Vladimir F., and Ivana L.,
Soft Computing in Industry: Recent
Applications, Springer, USA, 2002.

[18] Kamalakar K., Li Q., and Vieweg S., “Method
Induced Partitioning Schemes in Object Oriented
Databases,” in Proceedings of the 16th

International Conference On Distributed
Computing Systems, pp. 377-384, Urbana
Champaign, 1996.

[19] Karlapalem K. and Li Q., “A Framework for
Class Partitioning in Object Oriented Databases,”
Distributed and Parallel Databases, vol. 8, no. 3,
pp. 317-350, 1999.

[20] Karlapalem K., Navathe S., and Morsi M.,
Distributed Object Management, Morgan
Kaufman Publishers Inc, USA, 1994.

[21] Navathe S. and Ra M., “Vertical Partitioning for
Database Design: A Graphical Algorithm,” in
Proceedings of ACM SIGMOD International
Conference on Management of Data, USA, pp.
544-546, 1989.

[22] Navathe S., Ceri S., Wiederhold G., and Dou J.,
“Vertical Partitioning Algorithms for Database
Design,” ACM Transaction on Database
Systems, vol. 9, no. 4, pp. 680-710, 1984.

26 The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009

[23] Mattoso M., Baião F., and Zavrucha G.,
“Horizontal Fragmentation in Object DBMS:
New Issues and Performance Evaluation,” in
Proceedings of the 19th IEEE International
Performance, Computing, and Communications
Conference, California, 2000.

[24] Ozsu M. and Valduriez P., Principles of
Distributed Database Systems, Prentice Hall,
Englewood Cliffs, USA, 1999.

Amany Sarhan received the BSc degree in electronics
engineering and MSc in computer science and
automatic control from the Faculty of Engineering,
Mansoura University, in 1990, and 1997, respectively.
She awarded the PhD degree as a joint research
between Tanta University, and Mansoura University
Egypt.

