
The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009 91

Language Based Information Routing
Security: Policy Enforcement

George Oreku 1, Jianzhong Li1, and Fredrick Mtenzi2

1Department of Computer Science and Engineering, Harbin Institute of Technology, China
2 School of Computing, Dublin Institute of Technology, Ireland

Abstract: Languages-based security promises to be a powerful tool with which provably secure routing applications may be
developed. Programs written in these languages enforce a strong policy of non-interference, which ensures that high-security
data will not be observable on low-security channels. The information routing security proposed aim to fill the gap between
representation and enforcement by implementing and integrating the divers security services needed by policy. Policy is
enforced by the run-time compiler and executions based mechanism to information violating routing policy and regulation of
security services. Checking the routing requirements of explicit route achieves this result for statements involving explicit
route. Unfortunately, such classification is often expressed as an operation within a given program, rather than as part of a
policy, making reasoning about the security implications of a policy more difficult. We formalize our approach for a C++ like
language and prove a modified form of our non-interference method. We have implemented our approach as an extension to C
and provide some of our experience using it to build a secure information routing.

Keywords: Security policy, routing, condition statements

Received January 5, 2007; accepted November 6, 2007

1. Introduction

An information routing policy is a security policy that
describes the authorized paths along which that
information can route. Each model associates a label,
representing a security class, with information and with
entities containing that information. Each model has
rules about the conditions under which information can
move throughout the system. Historically
communication security policies have been always
crafted for the specific systems they support [18, 7] we
find that language provided the rudimentary tools to
achieve low-level security goals and its extension were
necessary to formulate and enforce application policy.

These languages provide a means of provably
enforcing a security policy in a broader sense. A
current technique for enforcing security routing relies
on so called best practices [11] which include
simplistic techniques (such as password, TCP,
authentication, rout filter, and private addressing) to
mitigate the most rudimentary vulnerabilities and
threats.

Security-typed languages annotate source code with
security levels on types [17], such that the compiler can
statically guarantee that the program will enforce
noninterference [5]. In a broader sense, these languages
provide a means of provably enforcing a security
policy. Theoretical models for security-typed languages
have been actively studied and are continuing to
evolve. For example, researchers are extending these
models to include new features, such as exceptions,

polymorphism, objects, inheritance, side-effects,
threads, encryption, and many more [13].

To address this lack of practical experience, we
build a realistic application in a security-typed
language. We sought to discover whether this C++
secure language programming could hold up to its
promise of delivering real-world applications with
strong security guarantees. Two key criteria we used
for defining “real-world” were that (1) the application
should interact with other non-security-typed,
networked components while still maintaining the
security policy of its data, and (2) the security policy
should be easily re-configurable such that the
application could be of general use (not just in a
military, MLS setting, but also in a corporate setting,
for example). We conducted this through a security-
typed variant of C++ codes examples and definitions
on routing processes. Throughout, we reflect on the
examples and definitions of language-based security
codes

A principal result of this study is that we succeeded
in developing a real-world application for which we
can easily assess that there is no information leakage
beyond what is allowed by a clear, user-defined, high-
level policy. We found that while language tools were
robust and expressive, additional development and
runtime tools were necessary. We provide a critical
evaluation of the C language through examples and
definitions, highlighting its effectiveness at carrying
out the promised security goals, the difficulties

 92 The International Arab Journal of Information Technology, Vol. 6, No. 1, January
2009

involved in using it and the ways in which it still needs
improvement.

However to approach the problem, we use C’s type
class mechanism to give an interface for security
lattices. Programs written in the embedded language
can be parameterized with respect to this interface.
Moreover, the embedded language can easily be given
security-specific features such as a declassification
operation or run-time representation of privileges for
access-control checks. In both cases, we make use of
C’s strong type system to guarantee that the
abstractions enforcing the security policies are not
violated. This encapsulation means that it is not
possible to use the full power of the C language to
circumvent the information-routing checks performed
by the embedded language, for example what are
reasonable information routing policies? For each
variable x, define x to be its information routing class.
An information routing policy restricts flow between
certain classes and is a relation on the set of
information routing classes. (Think of classes as: top
secret, secret, confidential, etc.) A policy might be: no
information routing from secret to unclassified. Why is
the lattice assumption useful? Note that the lub and glb
properties come “for free.” It is always possible to add
elements to a lattice (top and bottom, for example) to
satisfy the lub and glb requirements. It turns out that
having a lattice will allow us to compute some things
very efficiently. Recall the example where x and y are
natural numbers and we assign z := x + y. We would
like to analyze the expression x + y (as opposed to
examining each individual variable) in testing to see if
execution of z: = x + y should be allowed. The
existence of a lattice implies: if x1 <= y, x2 <= y, . . .,
xn <= y then there exists some x where x = x1 lub x2 lub
x3 . . . xn and x <= y. Therefore, flows x1->y, x2->y, . .
.lub xn->y, all are authorized if and only if x1 lub x2 lub
x3 . . . lub xn <= y. And, to check if a policy is satisfied,
it is only necessary to compute one least upper bound,
rather than to check a set of <= relations. If the latter
computation is expensive, it is useful to only have to do
it once.

Our extended view of policy allows us to consider
new ways of using context. Security-typed
programming language allows the issuers of policy to
augment applications through policy specification. We
sought to discover whether this tool for secure
programming could hold up to its promise of delivering
real-world applications with strong security guarantees.
In practice, the security policies enforced by program
monitors grow more complex both as the monitored
software is given new capabilities and as policies are
refined in response to attacks and user feedback. This is
best illustrated by examples proposed dealing with
policy complexity by organizing policies in such a way
as to make them compassable. We present a fully
implemented compiler and execution-based mechanism
that allows security engineers to specify and enforce

composeable policies on C++ applications. We also
formalize the central workings by defining an
unambiguous semantics for our applied language.

1.1. Related Work

Developer tools and programming experience have not
evolved in concert with language features. There are
currently only two significant language
implementations, Flow Caml [14] and Jif [10] and only
two applications [1, 10], both written in Jif.

The concept of information-flow control is well
established. After the first formulation by Bell and La
Padula [2] and the subsequent definition of
noninterference [5], Smith, Volpano, and Irvine first
recast the question of information flow into a static
type judgment for a simple imperative language [5].
The notion of information flow has been extended to
languages with many other features, such as programs
with multiple threads of execution [16, 18], functional
languages and their extensions [6, 12, 19] and
distributed systems [8]. For a comprehensive survey of
the field, see the survey by Sabelfeld and Myers [21].
Two robust security-typed languages have been
implemented that statically enforce noninterference.
Flow Caml [14] implements a security-typed version of
the Caml language that satisfies noninterference. JFlow
[9] and its successor Jif [10] introduce such features as
a decentralized label model and run-time principals in
an extension to the Java language. Jif is actively in
development, with the latest release in June 2006,
introducing integrity labels [10].

1.2. Security Challenges, Requirements, and
Goals

The security policy we defined at the outset is driven
by a range of security goals and requirements,
Confidentiality Integrity and Availability (CIA). Based
cryptographic traditional security mechanism, such as
authentication protocols, digital signature and key
management which responsible to keep track of
binding keys and assist on establishing mutual trust and
secure communications are posing both challenges and
opportunities of archiving security goals.
Cryptographic in routing protocols gives challenges of
difficulties on time synchronizations, dependence
complexity of techniques as routing service need to
bootstrap themselves (i.e., directories, basic startup
operations of management system).Consequence of
potential nor loss on investment have been encouraging
commercial entities to devote and deploy more secure
infrastructure.

No standardized security solutions for most routing
technologies, designing secure extension or new
protocols are extremely broad. In a long run no single
security solutions can address all routing protocols
since routing protocols differ in their design even

Language Based Information Routing Security: Policy Enforcement
93

within single routing protocols different security might
be required. Platform in which routing protocols are
operating is another challenge i.e., More than three
orders of magnitude have different exit in the control,
different data plane’s processing capabilities.

The complexity of and requirements imposed on
routing technologies continue to escalate and this will
increase the potential vulnerabilities to and
consequence of focused routing system attacks [11]
Internet Engineering Task Force (IETF) routing
protocols security requirements working group gives
more discussion on this [15].

2. Information Routing Policy

Information routing policies define the way
information moves throughout a system. Typically,
these policies are designed to preserve confidentiality
of data or integrity of data. In the former, the policy's
goal is to prevent information from routing to a user
not authorized to receive it. In the latter, information
may route only to processes that are no more
trustworthy than the data. Any confidentiality and
integrity policy embodies an information routing
policy. Example: the model describes a lattice-based
information routing policy. Given two compartments A
and B, information can route from an object in A to a
subject in B if and only if B dominates A. Let x be a
variable in a program. The notation x refers to the
information routing class of x .
Example: consider a system that uses the model above.
The variable 1 x which holds data in the compartment
(TS, {NUC, EUR}), is set to 3. Then x = 3 and
 x = (TS, { NUC,EUR }).

Intuitively, information routing from an object x to
an object y if the application of a sequence of
commands c causes the information initially in x to
affect the information in y .
Definition 1: the command sequence c causes a routing

of information from x to y if, after execution of 1c

some information about the value of x before c was
executed can be deduced from the value of y after c
were executed. This definition views information
routing in terms of the information that the value of y

allows one to deduce about the value in x . For
example, the statement y : = x; reveals the value of x

in the initial state, so information about the value of x
in the initial state can be deduced from the value of y
after the statement is executed. The statement y: = x / z;
reveals some information about x , but not as much as
y: = x statement. The final result of the sequence c
must reveal information about the initial value of x for
information to route. The sequence

 tmp : = x;
 y : = tmp ;

has information routing from x to y because the
(unknown) value of x at the beginning of the sequence

is revealed when the value of y is determined at the
end of the sequence. However, no information routing
occurs from trap to x, because the initial value of trap
cannot be determined at the end of the sequence.
Example: consider the statementx := y + z ; Let y

take any of the integer values from 0 to 7, inclusive,
with equal probability, and let z take the value i with
probability 0.5 and the values 2 and 3 with probability
0.25 each. Once the resulting value of x is known, the
initial value of y can assume at most three values.
Thus, information routes from y to x . Similar results
hold for z . For example: consider a program in which x
and y are integers that may be either 0 or 1. The
statement
 if x = 1 then y : = 0;
 else y : = 1;

does not explicitly assign the value of x to y. Assume

that x is equally likely to be 0 or 1. Then H(x) = 1s . But

s t H(x I y) = 0 , because if y is 0, x is 1, and vice versa.

Hence,

 H(x I y) = 0 < H(x I y) = H(x) = 1. s s s st

(1)

thus, information routes from x to y .
Definition 2: an implicit routing of information occurs
when information flows from x to y without an
explicit assignment of the form y := f(x) , where f(x) is
an arithmetic expression with the variable x . The
routing of information occurs, not because of an
assignment value of x, but because of a routing control
based on the value of x. This demonstrates that
analyzing programs for assignments to detect
information routing is not enough. To detect all routing
of information, implicit routing must be examined.

3. Execution Based Mechanism

The goal of an execution-based mechanism is to
prevent an information routing that violates policy.
Checking the routing requirements of explicit route
achieves this result for statements involving explicit

routings. Before the assignment l ny = f(x , ..., x) is

executed, the execution-based mechanism verifies that
≤l nlub(x , ..., x) y if the condition is true, the assignment

proceeds. If not, it fails. A naive approach, then, is to
check information routing conditions whenever an
explicit routing occurs. Implicit routing complicates
checking.
Example: let x and y be variables. The requirement for
certification for a particular statement
y op x is that x y ≤ .

The conditional statement if x = 1 then y := a,
Causes a routing from x to y . Now, suppose that when

≠x 1 , x = High and y = Low . If routing were verified
only when explicit, and ≠x 1 , the implicit routing

 94 The International Arab Journal of Information Technology, Vol. 6, No. 1, January
2009

would not be checked. The statement may be
incorrectly certified as complying with the information
routing policy.

3.1. Variables Classes

The classes of the variables in the examples above are
fixed. This suggests a notion of dynamic classes,
wherein a variable can change its class. For explicit
assignments, the change is straight forward. When the
assignment y:= f(x1,… ,xn) occurs, y’s class is changed

to l nlub(x , ..., X) . Again, implicit routing complicates

matters.

Example: Consider the following program (which is the
same as the program in the example for the data mark
machine [8].

 proc copy (x : integer class{ x } ;
 var y: integer class { y });
 var z : integer class variable {Low };
 begin
 y := 0;
 z :=0;
 if x=0 then z := 1;
 if z =0 then y := 1;
 end;

In this program, z is variable and initially Low. It
changes when something is assigned to z .Routings are
certified whenever anything is assigned to y. suppose
 y < x . If x = 0 initially, the first statement checks that

yLow ≤ (trivially true). The second statement sets z to
0 and z to Low. The third statement changes z to1 and
z to lub (Low, x) = x . The fourth statement is skipped
(because z = 1). Hence, y is set to 0 on exit. If x = 1

initially, the first statement checks that Low y ≤

(trivially true). The second statement sets z to 0 and z
to Low. The third statement is skipped (because x = 1).
The fourth statement assigns 1 to y and checks that
 lub(Low, z) = Low y≤ (again, trivially true). Hence, y is
set to 1 on exit. Information has therefore routed from
x to y even though y < x . The program violates the
policy but is nevertheless certified.

4. Compiler Based Mechanism

Compiler-based mechanisms check that information
routing throughout a program are authorized. The
mechanisms determine if the information routing in a
program could violate a given information routing
policy. This determination is not precise, in that secure
paths of information routing may be marked as
violating the policy; but it is secure, in that no
unauthorized path along which information routing will
be undetected.
Definition 3: a set of statements is certified with respect
to an information routing policy if the information

routing within that set of statements does not violate
the policy.
Example: consider the program statement

if x = 1 then y := a
 else y := b;

By the rules discussed earlier, information routes from
x and a to y or from x and b to y, so if the policy says
that, ≤a y ≤b y , and ≤x y then the information routing
is secure. But if ≤a y only when some other variable z
= 1, the compiler-based mechanism must determine
whether z = 1 before certifying the statement.
Typically, this is infeasible. Hence, the compiler-based
mechanism would not certify the statement. The
mechanisms described here follow those developed by
denning [4].

4.1. Declarations

For our discussion, we assume that the allowed routing
is supplied to the checking mechanisms through some
external means, such as from a file. The specifications
of allowed routing involve security classes of language
constructs. The program involves variables, so some
language construct must relate variables to security
classes. One way is to assign each variable to exactly
one security class. We opt for a more liberal approach,
in which the language constructs specify the set of
classes from which information may route into the
variable. For example x: integer class { A, B } states
that x is an integer variable and that data from security
classes A and B may route into x. Note that the classes
are statically, not dynamically, assigned. Viewing the
security classes as a lattice, this means that x's class
must be at least the least upper bound of classes A and
B that is, ≤lub{A, B} x.

Two distinguished classes, Low and High, represent
the greatest lower bound and least upper bound,
respectively, of the lattice. All constants are of class
Low. Information can be passed into or out of a
procedure through parameters. We classify parameters
as input parameters (through which data is passed into
the procedure), output parameters (through which data
is passed out of the procedure), and input/output
parameters (through which data is passed into and out
of the procedure). Consider the following program
which is the same as the program in the example in [5].

(* input parameters are named is; output parameters, os; *)
(* and input/output parameters, ios, with s a subscript *)

proc something(i1, ..., ik; var o1, ..., om, io1, ..., ion);
 var l1, ..., lj; (* local variables *)
 begin
 S; / * body of procedure *)
 end;

The class of an input parameter is simply the class
of the actual argument is: type class { is }, let r1, ..., rp be
the set of input and input/output variables from which

Language Based Information Routing Security: Policy Enforcement
95

information routing to the output variable os. The
declaration for the type must capture this os: type class
{r1, ..., rp}.

We implicitly assume that any output-only
parameter is initialized in the procedure. The
input/output parameters are like output parameters,
except that the initial value (as input) affects the
allowed security classes. Again, let r1, ..., rp be defined
as above. Then ios: type class {r1, ..., rp, io1, ..., iok }.

Example: consider the following procedure for
adding two numbers.

proc sum(x: int class { x };
 var out: int class { x, out });

 begin
 out := out + x;
 end;

Here, we require that ≤x out and out ≤ out (the
latter holding because ≤ is reflexive). The declarations
presented so far deal only with basic types, such as
integers, characters, floating point numbers, and so
forth. Nonscalar types, such as arrays, records
(structures), and variant records (unions) also contain
information. The rules for information routing classes
for these data types are built on the scalar types.

Consider the array a: array 1 .. 100 of int; first, look
at information routing out of an element a[i] of the
array. In this case, information routing from a[i] and
from i, the latter by virtue of the index indicating which
element of the array to use. Information routing into
a[i] affect only the value in a[i], and so do not affect
the information in i. Thus, for information routing from

a[i], the class involved is lub{ a[i] , i } ; for information

routing into a[i], the class involved is a[i] .

5. Program Statements

A program consists of several types of statements some
of them typically are conditional statement, Goto
statement and procedure calls. We use the same
statements for our compiler based approach.

5.1. Conditional Statements

A conditional statement has the form

 if f(x1, ..., xn) then
 S1;
 else
 S2;
 end;

where x1, …, xn are variables and f is some (boolean)
function of those variables. Either S1 or S2 may be
executed, depending on the value of f, so both must be
secure. As discussed earlier, the selection of either S1 or
S2 imparts information about the values of the variables
x1, ..., xn, so information must be able to route from
those variables to any targets of assignments in S1 and
S2. This is possible if and only if the lowest class of the

targets dominates the highest class of the variables
x1, ..., xn. Thus, the requirements for the information
routing to be secure are:

• S1 secure
• S2 secure

• lub{ 1x , ..., nx } ≤ glb{ y | y is the target of an
assignment in S1 and S2 }

As a degenerate case, if statement S2 is empty, it is
trivially secure and has no assignments.
Example: consider the statements
 if x + y < z then
 a := b;
 else
 d := b * c - x;
 end;

Then the requirements for the information routing to
be secure are ≤ b a for S1 and lub{ b, c, x } ≤ d for S2.
But the statement that is executed depends on the
values of x, y, and z. Hence, information also routes
from x, y, and z to d and a. So, the requirements are
lub{ y, z } ≤ x , b ≤ a, and lub{ x, y, z } ≤ glb{ a, d }.

5.2. Goto Statements

A goto statement contains no assignments, so no
explicit routing of information occurs. Implicit routing
may occur; analysis detects these routing.
Definition 4: a basic block is a sequence of statements
in a program that has one entry point and one exit
point.
Example: consider the following code fragment from
[5] adopted for our method.

 proc transmatrix (x: array[1..10] [1..10] of int
class{x})

var y: array [1..10][1..10]of int class{y}};
var i , j : int class {tmp}
begin

i : =1
{b1}
12: if i>10 goto 17
{b2}
j=1;
{b3}
14: if j>10 then goto 16;
{b4}
y[j][i]= x[i][j];
{b5}
j:=j+1;
goto 14;
16:i:=i+1;
{b6}
goto 12;
17:
{b7}

 end;

There are seven basic blocks, labeled 1b through 7b and

separated by lines. The second and fourth blocks gave

 96 The International Arab Journal of Information Technology, Vol. 6, No. 1, January
2009

two ways to arrive at the entry either from a jump to
the label or from the previous line. They also have two
ways to exit either by the branch or by falling through
to the next line. The 5th block has three lines and
always ends with a branch. The sixth block has two
lines and can be entered either from a jump to the label
or from the previous line. The last block is always
entered by a jump.

Control within a block routing from the first line to
the last. Analyzing the routing of control within a
program is therefore equivalent to analyzing the routing
of control among the program’s basic blocks. Figure 1
shows the routing of control among the basic blocks of
the body of the procedure Transmatrix.

The basic blocks are labeled 1b through 7b .The

conditions under which branches are taken are shown
over the edges corresponding to the branches.

4b

2b

6b

7b

3b

5b

1b
≤j n

≤i n

>j n

≤j n

Figure 1. The control routing graph of the procedure transmatrix.

When a basic block has two exit paths, the block
reveals information implicitly by the path along which
control routing. When these paths converge later in the
program, the (implicit) information routing derived
from the exit path from the basic block becomes either
explicit (through an assignment) or irrelevant. Hence,
the class of the expression that causes a particular
execution path to be selected affects the required
classes of the blocks along the path up to the block at
which the divergent paths converge.
Definition 5: an immediate forward dominator of a
basic block b (written IFD(b)) is the first block that
lies on all paths of execution that pass through b for
example in the procedure transmatrix, the immediate
forward dominators of each block are

() , () , () ()7 51 2 2 3 4 6 4= = = = =iFD b b IFD b b IFD b b b IFD b b , and

()6 2=IFD b b . Computing the information routing

requirement for the set of blocks along the path is now
simply applying the logic for the conditional statement.
Each block along the path is taken because of the value
of an expression. Information routing from the
variables of the expression into the set of variables

assigned in the blocks. Let iB be the set of blocks along

an execution path from b1 to IFD(bi), but excluding

these endpoints. Let 1
,L inX Xi be the set of variables

in the expression that selects the execution path

containing the blocks in jB . The requirements for the

program’s information routing to be secure are: all

statements in each basic block secure 1
, ... }{ i inlub x x {y |

y is the target of an assignment in iB }.

Example: consider the body of the procedure
transmatrix. We first state requirements for information
routing within each basic block:
 1b : low i secure ≤ ⇒

 1b : low j secure ≤ ⇒

{ [][], , } [][]

{ [][], , } [][]

≤ ≤ ≤ ≤

⇒ ≤

b : lub x i j i j y y j i ; j j5

lub x i j i j y j i

 { , }b : lub low i i secure6 ≤ ⇒

The requirement for the statements in each basic
block to be secure is:

for 1, ,i n= L and 1, , lub { [][], , } [][]= ≤Lj n X i j i j y j i

.

By the declarations: this is true when lub{ , } ≤X i y .

In this procedure, { , , , } { }5 52 3 4 6 4= =B b b b b and B b . Thus,

in 2B , statements assign values to , , [][]yi j and j i . In

4B , statements assign values to [][]j and y j i . The

expression controlling which basic blocks in 2B are

executed is 10i ≤ ; the expression controlling which

basic blocks in 4B , are executed is 10j ≤ . Secure

information routing requires that i ≤ glb {i, y} and i ≤
glb {i, y}, or i ≤ y combining these requirements, the
requirement for the body of the procedure to be secure

with respect to information routing is { }lub ,X i Y≤ .

5.3. Procedure Calls

A procedure call has the form

 proc procname(i1, ..., im : int; var o1, ..., on : int);
 begin
 S;
 end;

where each of the ij's is an input parameter and each of
the oj's is an input/output parameter. The information
routing in the body S must be secure. As discussed
earlier, information routing relationships may also exist
between the input parameters and the output
parameters. If so, these relationships are necessary for
S to be secure. The actual parameters (those variables
supplied in the call to the procedure) must also satisfy
these relationships for the call to be secure. Let x1, ...,
xm and y1, ..., yn be the actual input and input/output
parameters, respectively. The requirements for the
information routing to be secure are S secure

Language Based Information Routing Security: Policy Enforcement
97

For j = 1, ..., m and k = 1, ..., n, if ij ≤ ok then xj ≤ yk

For j = 1, ..., n and k = 1, ..., n, if oj ≤ ok then yj ≤ yk

Example: consider the procedure transmatrix from
section 5.2. As we showed there, the body of the
procedure is secure with respect to information routing

when lub{ x,, tmp } ≤ y. This indicates that the formal

parameters x and y have the information routing
relationship x, ≤ y . Now, suppose a program contains
the call transmatrix (a, b). The second condition asserts
that this call is secure with respect to information
routing if and only if a .

6. Conclusion

This paper focus on the language based information
routing security. Two mechanisms are put forward
complier based and execution based mechanism to
specify and enforce security policies with C++
language. We have demonstrated that it is possible to
implement security policy using security-typed
languages through examples and C typed codes.
However, further investigation of the language based
support for policy enforcement is necessary before they
can fulfill their considerable promise of enabling more
secure routing. For example certifying compilers are
needed for security-typed languages, because compilers
for source languages (such as Jif) are too complex to be
part of the trusted computing base. However, current
security-type systems are not expressive enough to
support a security-typed low-level target language.

From our finding the results demonstrate that the
idea of language based is easy to comprehend but much
more difficult to implement efficiently. Here are some
obstacles that we have learned from the paper:

• How to encode the formal language? Trivial
encoding of policy properties programs is very
large.

• How to check the policy? This is not an easy task
if you want your policy to be terse and the checker
to be small, fast, and mostly-independent of the
actual safety policy that is being enforced.

• How to relate the policy with the program? It is of
no use to validate the policy if we cannot ensure
that it says something about the program at hand.

Although many type secure languages exists
fundamentally our (C++) based codes makes it
impossible to commit broad classes of errors to policy
enforcement. Our work in C++ also uncovered three
central deficiencies. First aspects of information and
enforce security policies with C++ language. We have
demonstrated that it is possible to implement security
policy using security-typed languages through
examples. Given the value of one variable, entropy
measures the amount of information that one can
deduce about a second variable. Second the routing can
be explicit, as in the assignment of the value of one

variable to another, or implicit, as in the antecedent of a
conditional statement depending on the conditional
expression. Third traditionally, models of information
routing policies form lattices. Should the models not
form lattices, they can be embedded in lattice
structures. Hence, analysis of information routing
assumes a lattice model.

Our approach through examples and definitions
addresses incongruity insecurity by allowing flexibility
to environment applied as security requirements are as
diverse as the environments in which systems exist,
support for flexible policy- defined security is
desirable. Definitions presented elaborate how
command sequence in C language causes information
routing from point x to y. However conditional
statements has been used, (boolean) and variables
function for execution

Even in the face of the considerable challenges we
encountered in this project, we are heartened by the
experience. To be sure, the tools and practice of using
C++ codes, and in larger sense security-typed
languages, must mature before their promise is met. We
see this work as another step in that maturation and
take this work as another milestone in that
achievement.

References

[1] Askarov L. and Sabelfeld A., “Secure
Implementation of Cryptographic Protocols: A
Case Study of Mutual Distrust,” in Proceedings
of the 10th European Symposium on Research in
Computer Security ESORICS ’05, pp. 1-5, Italy,
2005.

[2] Bell D. and La Padula L., Secure Computer
Systems, Mathematical Foundations Technical
Report, 1973.

[3] Chong S. and Myers A., “Decentralized
Robustness,” in Proceedings of the 19th IEEE
Computer Security Foundations Workshop, pp.
321-334, USA, 2006.

[4] Denning D., Cryptography and Data Security,
Reading, MA, 1982.

[5] Goguen J. and Meseguer J., “Security Policies
and Security Models,” in Proceedings of IEEE
Symposium on Security and Privacy, pp. 11-20,
USA, 1982.

[6] Hicks B., King D., McDaniel P., and Hicks M.,
“Trusted Declassification: High-Level Policy for
a Security-Typed Language,” in Proceedings of
Workshop on Programming Languages and
Analysis for Security, pp. 65-74, Canada, 2006.

[7] Kent S. and Atkinson R., “Security Architecture
for the Internet Protocol,” Internet Engineering
Task Force Journal, vol. 37, no. 1, pp. 1, 1998.

[8] Mantel H. and Sabelfeld A., “A
Unifying Approach to the Security of
Distributed and Multi Threaded

 98 The International Arab Journal of Information Technology, Vol. 6, No. 1, January
2009

Programs,” Journal of Computer Security, vol.
11, no. 4, pp. 615-676, 2003.

[9] Myers C., “Mostly-static Decentralized
Information Flow Control,” Technical Report
MIT/LCS/TR-783, 1999.

[10] Myers C., Nystrom N., Zheng L., and Zdancewic
S., “Jif: Java + Information Flow,”
www.cs.cornell.edu/jif, July 2001.

[11] Montgomery D. and Murphy S., “Towards Secure
Routing Infrastructures,” IEEE Security &
Privacy, vol. 4, no. 5, pp 84-87, 2006.

[12] Pottier F. and Simonet V., “Information Flow
Inference for ML,” in Proceedings of Principles
of Programming Languages (POPL), pp. 319-
330, USA, 2002.

[13] Sabelfeld A. and Myers A., “Language Based
Information Flow Security,” IEEE Journal on
Selected Areas in Communications, vol. 21, no. 1,
pp. 5-19, 2003.

[14] Simonet V., “FlowCaml in a Nutshell in Hutton,”
in Proceedings of the First APPSEM-II
Workshop, pp. 152-165, UK, 2003.

[15] The Internet Engineering Task Force, www.ietf.
org/html.charters/rpsec-charter.httm, 2006

[16] Volpano D. and Smith G., “Probabilistic
Noninterference in a Concurrent Language,”
Journal of Computer Security, vol. 7, no. 2, pp.
231-253, 1999.

[17] Volpano D., Smith G., and Irvine C., “A Sound
Type System for Secure Flow Analysis,” Journal
of Computer Security, vol. 4, no. 3, pp. 167-187,
1996.

[18] Ylonen T., “SSH: Secure Login Connections
Over the Internet,” in Proceedings of 6th USENIX
UNIX Security Symposium, pp. 37-42, Korea,
1996.

[19] Zdancewic S., “A Type System for Robust
Declassification,” in Proceedings of the
Nineteenth Conference on the Mathematical
Foundations of Programming Semantics, pp. 47-
66, Berlin, 2003.

George Oreku received his Master in computer
science from University of Odessa Polytechnic in 2002.

He is currently a PhD candidate at the Department of
Computer Science and Engineering, Harbin Institute of
Technology, Harbin, China.

Li Jianzhong the director of the Department of
Computer Science and Engineering at the Harbin

Institute of technology, China.
Also he is a part-time professor in
FuDan University and RenMin
University of China.

Fredrick Mtenzi is a supervisor of
postgraduate students, lecturing systems security and
cryptography, security and forensics, security and

cryptography advanced research, and
proposal writing at school of
Computing Dublin Institute of
Technology, Ireland.

	1. Introduction
	1.1. Related Work
	1.2. Security Challenges, Requirements, and Goals

	2. Information Routing Policy
	3. Execution Based Mechanism
	3.1.	Variables Classes

	4. Compiler Based Mechanism
	4.1. Declarations

	5. Program Statements
	Conditional Statements
	Goto Statements

	6. Conclusion
	[15] The Internet Engineering Task Force, www.ietf. org/html.charters/rpsec-charter.httm, 2006

