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Abstract: In this paper, a modified algorithm for object segmentation of binary images is presented, and denoted as 2D 

modified chain code algorithm. The 2D modified chain code algorithm can be applied to color images after being binarized. 

The segmented object is used to derive the chain code in the image. The definition of the 2D- modified chain code algorithm is 

valid for shapes composed of triangular, rectangular, and hexagonal cells. The 2D modified chain code preserves information 

and allows computing geometric dimension. The results demonstrate that the 2D modified chain code algorithm could extract 

the coordinates of the shapes at lower computational cost when compared to the classical chain code.  Here, a considerable 

improvement in accuracy (20.1-57.2%) over what is possible with the classical chain code has been achieved at the expense of 

slight increase in computational cost (10-20%). 
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1.  Introduction 

Segmentation is a term used very commonly in 
computer vision and refers to several kinds of image 
decomposition/classification techniques. For example, 
segmentation is used in the extraction of contours and 
regions of an image or a scene [3], boundary detection 
[2], and voxel image analysis [11].  

Generally, the first step in image analysis is to 
segment the image under consideration. Segmentation 
subdivides an image into its constituent parts or objects. 
The level to which this subdivision is carried depends 
on the problem being under processing. In general, 
autonomous segmentation (unsupervised segmentation) 
is one of the most difficult tasks in image processing. 
This task is the process that determines the eventual 
success or failure of the analysis. In fact, effective 
segmentation rarely fails to lead to a successful 
solution. Thus, considerable care should be taken to 
improve the probability of rugged segmentation. 
Numerous opportunities exist for application of 
segmentation in various stages from input image until 
segmentation and recognition. A general block diagram 
is illustrated in Figure 1. 

One of the interesting techniques that are used in 
segmentation is the chain code technique. The first 
approach for representing digital curves using chain 
code was introduced by Freeman in [4]. Classical 
methods for processing chains are also introduced [5]. 
Chain code techniques are widely used to represent an 
object because they preserve information and allow 
considerable data reduction. A chain code approximates 
a curve with a sequence of directional vectors lying on 
a square grid [12] considered a detailed discussion of 

the properties of contour codes. Chen and Chen [1] 
proposed a simple recursive method for converting a 
chain code into a quadtree with a lookup table. 
However, this leads to an increase in the storage 
requirements. Nunes et al [6], developed a contour-
based approach to binary shape coding using a multiple 
grid chain code which led to high computational cost. 
Truthe [10] proposed a synchronous chain code 
algorithm for picture languages. The algorithm is 
designed to decide the finiteness or infiniteness in 
polynomial time.  

 

 
 

Figure 1.  Segmentation stages. 
 

Hierarchical search approaches the segmentation 
task by defining rectangles or search lines inside or 
along which individual digits or object contours were 
detected. This is the typical method of using regions of 
interests in image processing (search regions, test 
windows, areas of interest) to define the area within 
which image objects are to be segmented.  

The success of feature-based inspection techniques 
depends on the quality of feature detection. Problems, 
such as edge detection and region extraction, to name 
the most important in 2D feature detection, belong to 
the mathematical class of inverse ill-posed problems. 
There exists no unique and stable transformation 



A Modified 2D Chain Code Algorithm for Object Segmentation and Contour Tracing                                                             251 

function that can build a specific description starting 
from an arbitrary observation. To overcome this 
problem, one has to reduce the number of acceptable 
solutions by introducing a priori knowledge of the 
problem space on the solution space. Thus, the 
detection process can be considered as decomposition 
into a sequence of sub-problems. This sequence is 
made of either well-posed problems or problems for 
which regularization methods exist. 

In this paper, a modified chain code for shapes 
composed of finite number of cells is introduced. The 
definition of the modified chain code is based on 
extending the 1D into 2D chain code which is valid for 
shapes composed of triangular, rectangular, and 
hexagonal cells. The 2D-MCC has been applied for 2D 
object detection (failure detection) and results have 
shown that 2D-MCC has preserved 2D information and 
allowed computing of geometric dimension of objects 
under consideration. The organization of this paper is 
as follows. In section 2, preliminary information about 
the 1D chain code is given. In section 3, the proposed 
2D-MCC is considered and the basic geometrical 
features of the proposed 2D-MCC Algorithm are 
discussed. Simulation results are discussed in section 4. 
Finally, concluding remarks are given in section 5. 

  

2.  Feature Extraction and the Chain Code 

2.1. Introduction 

The detection process consists of matching of the 
extracted features from the image under inspection with 
those of the predefined models. The detection process 
becomes very complex if the image to be detected is 
noisy and features could occur at random positions and 
orientations. This can be utilized by pixel gradients 
instead of by only pixel values, emphasizing the 
structure of the image instead of the texture. The 
gradient f∇  of an image f(x, y) at location (x, y) is 

given as:  
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    It is well known, from vector analysis, that the 
gradient vector points in the direction of maximum rate 
of change of f at (x,y). The magnitude f∇  of the 

gradient is generally referred to simply as the gradient 
and defined as:  

                             22

yx GGf +=∇                  (2) 

    This quantity equals the maximum rate of increase of 
f (x, y) per unit distance in the direction of f∇ . 

Common practice is to approximate the gradient with 
absolute values: 

           yx GGf +≈∇
             

The decision regarding what features are to be 
considered depends on the nature of the object to be 
identified. Features provide data reduction while 
preserving the information required for the 
segmentation. Once an image has been clearly 
segmented into discrete objects of interest, the next step 
in the image analysis process is to measure the 
individual features of each object. Many features can be 
used to describe an object. Most of the procedures used 
for feature extraction involve edge detection, line 
tracing, and shape description techniques like the 1D 
chain code. 

 
2.2. Basic Formulation of the Chain Code  

The first approach for representing digital curves using 
chain code was introduced by Freeman in [4]. Freeman 
states that in general, a coding scheme for line 
structures must satisfy three objectives; it must 
faithfully preserve the information of interest, permit 
compact storage and be convenient for display, and 
facilitate any required processing. Chain codes are used 
to represent a boundary by a connected sequence of 
straight-line segments of specified length and direction. 
Typically, this direction is based on the 4 or 8 
connectivity of the segments.  

Let R represents the entire image regions. We may 
view segmentation as a process that partitions R into n-
subregions: R1, R2, …, Rn. Here, the following axioms 
must be satisfied: 

• U
n

i

i RR
1=

=  

• Ri is a connected region, i = 1, 2, …, n,   

• Ri ∩ Rj = ǿ for all i and j , i ≠ j    

• P(Ri) = True for i = 1, 2, …, n.    

• P(Ri U Rj) = False for i ≠ j.    
           

where P(Ri) is a logical predicate over the points in set 
Ri and ǿ is the null set. Here: 

 

• Axiom 1 indicates that every pixel must be in a 
region.  

• Axiom 2 requires that points in a region must be 
connected.  

• Axiom 3 indicates that the region must be disjoint, 
i.e., their intersection is null. 

• Axiom 4 if all pixels in Ri have the same intensity.  

• Axiom 5 indicates that region Ri and Rj are different 
in the sense of predicate P. 

 
2.3. Pixel Connectedness 

The contour of an object is commonly understood as a 
closed line running along the border of the object, i.e. 
consisting exclusively of border pixels. There are two 

  (3)   
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common methods to define the neighborhood of a 
given image pixel in digital image processing: 4- and 8-
connectedness, as depicted in Figure 2. The 4-
connectedness allows only vertical and horizontal 
movements between adjacent pixels, whereas the 8-
connectedness also uses diagonal connections. 
 

 

 
(a) 4-connectedness.     (b) 8-connectedness.  
  

Figure 2. Different definitions of pixel neighborhoods. 

 
2.4. Detecting Object Contours  

The principle of detecting objects by contour tracing is 
quite simple. Below, a short description is given based 
on Parkers algorithm [8]: 

• The region of interest is searched for a first 
transition between background and object, i.e. a 
transition from (logical) white to black if dark 
objects are to be segmented, black to white for light 
objects. 

• As soon as the transition has been found, the 
algorithm searches for the next neighbor of the same 
(logical) color with respect to the connectedness 
definition used. In this case, only border pixels are 
accepted as neighbors, i.e., pixels adjacent to at least 
one pixel of the other (logical) color in order to 
prevent the algorithm from swerving off into the 
interior of the object. 

• Next, the entire contour is traced in this manner, 
either clockwise or counter-clockwise (the direction 
does not matter as long as one remains consistent). 

• Contour tracing ends when the algorithm reaches its 
starting point, i.e., the pixel where the first transition 
has been found. 

Contours generated using the above algorithm can be 
represented as a data structure in quite different ways. 
of these, the chain code has been generally accepted in 
digital image processing because it offers a number of 
algorithmic advantages. It is, for example, very simple 
to compute the perimeter and dimensions of an object 
from the chain code. It also facilitates smoothing the 
contour to lessen the influence of image noise. 

The chain code, also called Freeman code [5], 
represents the contour as a sequence of directional 
information. Figure 3 shows how the direction of the 
connection between two contour points is encoded as a 
single number. The position of the starting point is 
stored separately. For better illustration, a flow chart of 
the traditional chain code [5] is depicted in Figure 4. 

In this paper, a modified chain code is to be used to 
extract boundaries. The first step of the construction of 
the chain code is to extract the boundary of the image. 

Chains can represent the boundaries or contours of any 
discrete shape composed of regular cells. In this work, 
the length l of each side of the cells is set to one. These 
chains represent closed boundaries, and, thus, all chains 
are closed. 

 

 

             
 

   (a) the chain code.                          (b) a simple contour in  
                                                              chain code. 

 

Figure 3. Contour representation by chain code. 
 
 

   

 

Figure 4. Flow chart of traditional chain code. 

 

3. The Proposed 2D-MCC Algorithm 

3.1. The Modified 2D Chain Code (2D-MCC) 

Raji [9] developed an algorithm for determining the 
area of 2D objects by image analysis. This can be 
adapted in detection of leave type (as a form of sorting) 
to select the desired ones during harvesting. In this 
paper, a modified algorithm is considered to be 
implemented in finding the contour of a binary image, 
and, then to use this contour for objects segmentation. 
The proposed algorithm implements 4-connectivity rule 
but differs from 1D chain code by the fact that 2D-
MCC is concerned of the position of each pixel. This is 
why the proposed algorithm is considered as two 
dimensional chain codes. Now, to find the contour of a 
binary image, i.e., to segment the object and to measure 
its dimensions, the proposed 2D-MCC takes place in 
the following steps. 

  

Step 1: given the input image:  
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P ={p(i, j): i=1,2,…M  &  j = 1,2,…N } 
Initialize the followings:  
 

• I ={I(ij)= 0  ∀  i=1,2,..M  &  j=1,2,…N }  

• W ={W(ij)= 0  ∀  i=1,2,..M  &  j=1,2,…N }  

• T ={T(ij)= 0  ∀  i=1,2,..M  &  j=1,2,…N }  
 

Step 2: the input image is dealt in a row-based manner. 
For each pixel p(i,j) having a value  p(i,j)= 0 (black), 
set the pixels that have the direction (0) in 4-connected 
to 0 as shown in Figure 5, i.e.,  
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Figure 5. Directions of the neighbors. 

 

Step 3: change the direction from 0 to 1 and set the 
pixels that have the direction (1) in 4-connected to (0). 
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Step 4: in the new image I, find the maximum and 
minimum values in the x-axis for each object k: 
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where n1k, n2k  represent left  and right horizontal edges 
of the kth object respectively.  
 
Step 5:  next, the image is dealt in a column-based 
manner, here, we skip the first and last column then 
repeat step 3 and 4 for directions 2 and 3, Figure 5. 
Here, for direction 2, we obtain:  
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and for direction 3: 

         








=

=
=−

1),(,1

0),(,0
),1(

jip

jip
jiI                     (8) 

 
Step 6: for the image I, find the maximum and 
minimum values in the y-axis for each object k: 
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where m1k, m2k  represent top and bottom vertical edges 
of the kth object respectively. 

Step 7: detect pixels that have 8-connected zeros in the 
image I, then, use it in the already created zero image 
W as follows:  
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Step 8: perform 'and' logical operation between P and 
W at all pixel locations (i, j): 

 

}N,...,2,1j&M,...,2,1i),j,i(w)j,i(p)j,i(t{T ==∀⊗==            (11) 

 
Step 9: from step 4, 6 and 8, we obtain 4 points that 
represent corner points of the object. So, the object can 
be extracted from original image P. Once, the objects 
are extracted, their geometrical features can be easily 
obtained. Figure6 shows a simplified flow chart for the 
2D-MCC algorithm. 
    A demonstrative example is shown in Figure 7, 
where the prescribed algorithm has been applied to 
various electronic components to obtain their contours. 
As well seen from Figure 7, the main advantage of this 
method when compared to other algorithms is that it 
always generates visually contiguous objects with 
closed border lines. The Basic geometrical features of 
the proposed 2D-MCC algorithm are discussed in the 
next section. 

 

3.2. Basic Geometrical Features of the Modified 

2D-MCC Algorithm  

Under the rubric of basic geometrical features we 
subsume properties like coordinates, dimensions, areas, 
etc. Here, implementing such features are less 
algorithmically complex than shape-describing 
features, however, the distinction is naturally somewhat 
arbitrary. 
 

3.2.1. Enclosing Rectangle 

Every segmented object can be enclosed by a rectangle. 
In the simplest case this rectangle is oriented along the 
coordinate axes. The following basic features can be 
derived from: 

 

• Position of the origin: the coordinates of the top left 
corner of the enclosing rectangle correspond to the x-
coordinate of the leftmost point of the object and the 
y-coordinate of the topmost point of the object 
contour. 

• Dimensions: the width or x-dimension of the 
rectangle is equivalent to the difference of the x-
coordinates of the far right and far left points of the 
object contour. Correspondingly, the height or y-
dimension is equivalent to the difference of the y-
coordinates of the topmost and the bottommost points 
of the object contour. 
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• Ratio: this feature denotes ratio of height to width of 
the enclosing rectangle; this is already a very simple 
shape-descriptive feature. 

 

 
Figure 6.  A simplified flow chart for the 2D-MCC algorithm. 

 

     

 
(a) the original image.  

 
(b) the   contour of the image. 

 

Figure 7. Electronic components. 
 

If images are to be read line by line, they will 
therefore have to be sorted by x and y-coordinates. 
Usually the origin of the enclosing rectangle will be 
sufficient for this sorting operation and can be 
computed much faster than the objects center of gravity 
or may even be available from the segmentation 
algorithm anyway. It should be noted that for objects 
found by template matching, the enclosing rectangle is 
identical to the object border. Since an object 
segmented by template matching does not need to show 
a closed, visually identifiable contour, its limits can 
only be determined from the size of the template. 

A more elaborate definition for the enclosing 
rectangle is the oriented enclosing rectangle that uses 
the direction of the principal axis of the object as 
coordinate axis. In this new coordinate system, the 
enclosing rectangle can be defined in the same way as 
above. Here, the rectangularity [8] is defined as:  

                      R= A/ Aser.                  (12) 

where A- the object area Aser – the area of the smallest 

enclosing rectangle. Note that R≤1. R=1, for an exact 
rectangle, otherwise R<1. For an exact computation of 
this feature, the oriented enclosing rectangle has to be 
used, otherwise, a rotated exact rectangle would give a 
much smaller value than 1. 
 

3.2.2. Area and Perimeter 

In general, features like area and perimeter are 
meaningful only for objects segmented using chain 
code or other techniques since objects found by 
template matching do not necessarily correspond to a 
visually closed image structure. In the following, we 
will therefore always assume that objects are generated 
based on the proposed 2D-MCC and represented as 
contours or regions enclosed by contours. 

The area of a segmented object is very easy to be 
computed. It is equivalent to the number of pixels 
inside the object contour. The area of a thresholded 
object can be defined in two different ways: 1) Filled 
area: the filled area encompasses all points inside the 
object contour including those that would not belong to 
the object according to the threshold , and, 2) Net area 
where the pixels, that do not belong to the object 
according to the threshold, are excluded. 

Area computations are often performed using a run-
length representation of the object. Each line of the 
object is represented as a series of segments, so called 
runs. All the pixels in each run belong to the object, 
i.e., runs do not contain non-object pixels. Its starting 
point and its length describe every run segment. The 
area of an object is then simply the sum of all run 
length. Figure 8 demonstrates the run-length encoding 
of an object featuring an indentation as well as a hole. 
After each line the corresponding segments are written 
out with their starting points in parentheses followed by 
the length of the segment. 

 

             
                    (a) Filled area=38.                (b) Net area=31. 

Figure  8.  Area computation based on run length encoding. 
 

The perimeter of a segmented object can be 
computed directly from the 2D-MCC result. A caution 
has to be applied, though, because one cannot simply 
count the pixels of the contour. The following notes 
must be taken into account: 

• The true contour runs neither along the outer edges 
of the contour pixels nor along their inner edges. 
Instead, it is located at some position in between, 
which depends on the combined effects of spatial 
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discretization and gray level quantization, and is 
usually assumed to be in the center of the pixels. 

• The distance between the center points of two pixels 
depends on the angle of the contour at that point, as 
shown in Figure 9. Here: 1) a vertical or horizontal 
connection between two pixels contributes a length 
of 1.0 to the perimeter, and, 2) diagonal connections 

contribute a length of 414.12 =  to the perimeter. 

 

 
 

Figure 9. Contributions of contour segments to the perimeter. 

 

Evidently, it is very simple to compute the perimeter 
from the 2D-MCC. Also, all diagonal contour pieces 
are encoded by odd values of the chain code, and, all 
vertical and horizontal segments by even values. The 
perimeter of the approximate circle in Figure10 is then 
given by: P = 8 * 1.0 + 8 * 1.414 = 19.312. An exact 
circle running through the centers of the contour points 
would have a radius of three pixels, resulting in a 
perimeter: P= 6π=18.85 pixels. Despite the small 
number of pixels, the deviation is only around 2.5 %. 
Nevertheless, perimeter values have to be used with 
caution, since; they depend strongly on the image 
resolution. With increasing magnification, more and 
more irregularities will become apparent in the contour, 
increasing the perimeter. 
     

 
 

Figure 10. Perimeter computation on a circle after spatial 
discretization. 

 

4. Simulations and Results 

In this section, the proposed 2D-MCC algorithm will be 
tested using different test images. A data base of 
various image classes has been used. Here, images 
were: colored grayscaled and binary, examples of 
which are shown in Figure 11. These images are given 
the abbreviations Im1, Im2, and, Im3. 
 
 

 

        
              (a) Im1 (Electronic kit).                (b) Im2 (Tree). 

 
(c) Im3 (Cell). 

 

Figure 11.  Sample test images. 

 

A crucial issue is image binarization. Here, when 
color electronic kits, or even any color image, is to be 
binarized, some objects may disappear and other 
unimportant objects may be remained.  To tackle this 
issue, three techniques were used: 

• Thresholding: direct level thresholding is 
implemented to the color images after being 
converted to their grayscale version. 

• Small Element: a small region of the background in 
the color image has been selected and resized to 
have the same size as the input image, then, the 
produced image is subtracted from the original color 
image. 

• Subtraction: an effective method that is very suitable 
to electronic kits is that: an image of the Printed 
Circuit Board (PCB) has been captured before the 
planting process, then, the captured image (before 
planting) is subtracted from the PCB board (after 
planting). 

The prescribed techniques were tested. Here, the third 
method, i.e., the subtraction, was only applied to color 
PCB images. For comparison purposes, an example of 
applying the three techniques to the test image Im1 is 
shown in Figure 12. As well seen, the subtraction 
technique gives the best accuracy ratio when compared 
to the direct thresholding as well as to the small 
element techniques. 

 

 
 

Figure 12.  Results of implementing the three prescribed techniques 
of binarization with the test image Im1. 
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Figure 13. Results of applying morphological filter to the binarized 

Im1 with varying SE width. 
 

A detailed study of the resulting binary images has 
shown that, as usually expected, the binary objects 
contain holes and noise-like pixels distributed 
randomly in the background. To overcome this 
problem, morphological filters can be implemented and 
play a crucial role in extracting boundaries [7]. In 
dilation or erosion operations, the boundaries are 
affected and some boundaries between two elements 
may be overlapped. Here, an important factor is the 
selection of the Structuring Element (SE) to obtain 
maximum accuracy ratio.  

 

 
 

Figure 14. Results of implementing binarization to Im1 followed by 
erosion /dilation morphological filtration. 

 

Figure 13 shows an example of the simulation 
results for Im1. Here it can be seen that the best value is 
around 2 pixels width. Also, Figure 14 depicts results 
of applying the three binarization techniques to the 
color image Im1, followed by the morphological filters 
(dilation or erosion). Again, we observe that the best 
value for the SE to obtain maximum accuracy ratio is 2 
pixels width, and, the subtraction technique still the 
best to be implemented with electronic kit images as 
shown in Figure 12.  Here, the SE size and type can be 
set based on the application under consideration. 
Analyzing Figures 12 and 14, the following notes can 
be remarked: 

• The optimal range for thresholding, in the sense of 
the accuracy ratio, can be in the range [0.45– 0.55], 

• The morphological erosion and dilation are very 
comparable, and, thus can be used equivalently. In 
fact, an open-close filter can be also used; however, 
a slight improvement was achieved at the expense of 

higher computation cost. This is why simple 
erosion/dilation operations were implemented. 

• The selection of the SE size affects the accuracy 
ratio. In this work, SE width was set to 2. This will 
not lead to remove small components (in case of 
erosion), and, will not increase the noise level (in 
case of dilation). 

Next, the resulting image is applied to the proposed 
2D-MCC algorithm. Demonstrative examples are 
shown in Figure 15 (for the test images in Figure 11). 

We now turn to the computational cost of the 2D- 
MCC algorithm. Let p be the number of subwindows in 
the image, n be the average size of a subpattern window 
(assuming a square window). Let t and s be the average 
number of window side translations and the average 
number of maximum window shifts, respectively. 
Assuming that r % of the image is blank and the rest of 
it has a pattern, thus: 

• The amount of blank region processing cost =4rpn. 

• The nonblank region processing cost =4(1-r)pnts, 
where the term 4n is the perimeter of a window. 

• The percentage of image processed = [(4rpn+a(1-r) 

pnts)/pn2x100=(4r+4(1-r)t)/n]%. As t and s are 
usually less than 1 and very small compared to n, they 
can be dropped from the above equation, and the 
equation becomes: [(4r + 4 (1-r))/n=4/n] %. 

Typically, n>4; hence, the percentage of image 
processed by the proposed 2D-MCC algorithm is 
always less than 100%. For better illustration, Table 1 
provides a comparison between the conventional Chain 
Code and the proposed 2D-MCC algorithm in the 
accuracy sense as well as the testing time for the 
selected test images Im1, Im2 and Im3. Here, the 
computational cost has been normalized by the 
maximum computational time for all cases, which was 
for the color image Im1. It is clear from Table 1 that 
there is a considerable improvement in accuracy 
(57.2%, 20.1% and 30.3 % for Im1, Im2, and Im3, 
respectively) at the expense of slight increase in 
computational cost (10-20%). 
 

 

 
     (a) The original image.                       (b) the contour image by 2D- MCC. 

Figure 15. Comparision study. 
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Table 1. Comparative study. 

 

5. Conclusions 

In this paper, a modified algorithm for object 
segmentation of binary images is presented, and 
denoted as 2D-MCC algorithm. The 2D-MCC 
algorithm can be applied to any binary image with or 
without holes. The segmented object is used to derive 
the chain code in the image. The definition of the 2D-
MCC is valid for shapes composed of triangular, 
rectangular, and hexagonal cells. The 2D-MCC 
preserves information and allows computing geometric 
dimensions. The results demonstrate that the 2D-MCC 
algorithm could extract the coordinates of the shapes. 
Also, a considerable improvement in accuracy has been 
achieved (20-57%) when implementing the proposed 
2D-MCC in comparison with the 1D chain code, but at 
the expense of slight increase in computational cost 
(10-20%). 
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Test Image Method Accuracy Test Time 

Im1 1-D Chain code 40.1 % 88.7 % 

Im1 2-D Chain code 97.3 % 100 % 

Im2 1-D Chain code 78.1% 55.2% 

Im2 2-D Chain code 98.2% 65.2% 

Im3 1-D Chain code 67.6% 65.2% 

Im3 2-D Chain code 97.9% 73.3% 
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