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1. Introduction 

The model of Petri nets is very attractive, not only by 

its graphical aspect, but also by its ability to capture 

parallel behavior of systems. One of verification 

approaches of a Petri net is to generate its marking 

graph in which nodes represent system states, and arcs 

represent transitions taking the system from one state to 

another. After its generation, the marking graph can be 

seen as a labeled transition system [2]. The generated 

labeled transition system is used for the verification of 

the properties of the system specified by the Petri net 

(model checking, bisimilarity, conformance testing, etc. 

[8, 18, 9]). However, the labeled transition system 

model ignores parallel execution of transitions. To 

clarify things, consider the example of the two Petri 

nets of Figures 1 (a) and  (b). The Petri net in Figure 1 

(a) represents a system that could execute the actions a 

and b in parallel, while the Petri net of Figure 1(b) 

represents a system executing actions a and b 

sequentially. Nevertheless, these two nets have a single 

semantic representation given by labeled transition 

system of Figure 1 (c). 
 
 

 

 

Figure 1. Adapted spiral model [1] for a reflective approach to 

learning and teaching. 

 

With the assumption that the firing of each transition 

corresponds to the execution of an indivisible action 

with null duration (structural and temporal atomicity of 

actions), the model of labeled transition systems is 

suitable for the interpretation of concurrent systems 

behaviors. However, in reality, this assumption of 

temporal and structural atomicity is not always 

accepted.  

To accept the verification results, realization 

constraints must be taken into account by both the 

specification and the used semantic model. 

Taking into account the non-atomicity of actions in 

a system has been deeply studied in the literature 

through the definition of several semantics supporting 

the concept of action refinement [10, 11, 12, 1, 7, 5, 

13, 14, 15, 19, 23, 27, 29]. Among these semantics, 

we can cite the maximality semantics which has been 

defined independently on petri nets and event 

structures by Devillers and Vogler [14, 15, 30]. In this 

context, maximality bisimulation relation has been 

defined and proved to be the coarsest relation 

preserved by action refinement. In underlying 

semantic models of Petri nets and event structures, a 

system with infinite behavior needs an infinite set of 

events, which makes the underlying structures 

interesting just for the theoretical point of view 

[14, 15, 30]. 

Dealing with implementability, another model 

named maximality-based labeled transition system has 

been defined in the literature and used for expressing 

the semantics of process algebras with the hypothesis 

that actions are not necessary atomic, i.e., actions are 

abstractions of finite processes and may elapse on 

time [11, 23, 28, 25]. The main interest of maximality-

based labeled transition system model is that it can be 

implemented and used in verification [24]. 

In order to take advantage of the different results 

developed around the model of maximality-based 

labeled transition systems, we propose an operational 

generation method of maximality-based labeled 

transition systems for place/transition petri nets. As 

result, maximality bisimulation relations defined on 

maximality-based labeled transition systems are 
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extended to petri nets. The proposed approach, which 

will be presented in section 3, is valid for Petri nets 

containing recursive behaviors. 

 

2. Preliminaries 

2.1. Petri Nets Related Definitions  

A Petri net is a tuple (S, T,W) where S is the set of 

places, T is the set of transitions such that S∩T=∅, and 

W:((S×T)∪(T×S))◊N={0, 1, 2,...} is the weight function 

[4, 5]. Graphically, transitions of T are represented by 

rectangles, places of S by circles and weight function by 

arrows associated with their weights. We suppose that 

all nets are finite, i.e., |S∪T|∈N. 

• For x∈S∪T, the pre-set x is defined by 

x={y∈S∪T|W(y,x)≠0} and the post-set x is defined 

by x={y∈S∪T|W(x,y)≠0}. 

• The marking of a Petri net (S,T,W) is defined as a 

function M:S◊N. A marking is generally 

represented graphically by putting tokens in places. 

• The transition rule stipulates that a transition t is 

enabled by M iff M(s)≥W(s,t) for all s∈S. The firing 

of a transition t will produce a new marking M’ 

defined by M’(s)=M’(s)-W(s,t)+W(t,s) for all s∈S. 

The occurrence of t is denoted by M[t>M’. 

• Two transitions t1 and t2 (not necessarily distinct) 

are concurrently enabled by a marking M iff 

M(s)≥W(s,t1)+W(s,t2) for all s∈S. 

• A marked Petri net (S,T,W,M0) is a Petri net (S,T,W) 

with an initial marking M0. 

• An alphabet A is a finite set; we suppose that τ∉A 

(τ will indicate invisible action, or silent action). 

• The labeling of a Petri net N=(S,T,W) is a function 

λ:T◊A∪{τ}. If λ(t)∈A then t is said to be 

observable or external; at the opposite, t is silent or 

internal. 

• Σ=(S,T,W,M0,λ) Is a labeled system iff (S,T,W,M0) 

is a marked Petri net and λ is a labeling function of 

(S,T,W). 

• An action a∈A of a system Σ=(S,T,W,M0,λ) is auto-

concurrent in a marking M iff M concurrently 

enables two observable transitions t1 and t2 (not 

necessarily distinct) such that λ(t1)=λ(t2)=a. 

• A sequence σ=M0t1M1t2... is an occurrence 

sequence iff Mi-1[ti>Mi for 1≤i. A sequence t1t2... is 

a transition sequence starting with M iff there is an 

occurrence sequence M0t1M1t2.... If a finite sequence 

t1t2...tn leads from M to M’, we write M[t1t2...tn>M’. 

The set of reachable markings of a marked Petri net 

(S,T,W,M0) is defined as [M0>={M | ∃t1t2...tn : 

M0[t1t2...tn>M}. 

 

 

 

2.2. Maximality-Based Labelled Transition 

Systems  

A maximality-based labeled transition system is a 

labeled graph in which transitions are events that 

represent the beginning of execution of actions  

[11, 23]. A transition is therefore labeled with the 

name of the corresponding action. A state is labeled 

by all the actions that are potentially under execution 

at this state, these actions are said to be maximal. 

Given that several actions of the same name can be 

executed in parallel (auto-concurrency), we identify 

each start of an action by a distinct identifier, called 

event name. event names are selected from a 

countable set denoted by M. As illustration, let us 

consider the petri net of Figure 2 (a). In his example, 

only the transitions t1 and t2 can be executed in 

parallel, which corresponds to the parallel execution 

of two actions of the same name a. For example, we 

admit that the starts of the two actions a are identified 

by event names x and y and the start of b by the event 

name z. Section 3 presents a method for choosing 

event names allowing their reuse.  
                        
                         
                        

 

 
                                   (a)                             (b) 

 
 

Figure 2. Maximality-based labeled transition system. 

 

In the same maximality-based labeled transition 

system; this allows treating systems with recursive 

behaviors. The maximality-based labeled transition 

system which represents the semantics of the Petri net 

of Figure 2 (a) is given in Figure 2 (b). In the initial 

state, no action has begun its execution; the initial 

state is then labeled by the empty set. Starting from 

this state, each action a can start, from where the 

transitions identified by event names x and y. The state 

1, labeled by the set {x}, means that the action a is 

potentially running at this state. The transition 

identified by event name y corresponds to the start of 

the other action a. The state 3, labeled by the set {x,y}, 

shows that the two actions a may be executed 

simultaneously, while the state 2, labeled by the set 

{y}, shows that in this state only the action a may be 

under execution. From the state 2, two scenarios are 

possible: either the second action a begins its 

execution, leading to the state 3; or it is the action b 

which starts. It is clear that the action b cannot starts 

until the end of the first execution of the action a. This 

causality between the executions of a and b is 

captured by the set {y} associated with the transition 

leading the system from the state 2 to the state 4. In 

the resulting state, only the action b may be under 

execution, from where the labeling of this state by the 

set {z}. 
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Definition 2.1: let m be a countable set of event names, 

a maximality-based labeled transition system of support 

M is a tuple (Ω,λ,µ,ξ,ψ) with 

Ω=<S, T, α, β, s0> is a transition system such that: 

• S is the set of states in which the system can be 

found, this set can be finite or infinite. 

• T is the set of transitions indicating state switch that 

the system can achieve, this set can be finite or 

infinite. 

• and β are two applications of T in S such that for all 

transition t we have: α(t) is the origin of the 

transition and β(t) its goal. 

• s0 is the initial state of the transition system Ω. 

• (Ω,λ) is a transition system labeled by the function λ 

on an alphabet Act called support of (Ω,λ). (λ:T◊Act). 

• ψ:S◊2
M

 is a function which associates to each state 

the finite set of maximal event names present in this 

state. 

• µ: T◊2
M

 is a function which associates to each 

transition the finite set of event names corresponding 

to actions that have already begun their execution and 

of which the end of execution enables this transition. 

• ξ:T◊M is a function which associates to each 

transition the event name identifying its occurrence. 

such that ψ(s0)=∅ and for all transition t, µ(t)⊆ ψ(α(t)), 

ξ(t)∉ψ(α(t))-µ(t) and ψ(β(t))= (ψ(α(t))-µ(t))∪{ξ(t)}. 

Notation 2.1: In what follows, we use the following 

notations: 

• Let mlts=(Ω,λ,µ,ξ,ψ) be a maximality-based 

labeled transition system such that Ω=<S,T,α,β,s0>, 

t∈T is a transition for which α(t)=s, β(t)=s’, λ(t)=a, 

µ(t)=E and ξ(t)=x. The transition t will be noted s--

Eax◊s’. 
• Let f: E◊F be a function of domain Dom(f)=E and 

codomain Cod(f)=F, and let D (resp. C) be a subset 

of E (resp. of F). Restrictions of f w.r.t its domain 

and codomain are defined by: 

o F D={(x,y)∈ f|x∈D} 

o F C={(x,y)∈ f|y∈C} 

• ℑ⊆2
M×M

 is the set of all bijective functions between 

subsets of M. 

Definition 2.2: let mlts1=(Ω1,λ1,µ1,ξ1,ψ1) and 

mlts2=(Ω2,λ2,µ2,ξ2,ψ2) be two maximality-based 

labelled transition systems such that 

Ω1=<S1,T1,α1,β1,s10> and Ω2=<S2,T2,α2,β2,s20>. 

mlts1 and mlts2 are said to be maximally bisimilar, 

noted mlts1≈mmlts2, if there is a relation 

ℜ⊆S1×S2×ℑ with 

1. (s10,s20,∅)∈ℜ. Initial states of mlts1 and mlts2 are 

related by the relation. Since the sets of maximal 

events in initial states are empty, the function 

relating these two sets is empty. 

2. If (s1,s2,f)∈ℜ then 

• Dom(f)⊆ψ(s1) and Cod(f)⊆ψ(s2). 

• If s1--Eax◊s1’ then there is s2--Fay◊s2’ such that 

• ∀(u,v)∈f, if u∉E then v∉F 

3. (s1’,s2’,f’)∈ℜ with f’ = (f(ψ(s1’) -{x})) (ψ(s2’)-

{y}) ∪{(x,y)} 

• If s2--Fay◊s2’ then there is s1--Eax◊s1’ such that 

• ∀(u,v)∈f, if v∉F then u∉E 

• (s1’,s2’,f’)∈ℜ with f’ = (f(ψ(s1’) -{x}))  (ψ(s2’)-

{y}) ∪{(x,y)} 

 

3. Petri Nets and Maximality Semantics 

In this section, we introduce through simple examples 

useful notations and functions for the definition of 

marking graph associated to a labeled system in a 

maximality-based approach. 

Consider the example of the marked Petri net of 

Figure 3 (a). With the launch of the transition t1, it is 

clear that the firings of transitions t2 and t3 are 

conditioned by end of the action related to t1. To 

capture this causal dependence between firings of 

transitions, we consider that tokens produced by the 

firing of the transition t1 are bound to this transition, 

namely the token in place s2 and the token in place s3. 

We can see that, in the initial state, the token in s1 is 

not bound to any transition; this token is called free in 

this state. In the case when t2 would be fired, it could 

be argued that the action associated with the firing of 

t1 has finished its execution. As a result, the token in s3 

will become free. Resulting marking after the firing of 

the transition t2 is given in Figure 3 (c). 
 

 

 

 

 
 

 

 

 

                               (a)                       (b)                     (c) 
 

Figure 3. Market petri net. 

 

To distinguish between free and bound tokens in a 

place, we can imagine that a place is composed of two 

separated parts. The left part contains free tokens 

while the right one will contain bound tokens. In a 

place, the number of free tokens will be denoted by 

FT, while bound tokens set will be noted BT. Hence, 

we obtain the succession of markings of Figure 4. 

 

 

 

 
                                      (c1)                      (c2)                        (c3) 

 

       Figure 4. Free and bound tokens in a marking. 

 
 

A question that arises is how to bind a token with a 

transition? to answer the question, we consider the 

marked petri net of Figure 5 (a). By a firing of the 
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transition t1, we obtain the marked Petri net of Figure 5 

(b). Starting from this marking, we can see that t1 is 

enabled. The firing of this transition will lead to the 

configuration of Figure 5 (c). 
 

 

 
 

 

 

             
                        (a)                            (b)                                (c) 

   

Figure 5. Tokens linking. 
 

 

 

 

 

 
                       (c1)                              (c2)                               (c3) 

 

Figure 6. Firing succession of t1. 

 

The two tokens of the place s2 are bound. Indeed, 

one is bound to the first firing of the transition t1 while 

the second one is bound to the second firing of the 

same transition (two actions associated with t1 can be 

executed in parallel). To remove this ambiguity, each 

firing will be identified by an event name. As a result, 

binding a token may be characterized by both the 

transition that produced it and the event name 

identifying the firing of this transition. The succession 

of firings of the above example is depicted by Figure 6.. 

In the configuration C2, the set of bound tokens in s2 

is BT={t1x} while the set of bound tokens in s2 of the 

configuration C3 is BT={t1x, t1y}. The event name x 

refers to the first firing of the transition t1 while y refers 

to the second firing of this transition. 

Another problem concerns tokens which are bound 

to the same transition. To see that, consider the Petri net 

of Figure 7 (a). 
 

 
                (a)                                                  (b) 

 

Figure 7. Net with an output arc of a weight greater than 1. 

 

With the firing of the transition t1, we obtain the 

derivation of Figure 7 (b). The right side BT of the 

place s2 contains two tokens bound to the firing t1x, i.e., 

BT={t1x, t1x}. Since BT is a set, we consider that a 

bound token is a tuple (n ,t, x) of N×T×M, also denoted 

ntx, where n is the number of instances, t is the 

transition that produce this token and x is the event 

name associated to the firing of t. We denote by BT= 

{n1t1x1, n2t2x2, …} the set (possibly empty) of bound 

tokens. In the previous example, BT={2t1x}. Therefore, 

the marking of a place s is a pair (FT, BT) where FT is 

the number of free tokens in s. 

Definition 3.1: Let N=(S, T, W) be a Petri net, the 

marking of N is a function M:S◊N×2
N×T×M

. Among 

others, the marking M(s) of a place s∈S is a pair  

(FT, BT) such that FT∈N and BT∈2
N×T×M

 denote resp. 

the number of free tokens and the set (possibly empty) 

of bound tokens in the place s. In what follows, a Petri 

net with a marking will be called configuration. |M(s)| 

denote the total number of tokens in a place s. If 

M(s)=(FT, BT) such that BT={n1t1x1,…,nmtmxm} then 

|M(s)|=FT+|BT| with |BT|=∑i=1,…,m ni is the cardinal of 

the bound tokens set in s. Sometimes, we use FT(s) 

and BT(s) to denote the parts of the marking M(s) of 

the place s. 

Now, we consider the identification of consumed 

tokens by a firing of a transition. To do this, let us 

consider the Petri net of Figure 8 (a). 

 

 

 

 

 

 
                           (a)                            (b)                           (c) 

 

Figure 8. Event names identifying consumed tokens. 

 

We assume that one token of s3 is bound to the 

firing of t1 (t1x) and the other one is bound to the firing 

of t2 (t2y). Among bound tokens in s3, we want to know 

the consumed token in the first firing of t3 and that 

consumed in the second firing of the same transition. 

This information is essential to know, in each 

configuration, the actions (associated with transitions) 

which have finished their execution. To do this, we 

associate at the level of a firing the event names 

identifying bound tokens consumed by this firing. 

This gives us firing sequence of Figure 8. 

In the following paragraph, we give some 

preliminary definitions that will enable us to propose a 

generation method of a marking graph in the context 

of the maximality semantics. 

 

3.1. Preliminary Definitions 

Definition 3.2: let (S, T, W) be a Petri net with a 

marking M: 

• The set of maximal event names in M is the set of all 

event names identifying bound tokens in the 

marking M. Formally, the function ψ will be used to 

calculate this set, it can be defined as 

ψ(M)=∪s∈S∪i=1,…,ms xsi such that M(s)=(FT, BT) with 

BT={(ns1, ts1, xs1),…,(nsms, tsms, xsms)}. 

• Let N⊂M be a non-empty finite set of event names, 

makefree(N, M) is defined recursively by: makefree 

({x1 , x2, …,xn}, M)= makefree({x2,…,xn}, 

• Makefree ({x1}, M))  makefree ({x}, M)= M’ such 

that for all s∈S, if (s)=(FT, BT) then: 

• If there is (n, t, x)∈BT then M’(s) = (FT+n, BT-

{(n,t,x)}) (Conversion of n bound tokens identified 

by the event name x to free tokens). 

• Otherwise, M’(s)= M(s). 
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• Let t be a transition of T; t is said to be enabled by the 

marking M iff ||M(s)| ≥ W(s, t) for all s∈S. The set of 

all transitions enabled by the marking M will be noted 

enabled (M). 

• The marking M is said to be minimal for the firing of 

the transition t iff |M(s)|=W(s, t) for all s∈S. 

Let M1 and M2 be two markings of the Petri net  

(S, T, W). M1€M2 iff ∀s∈S, if M1(s) = (FT1, BT1) and 

M2(s)= (FT2, BT2) then FT1 ≤ FT2 and BT1€BT2 such 

that the relation € is extended to bound tokens sets as 

follows: BT1€BT2 iff ∀(n1, t, x)∈BT1, ∃(n2,t, x) ∈BT2 

such that n1≤n2. 

• Let M1 and M2 be two markings of the Petri net (S, T 

,W) such that M1€M2. The difference M2-M1 is a 

marking M3 (M2-M1=M3) such that for all s∈S, if 

M1(s)=(FT1,BT1) and M2(s)=(FT2,BT2) then M3(s)= 

(FT3, BT3) with FT3=FT2-FT1 and ∀(n1,t,x)∈BT1, 

(n2,t,x)∈BT2, if n1≠n2 then (n2-n1,t,x)∈BT3. 

• Min(M,t)={M’|M’€M} and M’is minimal for the 

firing of t. 

• Let M be a set. The function get:2
M

-{∅}◊M is a 

function which satisfies get(E)∈E for any E∈2
M

-

{∅}. 

• Given a marking M, a transition t and an event name 

x∉ψ(M), occur(t, x, M)=M’ such that for all s∈S, if 

M(s)=(FT, BT) then M’(s)=(FT, BT’) with 

BT’=BT∪{W(t, s),t, x)} if W(t, s)≠0 and BT’=BT 

otherwise. Hence, M’ is the resultant marking from 

the addition of tokens bound to t to the marking M. 

 

3.2. Construction of Marking Graph 

Let Σ=(S, T, W, M0, λ) be a labeled system. The 

marking graph Mg labeled by λ associated to Σ is a 

graph in which the states are defined by all reachable 

markings from the initial marking M0 and the 

transitions between states are labeled according to the 

derivation rule of Definition 3.3. 

Definition 3.3: let M be a reachable marking of the 

marked Petri net (S,T,W,M0), t∈enabled(M) then for all 

M’’∈Min(M,t), E=ψ(M’’) and M’’’=makefree(E,M-

M’’); the following derivation is possible: M--Etx◊M’ 

(also denoted by (M,Etx,M’)) such that 

• E is the set of maximal event names associated with 

actions in which the end is required for the launch of 

the action related to the firing of t. 

• x = get(M-ψ(M’’’)) and 

• M’ = occur(t,x,M’’’). 

 

3.3. Properties 

Proposition 3.1: let Σ=(S,T,W,M0,λ) be a labeled system 

and Mg its marking graph built according to Definition 

3.3, then the structure Σmlts=(Mg,λ,µ,ξ,ψ)  is a 

maximality-based labeled transition system with: 

• Mg=<Sg,Tg,α,β,M0> is the marking graph 

associated to Σ such that 

• Sg is the set of states defined by the set of reachable 

markings from the initial marking M0. 

• Tg={(M,Etx,M’)} such that M,M’∈Sg and (M,Etx,M’) 

is a valid derivation. 

• For (M,Etx,M’)∈Tg we have α((M,Etx,M’))=M and 

β((M,Etx,M’))=M’. 

• ψ : Sg◊2
M

 is the function defined in Definition 3.2. 

For d=(M,Etx,M’)∈Tg we put λ(d)=λ(t), µ(d)=E and 

ξ(d)=x. 

 

Proof: let us observe at first that the initial marking M0 

contains only free tokens, therefore ψ(M0)=∅. On the 

other hand, for d=(M,Etx,M’)∈Tg, according to 

Definition 3.3, µ(d)=E⊆ψ(α(d))=ψ(M), ξ(t)∉ψ(M)-

µ(d) and ψ(β(t))=ψ(M’)=(ψ(M)-µ(d))∪{ξ(d)}, then 

the result. 

Proposition 3.2: given a marked Petri net (S, T, W, 

M0), then the set of sequences of generated transitions 

in an interleaving approach is the same to the set of 

sequences generated in a maximality-based approach. 

Proof: derive directly from the fact that in a 

maximality-based approach, the firing condition of a 

transition takes into account only the number of 

tokens in places and not the nature of these tokens. 

Note that information related to the origin of tokens 

(BT set) is used only to decorate the graph with event 

names used in the generation of the maximality-based 

labeled transition system. 

Definition 3.4: let ∑1=(S1,T1,W1,M10,λ1) and 

∑2=(S2,T2,W2,M20,λ2) be two labeled systems. ∑1 and 

∑2 are said to be maximally bisimilar iff their 

respective maximality-based labeled transition 

systems are maximally bisimilar. 

Example 3.1: consider the example of the two 

labeled systems Sys1 and Sys2 in Figure 9 (this 

example is from [14]). By applying the proposed 

approach, the corresponding maximality-based labeled 

transition systems are given by Figure 10. The reader 

may easily check that these two systems are 

maximally bisimilar. 
 

 

 
 
 

 

 

 

 
 

                         

Figure 9. Maximally bisimilar systems. 

 
 

 

Figure 10. Maximally bisimilar MLTSs. 
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4. Conclusion 

In this paper, we proposed an operational method of 

generation of maximality-based labeled transition 

systems associated to Petri nets. Thus, correctness 

properties relative to systems specified by a Petri net 

can be checked on maximality-based labeled transition 

systems which correspond to this Petri net. In addition, 

maximality-based labeled transition system structure 

includes information on the parallel execution of 

actions. This structure enables us to more easily express 

properties relating to the parallel execution of actions 

without splitting actions in their start and end events. 

We note that splitting actions in start and end events to 

capture the parallel execution of the actions will 

contribute directly to the problem of combinatorial 

explosion of the state paragraph. 

In [3], an on-the-fly generation algorithm of 

maximality-based labeled transition systems, reduced 

modulo α-equivalence, relating to behavior expressions 

written in basic LOTOS process algebra [6] was 

proposed and integrated in FOCOVE environment [26]. 

We think that this algorithm adapts easily to the context 

of Petri nets. 

A future work consists on aggregating equivalent 

derivations of transitions according to maximality 

bisimulation relation. As illustration, consider the Petri 

net of Figure 11 (a). By applying the proposed 

approach, corresponding maximality-based labeled 

transition system of this Petri net is given by Figure  

11 (b). 

 
 

 

 

 

 
                            (a)                     (b)                       (c) 
 
 

Figure 11. Operational semantics of a Petri net in terms of MLTS. 

 

Notice that from state s2, transitions leading 

respectively to states s4 and s5 are due to the firing of 

the same transition t2. In the first firing, the token of the 

initial marking is used whereas in the second firing, the 

used token is that produced by the firing of t1. On the 

other hand, the derivation by b leading to state s4 is not 

conditioned by the end of the action a, while the 

derivation leading to state s5 is conditioned by the end 

of a. Therefore, we think that it possible to omit the 

derivations s2◊s5◊s6, i.e; the maximality-based labeled 

transition system of Figure 11 (c) preserves the 

behavior of the Petri net of Figure 11 (a). 

In another work, we think that we can use quantum 

evolutionary and genetic algorithms for reducing 

maximality-based labeled transition systems according 

to behavioral relations in the same way as in 

[20, 22, 21]. 
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