
 The International Arab Journal of Information Technology, Vol. 6, No. 5, November 2009 441

Using Maximality-Based Labelled Transition

System as a Model for Petri Nets

Djamel Eddine Saidouni, Nabil Belala, and Messaouda Bouneb

 Computer Science Department, University of Mentouri, Algeria

Abstract: This work deals with the specification and the verification of concurrent systems. Our goal is to exploit an

implementable model, namely the maximality -based labelled transition system, which permits expressing true-concurrency in

a natural way without splitting actions on their start and end events. To do this, we give an operational semantics to build

maximality-based labelled transition systems for place/transition Petri nets.

Keywords: Maximality-based labelled transition systems, maximality bisimulation, Petri nets.

Received December 18, 2008; accepted June 16, 2009

1. Introduction

The model of Petri nets is very attractive, not only by

its graphical aspect, but also by its ability to capture

parallel behavior of systems. One of verification

approaches of a Petri net is to generate its marking

graph in which nodes represent system states, and arcs

represent transitions taking the system from one state to

another. After its generation, the marking graph can be

seen as a labeled transition system [2]. The generated

labeled transition system is used for the verification of

the properties of the system specified by the Petri net

(model checking, bisimilarity, conformance testing, etc.

[8, 18, 9]). However, the labeled transition system

model ignores parallel execution of transitions. To

clarify things, consider the example of the two Petri

nets of Figures 1 (a) and (b). The Petri net in Figure 1

(a) represents a system that could execute the actions a

and b in parallel, while the Petri net of Figure 1(b)

represents a system executing actions a and b

sequentially. Nevertheless, these two nets have a single

semantic representation given by labeled transition

system of Figure 1 (c).

Figure 1. Adapted spiral model [1] for a reflective approach to

learning and teaching.

With the assumption that the firing of each transition

corresponds to the execution of an indivisible action

with null duration (structural and temporal atomicity of

actions), the model of labeled transition systems is

suitable for the interpretation of concurrent systems

behaviors. However, in reality, this assumption of

temporal and structural atomicity is not always

accepted.

To accept the verification results, realization

constraints must be taken into account by both the

specification and the used semantic model.

Taking into account the non-atomicity of actions in

a system has been deeply studied in the literature

through the definition of several semantics supporting

the concept of action refinement [10, 11, 12, 1, 7, 5,

13, 14, 15, 19, 23, 27, 29]. Among these semantics,

we can cite the maximality semantics which has been

defined independently on petri nets and event

structures by Devillers and Vogler [14, 15, 30]. In this

context, maximality bisimulation relation has been

defined and proved to be the coarsest relation

preserved by action refinement. In underlying

semantic models of Petri nets and event structures, a

system with infinite behavior needs an infinite set of

events, which makes the underlying structures

interesting just for the theoretical point of view

[14, 15, 30].

Dealing with implementability, another model

named maximality-based labeled transition system has

been defined in the literature and used for expressing

the semantics of process algebras with the hypothesis

that actions are not necessary atomic, i.e., actions are

abstractions of finite processes and may elapse on

time [11, 23, 28, 25]. The main interest of maximality-

based labeled transition system model is that it can be

implemented and used in verification [24].

In order to take advantage of the different results

developed around the model of maximality-based

labeled transition systems, we propose an operational

generation method of maximality-based labeled

transition systems for place/transition petri nets. As

result, maximality bisimulation relations defined on

maximality-based labeled transition systems are

442 The International Arab Journal of Information Technology, Vol. 6, No. 5, November 2009

extended to petri nets. The proposed approach, which

will be presented in section 3, is valid for Petri nets

containing recursive behaviors.

2. Preliminaries

2.1. Petri Nets Related Definitions

A Petri net is a tuple (S, T,W) where S is the set of

places, T is the set of transitions such that S∩T=∅, and

W:((S×T)∪(T×S))◊N={0, 1, 2,...} is the weight function

[4, 5]. Graphically, transitions of T are represented by

rectangles, places of S by circles and weight function by

arrows associated with their weights. We suppose that

all nets are finite, i.e., |S∪T|∈N.

• For x∈S∪T, the pre-set x is defined by

x={y∈S∪T|W(y,x)≠0} and the post-set x is defined

by x={y∈S∪T|W(x,y)≠0}.

• The marking of a Petri net (S,T,W) is defined as a

function M:S◊N. A marking is generally

represented graphically by putting tokens in places.

• The transition rule stipulates that a transition t is

enabled by M iff M(s)≥W(s,t) for all s∈S. The firing

of a transition t will produce a new marking M’

defined by M’(s)=M’(s)-W(s,t)+W(t,s) for all s∈S.

The occurrence of t is denoted by M[t>M’.

• Two transitions t1 and t2 (not necessarily distinct)

are concurrently enabled by a marking M iff

M(s)≥W(s,t1)+W(s,t2) for all s∈S.

• A marked Petri net (S,T,W,M0) is a Petri net (S,T,W)

with an initial marking M0.

• An alphabet A is a finite set; we suppose that τ∉A

(τ will indicate invisible action, or silent action).

• The labeling of a Petri net N=(S,T,W) is a function

λ:T◊A∪{τ}. If λ(t)∈A then t is said to be

observable or external; at the opposite, t is silent or

internal.

• Σ=(S,T,W,M0,λ) Is a labeled system iff (S,T,W,M0)

is a marked Petri net and λ is a labeling function of

(S,T,W).

• An action a∈A of a system Σ=(S,T,W,M0,λ) is auto-

concurrent in a marking M iff M concurrently

enables two observable transitions t1 and t2 (not

necessarily distinct) such that λ(t1)=λ(t2)=a.

• A sequence σ=M0t1M1t2... is an occurrence

sequence iff Mi-1[ti>Mi for 1≤i. A sequence t1t2... is

a transition sequence starting with M iff there is an

occurrence sequence M0t1M1t2.... If a finite sequence

t1t2...tn leads from M to M’, we write M[t1t2...tn>M’.

The set of reachable markings of a marked Petri net

(S,T,W,M0) is defined as [M0>={M | ∃t1t2...tn :

M0[t1t2...tn>M}.

2.2. Maximality-Based Labelled Transition

Systems

A maximality-based labeled transition system is a

labeled graph in which transitions are events that

represent the beginning of execution of actions

[11, 23]. A transition is therefore labeled with the

name of the corresponding action. A state is labeled

by all the actions that are potentially under execution

at this state, these actions are said to be maximal.

Given that several actions of the same name can be

executed in parallel (auto-concurrency), we identify

each start of an action by a distinct identifier, called

event name. event names are selected from a

countable set denoted by M. As illustration, let us

consider the petri net of Figure 2 (a). In his example,

only the transitions t1 and t2 can be executed in

parallel, which corresponds to the parallel execution

of two actions of the same name a. For example, we

admit that the starts of the two actions a are identified

by event names x and y and the start of b by the event

name z. Section 3 presents a method for choosing

event names allowing their reuse.

 (a) (b)

Figure 2. Maximality-based labeled transition system.

In the same maximality-based labeled transition

system; this allows treating systems with recursive

behaviors. The maximality-based labeled transition

system which represents the semantics of the Petri net

of Figure 2 (a) is given in Figure 2 (b). In the initial

state, no action has begun its execution; the initial

state is then labeled by the empty set. Starting from

this state, each action a can start, from where the

transitions identified by event names x and y. The state

1, labeled by the set {x}, means that the action a is

potentially running at this state. The transition

identified by event name y corresponds to the start of

the other action a. The state 3, labeled by the set {x,y},

shows that the two actions a may be executed

simultaneously, while the state 2, labeled by the set

{y}, shows that in this state only the action a may be

under execution. From the state 2, two scenarios are

possible: either the second action a begins its

execution, leading to the state 3; or it is the action b

which starts. It is clear that the action b cannot starts

until the end of the first execution of the action a. This

causality between the executions of a and b is

captured by the set {y} associated with the transition

leading the system from the state 2 to the state 4. In

the resulting state, only the action b may be under

execution, from where the labeling of this state by the

set {z}.

Using Maximality-Based Labelled Transition System as a Model for Petri Nets 443

Definition 2.1: let m be a countable set of event names,

a maximality-based labeled transition system of support

M is a tuple (Ω,λ,µ,ξ,ψ) with

Ω=<S, T, α, β, s0> is a transition system such that:

• S is the set of states in which the system can be

found, this set can be finite or infinite.

• T is the set of transitions indicating state switch that

the system can achieve, this set can be finite or

infinite.

• and β are two applications of T in S such that for all

transition t we have: α(t) is the origin of the

transition and β(t) its goal.

• s0 is the initial state of the transition system Ω.

• (Ω,λ) is a transition system labeled by the function λ

on an alphabet Act called support of (Ω,λ). (λ:T◊Act).

• ψ:S◊2
M

 is a function which associates to each state

the finite set of maximal event names present in this

state.

• µ: T◊2
M

 is a function which associates to each

transition the finite set of event names corresponding

to actions that have already begun their execution and

of which the end of execution enables this transition.

• ξ:T◊M is a function which associates to each

transition the event name identifying its occurrence.

such that ψ(s0)=∅ and for all transition t, µ(t)⊆ ψ(α(t)),

ξ(t)∉ψ(α(t))-µ(t) and ψ(β(t))= (ψ(α(t))-µ(t))∪{ξ(t)}.

Notation 2.1: In what follows, we use the following

notations:

• Let mlts=(Ω,λ,µ,ξ,ψ) be a maximality-based

labeled transition system such that Ω=<S,T,α,β,s0>,

t∈T is a transition for which α(t)=s, β(t)=s’, λ(t)=a,

µ(t)=E and ξ(t)=x. The transition t will be noted s--

Eax◊s’.
• Let f: E◊F be a function of domain Dom(f)=E and

codomain Cod(f)=F, and let D (resp. C) be a subset

of E (resp. of F). Restrictions of f w.r.t its domain

and codomain are defined by:

o F D={(x,y)∈ f|x∈D}

o F C={(x,y)∈ f|y∈C}

• ℑ⊆2
M×M

 is the set of all bijective functions between

subsets of M.

Definition 2.2: let mlts1=(Ω1,λ1,µ1,ξ1,ψ1) and

mlts2=(Ω2,λ2,µ2,ξ2,ψ2) be two maximality-based

labelled transition systems such that

Ω1=<S1,T1,α1,β1,s10> and Ω2=<S2,T2,α2,β2,s20>.

mlts1 and mlts2 are said to be maximally bisimilar,

noted mlts1≈mmlts2, if there is a relation

ℜ⊆S1×S2×ℑ with

1. (s10,s20,∅)∈ℜ. Initial states of mlts1 and mlts2 are

related by the relation. Since the sets of maximal

events in initial states are empty, the function

relating these two sets is empty.

2. If (s1,s2,f)∈ℜ then

• Dom(f)⊆ψ(s1) and Cod(f)⊆ψ(s2).

• If s1--Eax◊s1’ then there is s2--Fay◊s2’ such that

• ∀(u,v)∈f, if u∉E then v∉F

3. (s1’,s2’,f’)∈ℜ with f’ = (f(ψ(s1’) -{x})) (ψ(s2’)-

{y}) ∪{(x,y)}

• If s2--Fay◊s2’ then there is s1--Eax◊s1’ such that

• ∀(u,v)∈f, if v∉F then u∉E

• (s1’,s2’,f’)∈ℜ with f’ = (f(ψ(s1’) -{x}))  (ψ(s2’)-

{y}) ∪{(x,y)}

3. Petri Nets and Maximality Semantics

In this section, we introduce through simple examples

useful notations and functions for the definition of

marking graph associated to a labeled system in a

maximality-based approach.

Consider the example of the marked Petri net of

Figure 3 (a). With the launch of the transition t1, it is

clear that the firings of transitions t2 and t3 are

conditioned by end of the action related to t1. To

capture this causal dependence between firings of

transitions, we consider that tokens produced by the

firing of the transition t1 are bound to this transition,

namely the token in place s2 and the token in place s3.

We can see that, in the initial state, the token in s1 is

not bound to any transition; this token is called free in

this state. In the case when t2 would be fired, it could

be argued that the action associated with the firing of

t1 has finished its execution. As a result, the token in s3

will become free. Resulting marking after the firing of

the transition t2 is given in Figure 3 (c).

 (a) (b) (c)

Figure 3. Market petri net.

To distinguish between free and bound tokens in a

place, we can imagine that a place is composed of two

separated parts. The left part contains free tokens

while the right one will contain bound tokens. In a

place, the number of free tokens will be denoted by

FT, while bound tokens set will be noted BT. Hence,

we obtain the succession of markings of Figure 4.

 (c1) (c2) (c3)

 Figure 4. Free and bound tokens in a marking.

A question that arises is how to bind a token with a

transition? to answer the question, we consider the

marked petri net of Figure 5 (a). By a firing of the

444 The International Arab Journal of Information Technology, Vol. 6, No. 5, November 2009

transition t1, we obtain the marked Petri net of Figure 5

(b). Starting from this marking, we can see that t1 is

enabled. The firing of this transition will lead to the

configuration of Figure 5 (c).

 (a) (b) (c)

Figure 5. Tokens linking.

 (c1) (c2) (c3)

Figure 6. Firing succession of t1.

The two tokens of the place s2 are bound. Indeed,

one is bound to the first firing of the transition t1 while

the second one is bound to the second firing of the

same transition (two actions associated with t1 can be

executed in parallel). To remove this ambiguity, each

firing will be identified by an event name. As a result,

binding a token may be characterized by both the

transition that produced it and the event name

identifying the firing of this transition. The succession

of firings of the above example is depicted by Figure 6..

In the configuration C2, the set of bound tokens in s2

is BT={t1x} while the set of bound tokens in s2 of the

configuration C3 is BT={t1x, t1y}. The event name x

refers to the first firing of the transition t1 while y refers

to the second firing of this transition.

Another problem concerns tokens which are bound

to the same transition. To see that, consider the Petri net

of Figure 7 (a).

 (a) (b)

Figure 7. Net with an output arc of a weight greater than 1.

With the firing of the transition t1, we obtain the

derivation of Figure 7 (b). The right side BT of the

place s2 contains two tokens bound to the firing t1x, i.e.,

BT={t1x, t1x}. Since BT is a set, we consider that a

bound token is a tuple (n ,t, x) of N×T×M, also denoted

ntx, where n is the number of instances, t is the

transition that produce this token and x is the event

name associated to the firing of t. We denote by BT=

{n1t1x1, n2t2x2, …} the set (possibly empty) of bound

tokens. In the previous example, BT={2t1x}. Therefore,

the marking of a place s is a pair (FT, BT) where FT is

the number of free tokens in s.

Definition 3.1: Let N=(S, T, W) be a Petri net, the

marking of N is a function M:S◊N×2
N×T×M

. Among

others, the marking M(s) of a place s∈S is a pair

(FT, BT) such that FT∈N and BT∈2
N×T×M

 denote resp.

the number of free tokens and the set (possibly empty)

of bound tokens in the place s. In what follows, a Petri

net with a marking will be called configuration. |M(s)|

denote the total number of tokens in a place s. If

M(s)=(FT, BT) such that BT={n1t1x1,…,nmtmxm} then

|M(s)|=FT+|BT| with |BT|=∑i=1,…,m ni is the cardinal of

the bound tokens set in s. Sometimes, we use FT(s)

and BT(s) to denote the parts of the marking M(s) of

the place s.

Now, we consider the identification of consumed

tokens by a firing of a transition. To do this, let us

consider the Petri net of Figure 8 (a).

 (a) (b) (c)

Figure 8. Event names identifying consumed tokens.

We assume that one token of s3 is bound to the

firing of t1 (t1x) and the other one is bound to the firing

of t2 (t2y). Among bound tokens in s3, we want to know

the consumed token in the first firing of t3 and that

consumed in the second firing of the same transition.

This information is essential to know, in each

configuration, the actions (associated with transitions)

which have finished their execution. To do this, we

associate at the level of a firing the event names

identifying bound tokens consumed by this firing.

This gives us firing sequence of Figure 8.

In the following paragraph, we give some

preliminary definitions that will enable us to propose a

generation method of a marking graph in the context

of the maximality semantics.

3.1. Preliminary Definitions

Definition 3.2: let (S, T, W) be a Petri net with a

marking M:

• The set of maximal event names in M is the set of all

event names identifying bound tokens in the

marking M. Formally, the function ψ will be used to

calculate this set, it can be defined as

ψ(M)=∪s∈S∪i=1,…,ms xsi such that M(s)=(FT, BT) with

BT={(ns1, ts1, xs1),…,(nsms, tsms, xsms)}.

• Let N⊂M be a non-empty finite set of event names,

makefree(N, M) is defined recursively by: makefree

({x1 , x2, …,xn}, M)= makefree({x2,…,xn},

• Makefree ({x1}, M)) makefree ({x}, M)= M’ such

that for all s∈S, if (s)=(FT, BT) then:

• If there is (n, t, x)∈BT then M’(s) = (FT+n, BT-

{(n,t,x)}) (Conversion of n bound tokens identified

by the event name x to free tokens).

• Otherwise, M’(s)= M(s).

Using Maximality-Based Labelled Transition System as a Model for Petri Nets 445

• Let t be a transition of T; t is said to be enabled by the

marking M iff ||M(s)| ≥ W(s, t) for all s∈S. The set of

all transitions enabled by the marking M will be noted

enabled (M).

• The marking M is said to be minimal for the firing of

the transition t iff |M(s)|=W(s, t) for all s∈S.

Let M1 and M2 be two markings of the Petri net

(S, T, W). M1€M2 iff ∀s∈S, if M1(s) = (FT1, BT1) and

M2(s)= (FT2, BT2) then FT1 ≤ FT2 and BT1€BT2 such

that the relation € is extended to bound tokens sets as

follows: BT1€BT2 iff ∀(n1, t, x)∈BT1, ∃(n2,t, x) ∈BT2

such that n1≤n2.

• Let M1 and M2 be two markings of the Petri net (S, T

,W) such that M1€M2. The difference M2-M1 is a

marking M3 (M2-M1=M3) such that for all s∈S, if

M1(s)=(FT1,BT1) and M2(s)=(FT2,BT2) then M3(s)=

(FT3, BT3) with FT3=FT2-FT1 and ∀(n1,t,x)∈BT1,

(n2,t,x)∈BT2, if n1≠n2 then (n2-n1,t,x)∈BT3.

• Min(M,t)={M’|M’€M} and M’is minimal for the

firing of t.

• Let M be a set. The function get:2
M

-{∅}◊M is a

function which satisfies get(E)∈E for any E∈2
M

-

{∅}.

• Given a marking M, a transition t and an event name

x∉ψ(M), occur(t, x, M)=M’ such that for all s∈S, if

M(s)=(FT, BT) then M’(s)=(FT, BT’) with

BT’=BT∪{W(t, s),t, x)} if W(t, s)≠0 and BT’=BT

otherwise. Hence, M’ is the resultant marking from

the addition of tokens bound to t to the marking M.

3.2. Construction of Marking Graph

Let Σ=(S, T, W, M0, λ) be a labeled system. The

marking graph Mg labeled by λ associated to Σ is a

graph in which the states are defined by all reachable

markings from the initial marking M0 and the

transitions between states are labeled according to the

derivation rule of Definition 3.3.

Definition 3.3: let M be a reachable marking of the

marked Petri net (S,T,W,M0), t∈enabled(M) then for all

M’’∈Min(M,t), E=ψ(M’’) and M’’’=makefree(E,M-

M’’); the following derivation is possible: M--Etx◊M’

(also denoted by (M,Etx,M’)) such that

• E is the set of maximal event names associated with

actions in which the end is required for the launch of

the action related to the firing of t.

• x = get(M-ψ(M’’’)) and

• M’ = occur(t,x,M’’’).

3.3. Properties

Proposition 3.1: let Σ=(S,T,W,M0,λ) be a labeled system

and Mg its marking graph built according to Definition

3.3, then the structure Σmlts=(Mg,λ,µ,ξ,ψ) is a

maximality-based labeled transition system with:

• Mg=<Sg,Tg,α,β,M0> is the marking graph

associated to Σ such that

• Sg is the set of states defined by the set of reachable

markings from the initial marking M0.

• Tg={(M,Etx,M’)} such that M,M’∈Sg and (M,Etx,M’)

is a valid derivation.

• For (M,Etx,M’)∈Tg we have α((M,Etx,M’))=M and

β((M,Etx,M’))=M’.

• ψ : Sg◊2
M

 is the function defined in Definition 3.2.

For d=(M,Etx,M’)∈Tg we put λ(d)=λ(t), µ(d)=E and

ξ(d)=x.

Proof: let us observe at first that the initial marking M0

contains only free tokens, therefore ψ(M0)=∅. On the

other hand, for d=(M,Etx,M’)∈Tg, according to

Definition 3.3, µ(d)=E⊆ψ(α(d))=ψ(M), ξ(t)∉ψ(M)-

µ(d) and ψ(β(t))=ψ(M’)=(ψ(M)-µ(d))∪{ξ(d)}, then

the result.

Proposition 3.2: given a marked Petri net (S, T, W,

M0), then the set of sequences of generated transitions

in an interleaving approach is the same to the set of

sequences generated in a maximality-based approach.

Proof: derive directly from the fact that in a

maximality-based approach, the firing condition of a

transition takes into account only the number of

tokens in places and not the nature of these tokens.

Note that information related to the origin of tokens

(BT set) is used only to decorate the graph with event

names used in the generation of the maximality-based

labeled transition system.

Definition 3.4: let ∑1=(S1,T1,W1,M10,λ1) and

∑2=(S2,T2,W2,M20,λ2) be two labeled systems. ∑1 and

∑2 are said to be maximally bisimilar iff their

respective maximality-based labeled transition

systems are maximally bisimilar.

Example 3.1: consider the example of the two

labeled systems Sys1 and Sys2 in Figure 9 (this

example is from [14]). By applying the proposed

approach, the corresponding maximality-based labeled

transition systems are given by Figure 10. The reader

may easily check that these two systems are

maximally bisimilar.

Figure 9. Maximally bisimilar systems.

Figure 10. Maximally bisimilar MLTSs.

446 The International Arab Journal of Information Technology, Vol. 6, No. 5, November 2009

4. Conclusion

In this paper, we proposed an operational method of

generation of maximality-based labeled transition

systems associated to Petri nets. Thus, correctness

properties relative to systems specified by a Petri net

can be checked on maximality-based labeled transition

systems which correspond to this Petri net. In addition,

maximality-based labeled transition system structure

includes information on the parallel execution of

actions. This structure enables us to more easily express

properties relating to the parallel execution of actions

without splitting actions in their start and end events.

We note that splitting actions in start and end events to

capture the parallel execution of the actions will

contribute directly to the problem of combinatorial

explosion of the state paragraph.

In [3], an on-the-fly generation algorithm of

maximality-based labeled transition systems, reduced

modulo α-equivalence, relating to behavior expressions

written in basic LOTOS process algebra [6] was

proposed and integrated in FOCOVE environment [26].

We think that this algorithm adapts easily to the context

of Petri nets.

A future work consists on aggregating equivalent

derivations of transitions according to maximality

bisimulation relation. As illustration, consider the Petri

net of Figure 11 (a). By applying the proposed

approach, corresponding maximality-based labeled

transition system of this Petri net is given by Figure

11 (b).

 (a) (b) (c)

Figure 11. Operational semantics of a Petri net in terms of MLTS.

Notice that from state s2, transitions leading

respectively to states s4 and s5 are due to the firing of

the same transition t2. In the first firing, the token of the

initial marking is used whereas in the second firing, the

used token is that produced by the firing of t1. On the

other hand, the derivation by b leading to state s4 is not

conditioned by the end of the action a, while the

derivation leading to state s5 is conditioned by the end

of a. Therefore, we think that it possible to omit the

derivations s2◊s5◊s6, i.e; the maximality-based labeled

transition system of Figure 11 (c) preserves the

behavior of the Petri net of Figure 11 (a).

In another work, we think that we can use quantum

evolutionary and genetic algorithms for reducing

maximality-based labeled transition systems according

to behavioral relations in the same way as in

[20, 22, 21].

References

[1] Aceto L. and Hennessy M., “Adding Action

Refinement to Finite Process Algebra”, in

Proceedings of ICALP’91, Springer-Verlag, pp.

506-519, 1991.

[2] Arnold A., Systèmes de Transitions Finis et

Sémantique des Processus Communicants,

Masson, Paris, 1992.

[3] Benamira A. and Saïdouni E., “Consideration of

the Covering Steps in the Maximality-Based

Labeled Transition Systems”, in Proceedings of

International Arab Conference on Information

Technology (ACIT’2006), Jordan, pp. 19-21,

2006.

[4] Best E. and Devillers R., “Sequential and

Concurrent Behaviour in Petri Net Theory,”

Theoretical Computer Science, vol. 55, no. 1, pp.

87-136, 1987.

[5] Best E., Devillers R., Kiehn A., and Pomello L.,

“Concurrent Bisimulations in Petri Nets,” Acta

Informatica, vol. 28, pp. 231-264, 1991.

[6] Bolognesi T. and Brinksma E., “Introduction to

the ISO Specification Language LOTOS,”

Computer Journal of Computer Networks and

ISDN Systems, vol. 14, no. 1, pp. 25-59, 1987.

[7] Boudol G. and Castellani I., “Concurrency and

Atomicity,” Computer Journal of TCS, vol. 59,

no., pp. 1-60, 1988.

[8] Clarke M., Emerson E., and Sistla P.,

“Automatic Verification of Finite State

Concurrent Systems Using Temporal Logic

Specifications,” Computer Journal of ACM

Transactions on Programming Languages and

Systems, vol. 8, no. 2, pp. 244-263, 1986.

[9] Cleveland R. and Hennessy M., “Testing

Equivalence as a Bisimulation Equivalence,”

Computer Journal of Formal Aspects of

Computing, vol. 5, no. 3, pp. 1-20, 1993.

[10] Courtiat P. and Saïdouni E., “Action Refinement

in LOTOS,” in Proceedings of Protocol

Specification, Testing and Verification

(PSTV’93), Holland, pp. 341-354, 1994.

[11] Courtiat P. and Saïdouni E., “Relating

Maximality-Based Semantics to Action

Refinement in Process Algebras,” in the 7
th

International Conférence on Formal Description

Techniques (FORTE’94), pp. 293-308, Chapman

& Hall, 1995.

[12] Darondeau P. and Degano P., “Refinement of

Actions in Event Structures and Causal Trees,”

Computer Journal of TCS, vol. 118, no. 4, pp.

21-48, 1993.

[13] Degano P. and Gorrieri R., “Atomic Refinement

in Process Description Languages,” in

Proceedings of Mathematical Foundations of

Computer Science, LNCS, vol. 520, no. 2, pp.

121-130, Springer-Verlag, 1991.

Using Maximality-Based Labelled Transition System as a Model for Petri Nets 447

[14] Devillers R., “Maximality Preservation and the

ST-Idea for Action Refinement,” Computer

Journal of Advances in Petri Nets, vol. 609, no. 3,

pp. 108-151, Springer-Verlag, 1992.

[15] Devillers R., “Maximality Preserving

Bisimulation”, Computer Journal of TCS, vol.

102, no. 6, pp. 165-183, 1992.

[16] Dijkstra W., “Hierarchical ordering of Sequential

Processes,” Computer Journal of Acta

Informatica, vol. 1, no. 2, pp. 115-138, 1971.

[17] Emerson A., “Temporal and Modal Logic,” in

Handbook of Theoretical Computer Science:

Formal Models and Semantics, vol. B, no. 5, pp.

995-1072, 1990.

[18] Fernandez J. and Mounier L., “A Tool Set for

Deciding Behavioral Equivalences,” in

Proceedings of the 2
nd
 International Conference

on Concurrency Theory, UK, pp. 23-42, 1991.

[19] Janssen W., Poel M., and Zwiers J., “Action

Systems and Action Refinement in the

Development of Parallel Systems,” in

Proceedings of CONCUR’91, LNCS, vol. 527,

no. 9, pp. 298-316. Springer-Verlag, 1991.

[20] Layeb A. and Saïdouni E., “Quantum Genetic

Algorithm for Binary Decision Diagram Ordering

Problem,” International Journal of Computer

Science and Network Security, vol. 7, no. 9, pp.

130-135, 2007.

[21] Layeb A. and Saïdouni E., “A New Quantum

Evolutionary Local Search Algorithm for Max 3-

SAT Problem,” in Proceedings of the 3
rd

International Workshop on Hybrid Artificial

Intelligence Systems (HAIS’08), Spain, 2006.

[22] Layeb A. and Saïdouni E., “A Quantum Genetic

Algorithm with Hill Climbing Algorithm for Max

3-SAT Problems,” in Proceedings of

International Conference on Intelligent

Computing (ICIC’2008) China, to Appear in

LNCS. Springer-Verlag, 2008.

[23] Saïdouni E., Sémantique de Maximalité :

Application au Raffinement d’Actions en

LOTOS, PhD Thesis, du Colonel Roche, France,

1996.

[24] Saïdouni E. and Belala N., “Using Maximality-

Based Labeled Transition System Model for

Concurrency Logic Verification,” The

International Arab Journal of Information

Technology (IAJIT), vol. 2, no. 3, pp. 199-205,

2005.

[25] Saïdouni D. and Belala N., “Actions Duration in

Timed Models,” in Proceedings of International

Arab Conference on Information Technology

(ACIT’2006), Jordan, pp. 19-21, 2006.

[26] Saïdouni E., Benamira A., Belala N., and Arfi F.,

“FOCOVE: Formal Concurrency Verification

Environment for Complex Systems,” in

Mediterranean Conference on Intelligent Systems

and Application (CISA’2008), in American

Institute of Physics Conference Proceedings, pp.

375-380.

[27] Saïdouni E. and Courtiat P., “Syntactic Action

Refinement in Presence of Multiway

Synchronization,” in Workshop on Semantics of

Specification Languages (SoSL’93), Utrecht, pp.

289-303, 1994.

[28] Saïdouni E. and Courtiat P., “Prise en Compte

des Durées d’action Dans les Algèbres de

Processus Par L’utilisation de la Sémantique de

Maximalité,” in Proceedings of CFIP’2003,

France, pp.301-310, 2003.

[29] Van J., “The Refinement Theorem for ST-

Bisimulation Semantics,” in Proceedings of IFIP

Working Conference on Programming Concepts

and Methods, Holland, pp. 22-25, 1990.

[30] Vogler W., “Bisimulation and action

refinement”, Computer Journal of TCS, vol. 114,

no. 3, pp. 173-200, 1993.

Djamel Eddine Saidouni obtained

his BEng degree from University of

Mentouri Constantine, Algeria, in

1990. He prepared his DEA in

communicating systems. He

obtained his PhD in theoretical

computer science and concurrency

from the University of Paul Sabatier, Toulouse, France

in 1996.

Nabil Belala obtained his BEng

degree from University of Mentouri

Constantine, Algeria, in June 2002,

and his MSc degree in computer

science at the University of

Mentouri, Constantine. From

October 2005, he started his PhD

thesis on timed models and their use in formal

specification and verification of real-time systems.

Messaouda Bouneb obtained her

BEng degree from University of

Mentouri Constantine, Algeria, in

June 2005. In February 2009, she

obtained her MSc degree in

computer science at the University

of El Arbi Ben-Mhidi Oum El-

Bouaghi, Algeria.

