
84 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

Stochastic Bounds for Microprocessor

 Systems Availability

Ihab Sbeity
1
, Mohamed Dbouk

1
, and Brigitte Plateau

2

1
Faculty of Sciences, Lebanese University, Lebanon

2
Laboratoire Informatique de Grenoble, France

Abstract: The computing of stochastic bounds has become an efficient technique to obtain performance predictions for

computer systems by the mean of Markovian models. However, the quality of these bounds may be affected by several

properties related not only to how to use the technique but also to the Markovian model itself. On the other hand,

multiprocessor systems have become an efficient and widely used infrastructure to run several critical-life applications. In this

paper, we describe how to calculate a stochastic bound for the multiprocessor system availability. We focus on the

irreducibility of the model to show how it might influence the quality of bounds.

Keywords: Stochastic bounds, multiprocessor system, availability, irreducibility, and Markov chain.

Received January 15, 2009; accepted August 20, 2009

1. Introduction

Clusters, grids and multiprocessor systems have

become popular computing platforms for

computationally intensive applications with diverse

computing needs [1]. The evaluation of such systems

in order to tune an incorporated Quality of Service

(QoS) control mechanism raises several problems that

must be solved. One of the issues is to build and

analyze stochastic models for the availability of the

system which incorporates task deadlines, processors or

network failures, overloading, and so on.

In the context of Markov theory, exponential

probability distribution functions are used. Such

distribution functions facilitate the evaluation process

with Markovian resolution techniques used to obtain

exact predictions of the model. However, in most

practical cases, a limitation due to the model state space

size explosion occurs. To deal with this limitation, an

issue consists in calculating a bound of the system

availability. In fact, for such systems, we might be

interested in knowing whether the system availability is

larger than what is necessary to execute an application

and not necessary its exact value.

The stochastic comparison of random variables has

been introduced as an efficient technique in different

applied probability domains [10]. In the case of

Markovian analysis, an algorithm to compute stochastic

bound has been developed by Fourneau et al. [5, 6].

Consider a Markov model with a transition matrix

denoted P. When the exact solution of the model is too

complex to be achieved, for reasons related principally

to the size of P (resolution of XPP = XP, XP is a

probability vector), the algorithm proposed by

Fourneau et al. allows to construct another Markov

chain (with a transition matrix Q). The new matrix,

i.e., Q (called bounding matrix), permits to obtain

bounds for the stationary measures of P. Moreover, the

new chain is monotone according to the strong

stochastic order (st) of Stoyan [10] (st-monotone), and

can be strongly aggregated (the matrix is lumpable

[2]) according to a user-defined partition of the state

space. The aggregated matrix (Qagg) permits to

analyze the chain at a reduced cost. In fact, the state

space is then smaller and equal to the partition size.

This procedure has been implemented in an algorithm

called LIMSUB [6]. A variety of LIMSUB has been

also implemented for high-level Markovian formalism

such as Stochastic Automata Network (SAN) [7]

where the chain is represented as a formula with

tensor products of rather small matrices.

However, a serious problem that is related to this

procedure is to choose a partition that gives a good

quality bound. The construction of the matrix Q is

based on a transformation of the initial matrix P in

order to ensure monotonicity and lumpability

conditions. The bounds quality is then strongly related

to the “quasi-monotonicity” and the “quasi-

lumpability” of the initial matrix reordered according

to the partition. In [4], authors have studied the impact

of monotonicity on the bounds quality. The

lumpability is an important property because it permits

the analysis of large Markov chains with a reduced

state space in a very small time. However, the bounds

quality depends on the type of states we aggregate

together (states of heavy or lightly probability). On the

other hand, irreducibility of Markov chain is also an

important property that facilitates its stationary

analysis. In [5, 6], authors present the conditions for

the bounding matrix Q to be irreducible. These

 Stochastic Bounds for Microprocessor Systems Availability 85

conditions are related to the choice of the partition of

the state space.

In this paper, we show that irreducibility is an

important factor for the choice of the partition and that

a bad choice may lead to a poor quality of bounds. Our

observation is illustrated by an availability model of a

multiprocessors system, for which we calculate a bound

for the probability of failure. This work permits to

identify the cases where the computing of stochastic

bound would be efficient in multiple domains of

computer science.

The paper organization is as follows. In section 2,

we recall the initial concepts of the algorithm LIMSUB

that calculates stochastic bounds. In particular, we

present the impact of monotonicity and lumpability on

the bounds quality. We also show the conditions

necessary to ensure the irreducibility of the bounding

matrix. These conditions form the basic point of our

observation in order to show the impact of irreducibility

on the bounds quality. In section 3, this impact is

illustrated based on the multiprocessors model that is

described. In section 4, we calculate bounds for the

model focusing on the influence of irreducibility

requested to analyze the bounding matrix. Section 5

concludes the paper.

2. Stochastic Bounds

2.1. Algorithm LIMSUB

In this section we consider only Discrete Time Markov

Chain (DTMC). Continuous Time Markov Chain

(CTMC) can be introduced similarly after an

uniformization of the transition matrix. Also, we are

interested only by the stationary analysis of DTMC.

Computing stochastic bound for the stationary

distribution of a DTMC has been developed and

implemented by Fourneau et al. in an algorithm called

LIMSUB [6]. Consider an irreducible DTMC with a

transition matrix P of size K, and denote the stationary

distribution of the chain by XP (XPP=XP). Given a

partition of the state space Par of size M (M ≤ K),

LIMSUB computes a bounding matrix Q of P of size K,

that is monotone and lumpable according to the

partition Par. We denote the element of line “i” and

the column “j” of a matrix P by P[i,j].

The algorithm LIMSUB is composed of two

principal phases: the first phase consists in ensuring the

monotonicity of the bounding matrix, and the second

phase deals with lumpability. Thus, without lack of

generality, we present in a first step, the construction of

the bounding matrix Q that is only monotone. In a

second step, we describe the construction of the

bounding monotone matrix that is lumpable. We denote

the bounding matrix which is not lumpable by R and

the lumpable matrix by Q (R is a special case of Q).

In [5, 6], based on the strong stochastic order of

Stoyan [10], the authors define the relation between R,

respectively Q, and P by equation 1.

KjiRR

KjiRP

K

jk ki

K

jk ki

K

jk ki

K

jk ki

,...,1,

,...,1,

],1[],[

],[],[

=∀≤

=∀≤

∑∑

∑∑

= +=

==

The first inequality implies that the matrix R is a super

bound of P according to the strong stochastic order (P

<st R). The second inequality means that the matrix R

is monotonic. Denoting XR the stationary distribution

vector of R, and if XP and XR exist, based on equation

1 and according to the fundamental theorem of Stoyan

then XP <st XR, meaning that:

∑∑ ==
≤

K

kj R

K

kj P jXjX)()(∀ Kk ,...,2,1=

where XP(j), respectively XR(j), represents the

probability of state “j” of the Markov chain

represented by P, respectively R, (as shown in [6] for

further details).

Inequalities of equation 1 are the basic starting

point of the algorithm LIMSUB to construct the

matrix R. The idea consists in replacing these

inequalities by a set of “limiting” equalities, leading to

the algorithm. The equalities are shown in equation 3:

• ∑∑ ==
=

K

jk k

K

jk k PR],1[],1[
 ∀ Kj ,...,2,1=

• ∑ ∑ ∑= = = ++
=

K

jk

K

jk

K

jk kikiki PRR),max(],1[],[],1[

∀ Kji ,...,2,1, =

To illustrate these procedures, let us consider the

matrices P and R of example 1.

In this example, the matrix R is a bound of the

matrix P. Remark that elements of P and R respect the

equalities given above. The matrix O represents errors

or perturbations introduced in R relatively to P in

order to ensure the monotonicity of R. In fact for each

i and j, the value of O[i,j] is given by:

86 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

∑ =
−=

K

jk kikiji PRO],[],[],[

For example, O[2,4]= (R[2,5] + R[2,4]) - (P[2,5] +

P[2,4]) = (0.2 + 0.4) - (0.1 + 0.1) = 0.4, and O[3,2] =

(0.3 + 0.1 + 0.4 + 0.2) - (0.3 + 0.5 + 0.1 + 0.1) = 0.

We call this type of perturbations the monotonicity

perturbations. In [4], authors observed that the bounds

quality is strongly related to these perturbations. The

authors focused on the calculation of a bound for the

last state of the chain. They have remarked that, in

particular, if the perturbations on the last column of the

matrix are important, then the bounds quality would be

poor. In our example, the probability vectors of the

stationary distributions of R and P are given

respectively by: XR = (0.0293, 0.2337, 0.0800, 0.4570,

0.2000), and XP = (0.0684, 0.2248, 0.3165, 0.3223,

0.0672). Remark that XP <st XR, meaning that XR is an

upper bound of XP according to Stoyan stochastic order.

• 0.0672 ≤ 0.2000.

• 0.0672+ 0.3223 ≤ 0.2000+ 0.4570.

• 0.0672 + 0.3223 + 0.3165 ≤ 0.2000 + 0.4570 +0.0800.

• 0.0672 + 0.3223 + 0.3165 + 0.2248 ≤0.2000 + 0.4570+

0.0800+ 0.2337.

• 0.0672 + 0.3223 + 0.3165 + 0.2248 + 0.0684 ≤0.2000+

0.4570+ 0.0800+ 0.2337+ 0.0293.

Observe that the bounds quality of the last state, i.e.,

state 5, is poor relatively to its exact value (0.0672 ≤

0.2000). This is related to the large monotonicity

perturbations on the last column of R.

On the other hand, the fundamental principle of

LIMSUB is to compute a bounding matrix which may

be aggregated according to a partition Par of the state

space. The resolution of the aggregated matrix is

performed on a smaller space whose size is equal to the

partition size. We recall that Q will denote the

bounding matrix that is monotonic and also lumpable.

The notion of lumpability is recalled in definition 1.

Definition 1: let Q be an irreducible stochastic

matrix of a finite Markov chain, and let Par = {p1, p2…

pM} be a partition of the state space of the chain (M is

the size of the partition). We say that the chain is

strongly aggregable (ordinary lumpable) according to

Par if and only if for each states i1 and i2 of the same set

pi of Par, we have that

∑∑ ∈∈
=

kk pj jipj ji QQ],[],[11

for each set pk of Par. Consider a Markov chain, having

a vector of stationary probabilities, denoted XQ, strongly

aggregable according to a partition Par = {p1, p2, … ,

pM}. The transition matrix Q of the chain is then

aggregable according to Par. Let Qagg the aggregated

matrix and XQagg the associated vector of stationary

probabilities. A fundamental property of this

aggregation is [2]:

∑ ∈
=

iagg pj QiQ jp)()(ππ Parpi ∈∀

Given an initial matrix of P of size K, and a partition

of the state space Par = {p1, p2, … , pM}, the algorithm

LIMSUB calculates implicitly a matrix Q of size K

that is lumpable according to Par, st-monotone and

which bounds P. However, it is the matrix Qagg of size

M (the aggregation of Q) which is the output of the

algorithm. Each element of Qagg is a macro-state that

corresponds to states belonging to a set pi of Par.

Finally, suppose that matrix P is composed of M
2

blocks, each block (i,j) represents transitions from the

set pi to the set pj. The algorithm LIMSUB operates

with decomposition per blocks of the initial matrix

and requires two steps: the first one ensures the

monotonicity inside a block, and the second one

modifies the first column of the block in order to

satisfy the constraints of lumpability.

Recall the matrix P of example 1, and let us

consider a partition Par = {p1, p2, p3} of the state

space such that p1 = {1,2}, p2 = {3,4} and p5 = {5}.

The matrix P and its bounding matrix Q which is

lumpable according to Par are given in Example 2.

In this example Qagg represents the aggregated matrix

of Q, The matrix A represents the perturbations

introduced in order to ensure the aggregability of

matrix Q. These perturbations are given, for each i and

j, by:

∑ =
−=

K

jk kikiji RQA],[],[],[

Thus, the value of A[1,3] = (0.2+ 0.3+ 0.2) - (0.1 + 0.3

+ 0.2) = 0.1. Probability vectors of Q and Qagg are

respectively given by XQ = (0.0260, 0.2340, 0.0826,

0.4574, 0.2000), and XQagg = (0.2600, 0.5400, 0.2000).

It is obvious to remark that XP <st XQ. On the other

hand, remark that XR <st XQ, meaning that the quality

of the bounds calculated with R is better than those

calculated using Q. This is effectively the consequence

of lumpability perturbations seen above. However,

recall that the interest of using Q is that calculation is

done with a smaller matrix (Qagg) in a reduced time.

 Stochastic Bounds for Microprocessor Systems Availability 87

2.2. Irreducibility of Bounding Matrix

In the previous subsection, we have recalled the

algorithm that computes stochastic bounds, and we

have shown the impact of monotonicity and lumpability

on the bounds quality. In this subsection, we present the

impact of another important property on the bound

quality. In fact, the irreducibility of the bounding

matrix is necessary in order to resolve the Markov

chain presented by this matrix. Nevertheless, in some

cases, we show how insuring this property can have a

negative influence on the quality of bounds computed

by LIMSUB. This irreducibility property requires a

certain structure of the partition that may lead to non-

significant bounds. We will illustrate this in our

multiprocessor model in section 3.

In [6], necessary and sufficient conditions have been

defined in order to the bounding matrix to be

irreducible. These conditions are recalled in theorem 1.

Theorem 1: let P an irreducible stochastic matrix,

Par = {p1, p2,..., pM} a partition of the state space of P,

and Q the lumpable bounding matrix of P. Then, the

matrix Q is irreducible if and only if P[1,1]≠0 and for any

i, there exists in P a transition to a state j such that i ∈

px and j∈ py and y < x.

The proof of this theorem can be found in [6]. Based

on this theorem, we will give a corollary that will be the

center point to show the impact of irreducibility on the

bounds quality.

In some models, we may be interested in the

calculation of a direct bound for the probability of some

set of states (i.e., states of a global system failure in an

availability model). We should then place these states

in the last set according to the partition order, i.e., set

pM. Remark that in example 2, a direct bound can be

found for the probability of state 5 of P using the

aggregated matrix Qagg. In fact XP(5) < XQagg(p3) =

0.2000.

Denote the set of states mentioned above by J. The

set J may be, by choice, decomposed into multiple

subsets J1, .., Jt (t > 0). In order to calculate a direct

bound for the probability of J, we define the sets of the

partition Par such that: pM = Jt, … , pM-t+1= J1, by

placing the subsets of J at the end according to the

partition order. Nevertheless, the structure of the

partition should respect some conditions in order to

ensure the irreducibility of the bounding matrix.

Corollary 1: let P be an irreducible stochastic matrix,

Par = {p1, p2, …, pM-1 , J1, …, Jt} a partition of the state

space of P, and R the bounding matrix of P calculated

by LIMSUB that is aggregable according to Par. Let i a

state of the Markov chain represented by P and succ(i)

the set of successor states of i in the chain (for all j,

P[i,j] ≠ 0). If succ(i) is a subset of J, then a necessary

condition in order to the matrix R be irreducible is that

i∈ p1.

Based on theorem 1, the proof of the corollary is

simple. Consider a state i of the Markov chain of P such

that succ(i) is a subset of J and i∈px (x > 1). Then the

set px contains a state i from which we cannot transit

to a state j belonging to a set py such that y < x.

According to theorem 1, the bounding matrix is not

irreducible.

In the following, we present how the conditions

described by the corollary may imply a bad bounding

quality for some computer models.

3. Multiprocessor System Model

Multiprocessors systems have become an alternative

frequently used to execute high performance

applications. Very high availability rate is required in

order to correctly execute life-critical applications.

Some techniques, such that combinatorial analysis,

Markov chains [8, 9, 11] and Monte-Carlo simulation

[3] have been largely used in order to predict

availability of multiprocessors system. However, the

complexity of the model yields to difficulties for its

exact resolution. An interesting alternative is to

calculate a bound for the probability of system failure.

In fact, for such systems, we might be interested in

knowing whether the system availability is larger than

the one necessary to execute applications and not

necessary its exact value.

Consider a multiprocessors system with N

cooperating processors. A processor alternates

between two states: active where it functions correctly

and failed when it is in a failed or a repair state after

having been affected by a failure. We suppose that an

active processor i may fail with an exponential rate αi

(then it passes to state failed). The exponential

reparation rate of processor i is denoted βi. On the

other hand, each processor has a set of neighbor

processors (all other processors of the system). When

the processor i fails, its neighbors should enter in a

state of reconfiguration of the system, in order to take

in charge the job of the failed processor. When the

processor is repaired, its neighbors should again enter

the reconfiguration state in order to allow the

processor to join back the system. We suppose that

after a reconfiguration, each processor goes back to its

active state. The time spent in the reconfiguration state

is also exponential and it is equal to 1/µi for each

process i.

If we suppose that the processors rates are identical

(αi =α, βi = β, µi =µ, ∀ i), then the model can be

aggregated and its stationary solution can be easily

calculated. However, we consider here different

failure rates. In reality, the failure rate of a processor

depends on its workload that is not the same for all

processors of the system. So, we suppose that the

failure rate of the processors are given such that (α1 ≠

α2 ≠ … ≠ αi). Given this, the exact resolution of the

model becomes difficult and depends on the size of

the model that explodes with N.

acit2k
Distance Measurement
0.41 in

88 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

On the other hand, the global failure of the system

may be defined in two different forms. The first form

(failure A) is the state where all processors have been

failed. The second form (failure B) is defined by the

fact that no processor is active. In this second form, we

consider the state where some processors are failed and

others are in reconfiguration as a global failure state.

This assumption may appear pessimistic but it can be

realistic [12].

In the remainder of this paper, we consider that a

global state x is a triplet (na, nr, nf), where na,

respectively nr and nf, represents the number of

processors in active, respectively reconfiguration and

failure, state (na+ nr + nf = N). Failure A occurs when

the system is in the global state (0,0,N). Failure B

occurs when the system is in one of the states of set J =

{x / x = (0, r, f); r+f = N}. Based on this model we

present in the next section the calculation of bounds for

the probability of system failure. Recall that our

objective is to show the impact of irreducibility on the

stochastic bounds quality. By the way, we show also

the interest of this calculation in the case it is possible.

4. Results Analysis

In this section, the availability analysis of the

multiprocessors system is presented, by computing a

bound for the probability of system failure. Several

choices of the failure rate are possible. We suppose, for

example, that αi are given as αi = α + v.£ where v is a

random variable of the set {1,..,N} and α and £ are two

constants such that α > £. Thus, we use a small

deviation between the different failure rates.

Given the actual high reliability of actual processors

and networks, a processor failure is often a scarce

event. Following this, the parameters values are fixed to

α = 0.001, £ = 0.0001, β = 1 and µ = 10. Thus, the mean

failure average time is around 1/α = 1000 minutes, the

mean reconfiguration time is 0.1 minute and the mean

reparation time is 1 minute. In reality, the factor

between the failure and reparation rates is of the order

of 10
5
 or 10

6
. We use a factor of 10

3
 for numerical

precision requirements. Our objective being to present

the quality of bounds calculated by LIMSUB, we have

fixed the previous values of parameters. However,

other values may be also used and produce similar

results.

In section 3, we gave two different definition of the

global failure (A and B). In section 4.1, we show

bounds calculated for failure A. In section 4.2, based on

failure B, we show how the computation of stochastic

bounds might be inefficient for reasons related to

irreducibility.

4.1. Failure A

The system global failure occurs when all processors

are in their failure state. We use a partition of the state

space given by Par = {p0,…,pN-1, J} where the set pi is

composed of states where i processors have failed.

The set J contains the only one global failure state.

This partition permits to calculate a direct bound for

the probability of system failure. The initial matrix

ordered according to this partition is close to be

monotone, and the most important perturbations are

then those introduced to ensure lumpability.

For a model of N processors, the size of the initial

matrix is of 3
N
, the size of the bounding matrix is of

N+1. The result of Table 1 shows that the obtained

bounds are of very good quality examining the

absolute deviation from the exact value.

Table 1. Probability of failure A.

N State Space Size Value of Bound Exact Value

3 27 1.94 E-09 1.29 E-09

4 81 3.05 E-12 1.39 E-12

5 243 5.30 E-15 1.48 E-15

6 729 1.01 E-17 1.58 E-18

7 2187 2.09 E-20 1.67 E-21

8 6561 4.70 E-23 1.77 E-24

10 59049 2.95 E-28 1.95 E-30

On the other hand, notice that when the value of N

increases, the quality of the bound degrades relatively

to the exact value. This is related to the perturbations

introduced to ensure the lumpability of the bounding

matrix. In fact, the partition Par consists of certain

blocks of the matrix to aggregate values αi together

(while taking the maximum which is equal to max = α

+N£). This consists in replacing values αi by max

implying a perturbation that becomes important with a

largest value of N. To justify our observation, for N =

10, the set p9 (9 processors have failed) is split in order

to eliminate lumpability perturbations in the block-

columns belonging to p9. Thus, we have defined sets

p9
j
 containing successively states where the processor j

is not in its failed state. Then the new bound value is

3.85 E-29 (instead of 2.95 E-28 without splitting p9).

While splitting sets pi successively the bound quality

is also improved, but slowly.

4.1. Failure B

In this case, the system failure occurs when there is no

active processor. We will show that such definition of

global failure imposes a partition of the state space

that affects negatively the calculation of direct bound

for the probability of failure. More precisely, we will

show that failure B requires some structure of the

partition in order to the bounding matrix to be

irreducible. This required structure leads to a poor

bound quality.

Consider a partition of the state space Par =

{p1,…,pM-1,J}. As we have shown, the algorithm

LIMSUB consists in positioning the set of failure

states (J) at the end of the partition in order to get a

direct bound.

 Stochastic Bounds for Microprocessor Systems Availability 89

On the other hand, from any state y = (a, 0, f) (∉ J)

(a+ f = N), the possible transitions are illustrated by the

Figure 1.

• One processor among the active processors fails,

with a rate αi. Other active processors should enter

the reconfiguration state. The new state is then of the

form (0,a-1,f+1) (∈ J).

• One processor among the failed processors is

repaired with a rate β. Other active processors should

enter the reconfiguration state. The new state is then

of the form (0,a+1,f-1) (∈ J).

Given this, and according to the corollary 1, states y

= (a, 0, p) should be placed in the first set of the

partition (p1) in order to insure the irreducibility of the

bounding matrix. Thus, respecting this condition, we

can show that whatever the structure of the partition is,

the bound quality is poor. To illustrate this, consider the

initial matrix P of Figure 2, ordered according to the

partition whose structure respects the previous

condition. Looking at the columns of the last set of the

partition, the greatest probabilities (the βs) belong to

the first block (transitions from (a, 0, p) to (0,a+1,p-1)).

This will imply large perturbations introduced to the

columns of the bounding matrix in order to be

monotone. Values βs will propagate vertically in the

last columns. Recall that in [4], authors have underlined

that this perturbations imply a bad bound quality, which

is also visible with our experimentations. Underline the

fact that the origin of this poor quality is the constraint

of irreducibility.

5. Conclusion

The calculation of stochastic bounds is an efficient

technique to cope with the difficulty of the exact

resolution for very large Markov model. However, the

bound quality depends on multiple factors. In this

paper, the impact of irreducibility is shown, implying

that the bound quality depends also on the system

architecture and not only its behavior. Our

perspectives are to propose a general heuristic giving

the best partition allowing obtaining a good quality

bound. We also plan to study other case study by

taking, for example, other time distribution than

exponential, i.e., phase type distributions.

References

[1] Avizienis A., Laprie C., and Randell B.,

“Dependability and its Threats: A Taxonomy,”

Rapport LAAS No04386, France, 2004.

[2] Buchholz P., “Exact and Ordinary Lumpability

in Finite Markov Chains,” in Proceedings of

Performance Evaluation, pp. 211-226, 2002.

[3] Conway E. and Goyal A., “Monte Carlo

Simulation of Computer System Availability and

Reliability Models,” in Proceedings of FTCS-17,

pp. 33-38, 1987.

[4] Dayar T. and Pekergin N., “Stochastic

Comparison, Re-Orderings, and Nearly

Completely Decomposable Markov Chains,” in

Proceedings of the International Conference on

the Numerical Solution of Markov Chains, pp.

228-246, 1999.

[5] Fourneau M. and Pekergin N., “An Algorithmic

Approach to Stochastic Bounds,” in Proceedings

of LNCS 2459, Performance Evaluation of

Complex Systems: Techniques and Tools, pp. 64-

88, 2002.

[6] Fourneau M., Lecoz M., and Quessette F.,

“Algorithms for an Irreducible and Lumpable

Strong Stochastic Bound,” in Proceedings of the

International Conference on the Numerical

Solution of Markov Chains, USA, pp. 156-159,

2003.

[7] Fourneau M., Plateau B., Sbeity I., and Stewart

J., SANs and Lumpable Stochastic Bounds:

Bounding Availability, Imperial College Press,

2006.

[8] Geist R. and Trivedi S., “Ultra-Heigh Reliability

Prediction for Fault-Tolerant Computer

Systems,” Computer Journal of IEEE

Transactions, vol. 32, no. 12, pp. 84-89, 1986.

[9] Sbeity I. and Plateau B., “Structured Stochastic

Modeling and Performance Analysis of a

Multiprocessor System,” in Proceedings of

Markov Anniversary Meeting, USA, pp. 752-

758, 2006.

[10] Stoyan D., Comparison Methods for Queues and

Other Stochastic Models, Press Wiley, 1983.

[11] Trivedi S., “Probability and Statistics with

Reliability, Queuing and Computer Science

Applications,” Prentice Hall, 1982.

[12] Trivedi S., Sathaye S., Ibe C., Howe C., and

Aggarwal A., Availability and Performance-

a,0,f

0,a-1,f+1

0,a+1,f-1

J

Figure 1. Pssible transitions to state J.

Figure 2. Initial matrix P.

90 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

 [12] Trivedi S., Sathaye S., Ibe C., Howe C., and
 Aggarwal A., Availability and Performance-
 Based Sizing of Multiprocessor Systems, SAE
 International, 1996.

Ihab Sbeity received a Maîtrise in

applied mathematics from the

Lebanese University in 2002, a

Master in computer science systems

and communications from the

Université Joseph Fourier, France, in

2003, and a PhD from Institut

National Polytechnique de Grenoble, France in 2006.

His PhD work is related to performance evaluation and

system design. Currently, he occupies a full time

position at the Lebanese University, Faculty of

Sciences, Computer Sciences Department. His research

interests include modeling and performance evaluation

of parallel and distributed computer systems, numerical

solution and simulation of large Markov models, UML

modeling, and software performance engineering.

Mohamed Dbouk reievied

Bachelor’s Honor” in applied

mathematics; computer science,

Lebanese University, Faculty of

Sciences (I)-Beirut, PhD from Paris

Sud 11 University Orsay, France,

1997. His research interests include

software engineering and information systems,

performance modeling and optimization, geographic

information systems and hypermedia,

datawherehousing and data mining.

hh

Brigitte Plateau received a Master

in applied mathematics from the

University of Paris 6 in 1976, a

Thèse de Troisième Cycle in

computer science from the

University of Paris 11 in 1980, and

a These d’Etat in computer science

from the University of Paris 11 in 1984. She was

Charg´e de Recherche at CNRS, France from 1981 to

1985, assistant professor at the Computer Science

Department of the University of Maryland from 1985

to 1987. Currently, she holds a position of professor at

the Engineering School ENSIMAG in Grenoble,

France and is heading le LIG (Laboratoire

d’informatique de Grenoble).

