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Abstract: Evolving solutions rather than computing them certainly represents a promising programming approach. 

Evolutionary computation has already been known in computer science since more than 4 decades. More recently, another 

alternative of evolutionary algorithms was invented: Quantum Genetic Algorithms (QGA). In this paper, we outline the 

approach of QGA by giving a comparison with Conventional Genetic Algorithm (CGA). Our results have shown that QGA can 

be a very promising tool for exploring search spaces. 
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1. Introduction 

Genetic Algorithms (GA) are a representative example 

of a set of methods known as evolutionary algorithms. 

This approach started in the 1970s by John Holland, 

and knew for a decade strong growth. A GA is an 

iterative algorithm based on the notion of generation, 

but it is also inherently highly parallel in that it 

simulates the evolution of a range of solutions. 

Quantum computation is a newly emerging 

interdisciplinary science of information science and 

quantum science. The first quantum algorithm was 

proposed by Shor [10], for number factorization. 

Grover [2] also proposed a quantum algorithm for 

random search in databases, the complexity of its 

algorithm was reduced to be of the order of (N^½). 

More recently, quantum computation has attracted a 

wide attention, and it becomes a very interest research 

field. 

QGA is a combination of GA and quantum 

computing. There were some efforts to use QGA for 

exploring search spaces; we quote for example [3] 

where a QGA was used to solve the knapsack problem 

[1], where a quantum-inspired differential evolution 

algorithm was proposed to solve the N-queens problem 

and [11] who proposed a parallel version of QGA. In 

[7], a QGA was also used to solve the binary decision 

diagram ordering problem. More recently, QGA where 

used to evolve Cellular Automata rules (CA) [5, 6] to 

solve the density classification problem. 

In this work, we propose to make a comparison 

between GA and QGA to extract some computational 

abilities of QGA to perform processing in an effective 

and an efficient manner. We have considered the 

classic 0/1 knapsack problem. Indeed, it existed such 

work in the literature [4, 11]. But in our case, the 0/1 

knapsack problem was tackled from several sides and 

with more details. 

This paper is organized as follows. Section 2 

describes some conventional GA principles. A 

description of the basic concept of quantum computing 

and QGA principles is presented in section 3. Section 4 

tackles the 0/1 knapsack problem and some 

conventional GA solving methods. In section 5 we 

summarize and analyze the experimental results. We 

finish our paper by concluding remarks follow and 

some perspectives in section 6. 

 

2. Conventional Genetic Algorithm (CGA) 

GA is an exploration algorithm based on genetic 

evolution and natural selection. It manipulates a 

population of individuals called chromosomes. At each 

time step a new generation is constructed by applying 

genetic operators between some selected 

chromosomes. The structure of a CGA is illustrated in 

Figure 1. The simplest way for coding chromosomes is 

to represent them by binary strings. The initial 

population has to start with random chromosomes 

uniformly distributed over the entire search space. The 

next step is the evaluation operation. Its role is to mark 

the individuals of the population. After that, the 

individuals will be sorted according to their marks. The 

selection operation has as goal to elect some number of 

individuals to enable reproduction. The cross-over 

operation can be performed by exchanging some parts 

of selected individuals in random positions which leads 

to create a new set of chromosomes replacing the old 

ones. Before repeating the process, it is recommended 

to perform a mutation to correct stochastic errors to 

avoid a genetic drift and to ensure a genetic diversity 

in the population. It consists of changing some random 
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positions of the individuals according to a small 

probability (typically between 1% and 0.1%). 

 

 
Figure 1. CGA structure. 

 

3. Quantum Genetic Algorithm (QGA) 
 

3.1. Quantum Computing 

In quantum computing, the smallest unit of 

information storage is the quantum bit (qubit) [3]. A 

qubit can be in the state 1, in the state 0 or in a 

superposition of both. The state of a qubit can be 

represented as [3]: 
 

                             |Ψ> = α |0> + β |1>                                 (1) 
 

Where |0> and |1> represent the values of classical 

bits 0 and 1 respectively, α and β are complex numbers 

satisfying: 
 

                                     |α|
2
 + |β|

2
 = 1                              (2) 

 

|α|
2
 is the probability where a qubit is in state 0 and |β|

2
 

represents the probability where a qubit is in state 1. A 

quantum register of m qubits can represent 2
m
 values 

simultaneously. However, when the 'measure' is taken, 

the superposition is destroyed and only one of the 

values becomes available for use. That's why we think 

that quantum computers can be used mainly in 

applications involving a choice among a multitude of 

alternatives. 

In general, a quantum algorithm has less complexity 

than its classic equivalent algorithm through the 

concept of quantum superposition. Among the most 

famous quantum algorithms we quote Shore’s 

algorithm for number factorization [10] and Grover’s 

algorithm for research in a non sorted database [2]. 

Both algorithms have solved problems which their 

complexity was reduced. 

3.2. QGA Principles 

QGAs are a combination between GA and quantum 

computing. They are mainly based on qubits and states 

superposition of quantum mechanics. Unlike the 

classical representation of chromosomes (binary string 

for instance), here they are represented by vectors of 

qubits (quantum register). Thus, a chromosome can 

represent the superposition of all possible states. The 

structure of a QGA is illustrated in Figure 2 [3]: 

 

 

Figure 2. QGA structure. 

 

3.2.1. Structure of Quantum Chromosomes 

A chromosome is simply a string of m qubits that 

forms a quantum register. Figure 3 shows the structure 

of a quantum chromosome. 

 

 
Figure 3. Quantum chromosome structure. 

 

3.2.2. Initializing the Population 

The easiest way to create the initial population is to 

initialize all the amplitudes of qubits by the value          

1/(2^ ½) [3]. This means that a chromosome represents 

all quantum superposition states with equal probability. 

 

3.2.3. Evaluation of Individuals 

The role of this phase is quantifying the quality of each 

quantum chromosome in the population to make a 

reproduction. The evaluation is based on an objective 

function that corresponds to each individual, after 

measuring, an adaptation value. It permits to mark 

individuals in the population. 

Cross-over 

Selection 

Generation of the initial population P(t= 0) 

Mutation 

Evaluation of  P(t) 

 

t   ← t +1 

Verified criterion? 

Replacement 

Save the best solution b 

Evaluation of P(t) 

Generation of the initial population Q(t= 0) 

Q(t) updated by rotation of quantum gates to 

obtain Q(t+1) 

 

Generate P(t) by measure of Q(t) 

t   ← t +1 

 

Verified criterion? 
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3.2.4. Quantum Genetic Operations 

1. Measuring Chromosomes: In order to exploit 

effectively superposed states of qubits, we have to 

observe each qubit. This leads us to extract a classic 

chromosome as illustrated in Figure 4. The aim is to 

enable the evaluation of each quantum 

chromosome. 

 

       
         Figure 4. Measured chromosome. 

 

A simple way to implement this function is given 

by the following pseudo code: 
 

Function measure () 

begin 

 r := get r in [0,1] ; 

 if (r > α
2
) 

  return 1 ; 

else 

return 0 ; 

 end if 

end 

2. Interference: This operation allows modifying the 

amplitudes of individuals in order to improve 

performance. It mainly consists of moving the state 

of each qubit in the sense of the value of the best 

solution. This is useful for intensifying the search 

around the best solution. It can be performed using a 

unit transformation that allows a rotation whose 

angle is a function of the amplitudes (ai, bi) and the 

value of the corresponding bit in the reference 

solution. The value of the rotation angle δθ has to be 

chosen so that to avoid premature convergence. It is 

often empirically determined and its direction is 

determined as a function of the values of ai, bi and 

the value of the qubit located at the position i in the 

individual being modified [7]. 

3. Qubit Rotation Gates Strategy: The rotation of 

individual’s amplitudes is performed by quantum 

gates. Quantum gates can also be designed in 

accordance with the present problem. The 

population Q(t) is updated with a quantum gates 

rotation of qubits constituting individuals. The 

rotation strategy adopted is given by the following 

equation: 
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    Where ∆θi is the rotation angle of qubit quantum 

gate i of each quantum chromosome. It is often 

obtained from a lookup table to ensure convergence. 

4. Knapsack Problem  
 

The knapsack problem is one the most combinatorial 

algorithms. The knapsack problem can be described as 

selecting from among various items those which are 

most profitable, given that the knapsack has a limited 

capacity. There are many types of knapsack problem, 

so the simplest one is called 0/1 knapsack problem. It 

is described as: given a set of m items and a knapsack, 

select a subset of the items so as to maximize the profit 

f(x) [3] as shown in equation 4: 
 

                               ∑
=

=
m

1i
ixip)x(f                                          (4) 

 
Subject to: 
 

                           C
m

1i
ixiw)x(f ≤∑

=
=                        (5) 

 

Where x = (x1, x2, …., xm), xi is 0 or 1, pi and wi are the 

profit and the weight of the i
th
 item. C is the capacity of 

the knapsack. 

 

4.1. Choosing Parameters Values 

Since it was found that the difficulty of such problem 

is greatly affected by the correlation between profits 

and weights [8], three randomly generated sets of data 

are considered [8]: 
 

1. Uncorrelated:  

wi = (uniformly) random([1..v])  

pi =  (uniformly) random([1..v]) 

2. Weakly correlated: 

wi = (uniformly) random([1..v]) 

pi =  wi + (uniformly) random([-r..+r]) 

3. Strongly correlated: 

wi = (uniformly) random([1..v]) 

pi =  wi + r 
 

Higher correlation implies smaller value of the 

difference:  
 

maxi = 1.. m {pi / wi} - mini = 1.. m {pi / wi}; 
 

As reported in [8], higher correlation problems have 

higher expected difficulty. The knapsack capacity can 

be set according two types (again, following a 

suggestion from [8]): 
 

1. Restrictive knapsack capacity (C1): The knapsack 

capacity C=2v. In this case, the optimal solution 

contains very few items [8]. 

2. Average knapsack capacity (C2): The knapsack 

capacity is determined as shown in equation 6: 
 

                   ∑
=

=
m

1i
iw

2

1
)x(f                               (6) 

 

In this case, the optimal solution contains about half of 

the items [8]. 
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 4.2. Solving Knapsack Problem with  

       Conventional GA (CGA) 

There are three types of conventional GA algorithms 

[8]: algorithms based on penalty functions, algorithms 

based on repair methods and algorithms based on 

decoders. 

In algorithms based on penalty functions, each 

solution is coded as a binary string of the length m 

representing a chromosome x to the problem. The 

profit f(x) of each chromosome is computed as shown 

in equation 7: 
 

                 )x(pen
m

1i
ixip)x(f −∑

=
=                              (7) 

 

Where Pen(x) is a penalty function. We consider here 

the three types of penalties discussed in [8]: 

logarithmic penalty, linear penalty, and quadratic 

penalty: 
 

                             

( )( )
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Where ρ is maxi = 1.. m {pi / wi}. The penalty function 

Pen(x) is zero for all feasible solutions x, i.e., solutions 

that: 
 

                                 ∑
=

=
m

1i
ixip)x(f                                                  (9) 

 

And greater than zero otherwise. In algorithms based 

on repair methods, the profit f(x) of each chromosome 

is computed as shown in equation 10: 
 

                                ∑
=

=
m

i
xipxf

1

,
)(                            (10) 

 

Where x’ is a repaired vector of the original vector x. 

Original chromosomes are replaced with a 5% 

probability in the experiment (it has been proved that 

that 5% is the most appropriate replacement 

percentage). We have used the two repair algorithms 

mentioned in [8]. The repair algorithms differ only in 

selection procedure, which chooses an item for 

removal from the knapsack: 
 

1. Random Repair (Rep1): In this case, a random 

element is removed from the knapsack. 

2. Greedy Repair (Rep2): All items in the knapsack 

are sorted in the decreasing order of their profit to 

weight ratios. The last item is always chosen for 

deletion. 

We will not tackle here the third method (decoder 

based algorithms), because the chromosome 

representation is based on integers while quantum 

chromosomes can use only qubit representation. 

 

5. Experimental Results and Discussion 

In all our experiments we have coded solutions as 

binary strings of the length m for CGA and as qubit 

strings of the length m for QGA. The length of both 

strings is the same as the number of items. For CGA 

the i
th
 item is added to the knapsack if and only if the 

i
th
 element in the binary string is 1. Similarly for QGA, 

the i
th
 item is added to the knapsack with a probability 

of |βi|
2
 where |βi|

 
is the amplitude of the i

th
 qubit in the 

qubit string. Before presenting our experimental 

results, we will announce the parameters of both 

algorithms and knapsack problem parameters. 

 

5.1. CGA Parameters 

The parameter values were chosen according to the 

most values found in the literature as mentioned in 

Table 1 (for instance Mitchell and al [9] have used the 

same parameter values to evolve cellular automata 

rules by CGA). 
 

Table 1. List of CGA parameters. 

Parameter Value 

Cross-over probability 50 % 

Mutation probability 1 % 

Population size 100 

 

5.2. QGA Parameters 

The population size was fixed to be 100. The 

amplitudes of the individuals are updated by a rotation 

of quantum gates according to the look-up Table 2. 
 

Table 2. Look-up table for quantum gates rotation. 
 

xi   bi f (x) > f(b) ∆θi s (ai bi) 

ai.bi > 0 ai.bi < 0 ai= 0 bi= 0 

0   0 0 0.001π - + ± ± 

0   0 1 0.001π - + ± ± 

0   1 0 0.08π - + ± ± 

0   1 1 0.001π - + ± ± 

1   0 0 0.08π + - ± ± 

1   0 1 0.001π + - ± ± 

1   1 0 0.001π + - ± ± 

1   1 1 0.001π + - ± ± 

 

xi and bi are the i-th bits of x and b (the best 

solution), respectively. f is the fitness function and s 

(ai bi) is the sign of the rotation angle θi. According to 

the lookup table, one can easily remark that this 

strategy improves, for each individual, the amplitudes 

of qubits that are bad according to an angle δθ1=0.08π 

while it decreases, those that are good according to an 

angle δθ2=0.001π. The amplitude values were 

empirically determined (following a suggestion from 

[7]). The modification of the amplitudes of qubits is 

done according to the signs of the amplitudes, the best 

solution and the solution extracted by the individual 

container. It is natural that δθ1>>δθ2 because 

decreasing amplitudes serves only to correct stochastic 

errors to avoid a genetic drift and to ensure a genetic 

diversity in the population. 

(8) 
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For the used Knapsack problem, the parameters’ 

values were set as shown in table 3. 
 

Table 3. List of knapsack problem parameters. 
 

Parameter Value 

V 10 

R 5 

Repairing replacement percentage 5% 
 

 

 

5.3. Experimental Results 

We have executed both algorithms (CGA and QGA) 

over 25 runs for all possible cases, at each one the 

concerned algorithm was iterated for a maximum 

number=500 generations. Table 4 shows the 

experimental results of the knapsack problem with 

100, 250 and 500 items. We have found that executing 

both algorithms more than 25 runs doesn’t make 

difference. 

 

Table 4. Experimental results of the knapsack problem. 

Correl No. of 

Items 

 Capacity 

Type 

Method 

CGA  QGA 

Pen1 Pen2 Pen3 Rep1 Rep2 Pen1 Pen2 Pen3 Rep1 Rep2 

 

 

 

 

 

 

 

 

None 

 

 

100 

 

C1 

m 

b 

w 

- 
- 

- 

* 
* 

* 

* 
* 

* 

70.9 
96.5 

54.3 

71.6 
88.4 

59.4 

- 
- 

- 

* 
* 

* 

* 
* 

* 

70.5 
96.6 

53.9 

71.7 
88.4 

60.5 

 

C2 

m 

b 

w 

- 

- 
- 

401.9 

434.5 
364.5 

403.2 

434.8 
361.4 

401.9 

441.1 
347.9 

408.2 

451.0 
371.6 

- 

- 
- 

403.6 

436.5 
367.6 

404.6 

433.9 
404.6 

402.6 

443.0 
376.5 

408.1 

450.6 
371.2 

 

 

250 

 

C1 

m 

b 

w 

- 

- 
- 

* 

* 
* 

* 

* 
* 

- 

- 
- 

- 

- 
- 

- 

- 
- 

* 

* 
* 

* 

* 
* 

- 

- 
- 

- 

- 
- 

 

C2 

m 

b 

w 

- 

- 
- 

968.5 

1025.4 
907.3 

971.0 

1008.8 
937.9 

987.8 

1048.2 
947.2 

1041.7 

1090.8 
987.2 

- 

- 
- 

1017.0 

1097.6 
946.7 

1025.4 

1068.6 
981.6 

1025.1 

1102.7 
980.2 

1045.7 

1098.5 
990.5 

 

 

500 

 

C1 

m 

b 

w 

- 

- 

- 

* 

* 

* 

* 

* 

* 

- 

- 

- 

- 

- 

- 

- 

- 

- 

* 

* 

* 

* 

* 

* 

- 

- 

- 

- 

- 

- 

 

C2 

m 

b 

w 

- 

- 

- 

1835.9 

1900.0 

1775.5 

1831.8 

1889.0 

1759.3 

- 

- 

- 

- 

- 

- 

- 

- 

- 

2000.6 

2066.7 

1895.2 

2000.5 

2073.9 

1863.2 

- 

- 

- 

- 

- 

- 

 

 

 

 

 

 

 

 

Weak 

 

 

100 

 

C1 

m 

b 

w 

- 
- 

- 

* 
* 

* 

* 
* 

* 

43.4 
57.7 

35.8 

42.9 
52.8 

35.0 

- 
- 

- 

* 
* 

* 

* 
* 

* 

42.3 
57.7 

35.4 

43.0 
52.8 

35.0 

 

C2 

m 

b 

w 

- 
- 

- 

397.4 
430.4 

341.7 

393.7 
418.6 

374.7 

399.6 
437.0 

370.8 

396.2 
427.5 

367.2 

- 
- 

- 

398.2 
431.8 

342.6 

396.4 
420.9 

375.7 

399.0 
436.0 

396.3 

396.3 
427.6 

367.3 

 

 

250 

 

C1 

m 

b 

w 

- 

- 
- 

* 

* 
* 

* 

* 
* 

40.8 

46.6 
36.1 

67.1 

75.8 
52.9 

- 

- 
- 

* 

* 
* 

* 

* 
* 

41.0 

46.5 
35.9 

67.1 

75.8 
52.9 

 

C2 

m 

b 

w 

- 

- 
- 

943.5 

999.0 
866.2 

918.3 

988.9 
873.1 

950.9 

1005.1 
916.1 

999.4 

1037.7 
944.6 

- 

- 
- 

997.7 

1056.0 
919.0 

978.2 

1041.7 
928.0 

987.1 

1042.8 
948.5 

999.5 

1038.0 
944.6 

 

 

500 

 

C1 

m 

b 

w 

- 

- 

- 

* 

* 

* 

* 

* 

* 

- 

- 

- 

- 

- 

- 

- 

- 

- 

* 

* 

* 

* 

* 

* 

- 

- 

- 

- 

- 

- 

 

C2 

m 

b 

w 

- 

- 

- 

1764.4 

1847.0 

1879.3 

1740.7 

1789.6 

1692.2 

1812.4 

1880.3 

1736.8 

1957.9 

2055.6 

1878.4 

- 

- 

- 

1941.4 

2008.8 

1850.9 

1928.3 

1984.0 

1875.7 

1952.8 

2032.1 

1876.3 

1985.5 

2087.7 

1900.8 

 

 

 

 

 

 

 

 

Strong 

 

 

100 

 

C1 

m 

b 

w 

- 

- 

- 

* 

* 

* 

* 

* 

* 

81.1 

89.9 

74.8 

79.6 

95.0 

65.0 

- 

- 

- 

* 

* 

* 

* 

* 

* 

81.2 

90.0 

75.0 

79.4 

95.0 

65.0 

 

C2 

m 

b 

w 

- 
- 

- 

605.7 
623.4 

592.4 

605.0 
622.6 

591.3 

609.1 
625.2 

593.8 

612.7 
628.7 

592.6 

- 
- 

- 

607.8 
623.4 

597.4 

609.3 
623.0 

594.7 

609.0 
625.2 

593.8 

611.8 
628.7 

592.6 

 

 

250 

 

C1 

m 

b 

w 

- 
- 

- 

* 
* 

* 

* 
* 

* 

71.7 
75.0 

65.0 

92.7 
95.0 

90.0 

- 
- 

- 

* 
* 

* 

* 
* 

* 

69.3 
74.9 

64.3 

93.3 
100.0 

90.0 

 

C2 

m 

b 

w 

- 

- 
- 

1471.0 

1492.9 
1452.4 

1461.0 

1488.5 
1441.8 

1493.8 

1530.7 
1453.9 

1525.9 

1545.1 
1499.8 

- 

- 
- 

1523.2 

1549.4 
1504.2 

1523.0 

1544.4 
1503.5 

1527.6 

1565.8 
1491.1 

1532.0 

1550.2 
1500.9 

 

 

500 

 

C1 

m 

b 

w 

- 

- 
- 

* 

* 
* 

* 

* 
* 

68.1 

74.9 
64.6 

101.6 

105.0 
95.0 

- 

- 
- 

* 

* 
* 

* 

* 
* 

67.3 

74.2 
59.6 

102.2 

105.0 
95.0 

 

C2 

m 

b 

w 

- 

- 

- 

2862.8 

2911.8 

2833.1 

2848.1 

2880.8 

2802.8 

2920.9 

2972.7 

2875.8 

3001.6 

3031.5 

2962.7 

- 

- 

- 

3004.7 

3032.3 

2981.0 

3003.0 

3036.5 

2963.2 

3029.9 

3078.5 

2988.0 

3059.9 

3091.5 

3023.0 

b, m, and w mean best, mean, and worst, respectively. 

‘-’ means that an experiment did not made in this case. 

‘*’ means that no valid solution has been found within given constraints. 
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5.4. Discussion 

Table 2 shows the experimental results of the knapsack 

problem where the number of items was 100, 250 and 

500. The hardware and software configuration was as 

follows: Intel Pentium 4 (3.4 GHz), 1 Go MB of 

memory, Windows XP OS, Java Programming 

language (JDK 1.5.0). 

In the case of 100 items, both algorithms were 

equivalent for all problem instances. This because the 

number of items is so small (we have 2^100 

possibility). However, augmenting the number of items 

(500 items where we have 2^500 possibility) leads 

QGA to behave better than CGA, and this in all 

problem solution variants. 

By using repairing methods, Table 2 shows that for 

a small number of items the profits are approximately 

close, with some preference for QGA especially in the 

case of Rep2 where elements are selectively removed 

from the knapsack, in contrast to Rep1 where elements 

are randomly removed. In fact, using repairing 

methods influences directly the evolution process. For 

instance, we can easily compare the best results for 

each variant of the problem. By observing penalty 

methods, we can then judge that QGA’s performance 

is higher than the one of CGA because we have only 

used an evolution process. 

Moreover, quantum algorithms have generally the 

ability to minimize the complexity of equivalent 

algorithms that run on classic computers. We can make 

a simple comparison between the global complexity of 

QGA and the one of GA to estimate the reduction in 

complexity we can achieve. Starting with QGA, the 

global complexity is of the order of O(N), N is the size 

of the population (Evaluation + Interference). 

For a standard GA, the global complexity is often 

of the order of O(N
2
) (Evaluation + Selection + Cross-

over + Mutation). Therefore, we believe that this result 

is very interesting because the complexity here has 

been reduced to become linear. Indeed, one can 

imagine what happen if we consider a very large 

population of chromosomes; it will be very useful to 

use QGA instead of GA. 

 

6. Conclusions 

In this study we have made a comparison between two 

optimization techniques: QGA and CGA. The first one 

is based on quantum computing principles such as 

concepts of qubits and superposition of states. The 

second is based on based on Neo-Darwinism (genetic 

evolution and natural selection). Our experimental 

results have shown that QGA can be a very promising 

tool for exploring large search spaces while preserving 

the relation efficiency / performance. Our future work 

will focus on comparing different QGA strategies to 

study the effect of choosing rotation gate angles. 

Another perspective of this work is to study parallel 

QGA because QGA are highly parallelizable. 

 

References 

[1] Draa A., Meshoul S., Talbi H., and Batouche M., 

“A Quantum-Inspired Differential Evolution 

Algorithm for Solving the N-Queens Problem,” 

The International Arab Journal of Information 

Technology, vol. 7, no. 1, pp. 21-27, 2010. 

[2] Grover L., “A Fast Quantum Mechanical 

Algorithm for Database Search,” in Proceedings 

of 28
th
 Annual ACM Symposium on the Theory of 

Computing, USA, pp. 212-221, 1996. 

[3] Han K., “Genetic Quantum Algorithm and Its 

Application to Combinatorial Optimization 

Problem,” in Proceedings of IEEE Congress on 

Evolutionary Computation, USA, pp. 1354-1360, 

2000. 

[4] Han K., Park K., Lee C., and Kim J., “Parallel 

Quantum-Inspired Genetic Algorithm for 

Combinatorial Optimization Problem,” in 

Proceedings of IEEE Congress of Evolutionary 

Computation, South Korea, pp. 1422-1429, 2001. 

[5] Laboudi Z. and Chikhi S., “Evolution 

d’Automates Cellulaires par Algorithmes 

Génétiques Quantiques,” in Proceedings of 

Conférence Internationale sur l’Informatique et 

ses Applications, Algérie, pp. 1-11, 2009. 

[6] Laboudi Z. and Chikhi S., “Evolving Cellular 

Automata by Parallel Genetic Algorithm,” in 

Proceedings of IEEE Conference on Networked 

Digital Technologies, Ostrava, pp. 309-314, 

2009. 

[7] Layeb A. and Saidouni D., “Quantum Genetic 

Algorithm for Binary Decision Diagram 

Ordering Problem,” International Journal of 

Computer Science and Network Security, vol. 7 

no. 9, pp. 130-135, 2007. 

[8] Michalewicz Z., Genetic Algorithms+Data 

Structures=Evolution Programs, Springer-

Verlag, 1999. 

[9] Mitchell M., Hraber P., and Crutchfield J., 

“Evolving Cellular Automata to Perform 

Computation: Mechanisms and Impediments,” 

Journal of Physica D: Lonelier Phenomena, vol. 

75, no. 1-3, pp. 361-391, 1994. 

[10] Shor P., “Algorithms for Quantum    

Computation: Discrete Logarithms and 

Factoring,” in Proceedings of the 35
th
 Annual 

Symposium on the Foundation of Computer 

Sciences, NM, pp. 20-22, 1994. 

[11] Shuxia M. and Weidong J., “A New Parallel 

Quantum Genetic Algorithm with Probability-

Gate and Its Probability Analysis,” in 

Proceedings of International Conference on 

Intelligent Systems and Knowledge Engineering, 

pp. 1-5, 2007. 



Comparison of Genetic Algorithm and Quantum Genetic Algorithm                                                                                                   249 

Zakaria Laboudi is a teacher 

researcher at Computer Science 

Department of Larbi Ben M’hidi 

University, Oum El-Bouaghi – 

Algeria. Currently, he is a PhD 

candidate in complex systems field 

at Mentouri University of 

Constantine – Algeria. He received his Master’s degree 

in computer science in 2009 from Mentouri University 

of Constantine – Algeria. In 2010, he joined the SCAL 

group of the Laboratory of Complex Systems (MISC) 

as a member of its researcher team. His current 

research interests include Complex Systems, Artificial 

Life, Parallel and Distributed Computing, 

Combinatorial Optimization Problems and Meta-

heuristics. 

 

Salim Chikhi received his MSc 

degree in computer systems from 

University Mentouri – Constantine-

Algeria in collaboration with 

Glasgow University, UK. He 

received his PhD degree in computer 

science from University Mentouri – 

Constantine – Algeria in 2005. Currently, he is an 

associate professor at the same University and leads 

the SCAL group within the MISC laboratory. His 

research areas include artificial life and soft computing 

techniques applied to complex systems. 

 


