
268 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

Representing Access Control Policies in Use Cases

Khaled Alghathbar

Center of Excellence in Information Assurance, College of Computer and Information Sciences, King

Saud University, Saudi Arabia

Abstract: Security requirements of a software product need to receive attention throughout its development lifecycle. This

paper proposes the required notation and format to represent security requirements, especially access control policies in use

case diagram and use case description. Such enhancements offer simple representation for positive and negative

authorization, grouping sensitive use cases that form a critical business task, separation of duties – both static and dynamic,

least privilege, inheritance of authorizations, and security state or label for data inputted, stored or outputted. Validating

information flow requirements at an early stage prevents costly fixes that are mandated during later stages of the development

life cycle.

Keywords: Access control policies, security engineering, use cases, misuse.

Received December 14, 2009; accepted May 21, 2010

1. Introduction

Security requirements of a software product need to

receive attention throughout its development lifecycle.

Because the security requirements specified at early

stages of the life cycle affect later stages and are likely

to feature in the eventual product, it is important to

specify them precisely and unambiguously with

sufficient details. Security policies have not been

integrated with mainstream system requirements,

perhaps because they were considered as a non-

functional aspect of software systems. As claimed by

Nuseibeh and Easterbrook, “Non-functional

requirements (also known as quality requirements) are

generally more difficult to express in a measurable

way, making them more difficult to analyze” [17].

Therefore, we propose several extensions to Unified

Modelling Language (UML) [18] to represent access

control policies. Our proposal is consistent with

Devanbu and Stubblebine’s [8] challenge to adopt

extensions to standards such as UML for modelling

security-related features. Our proposal currently covers

the requirement specification and analysis phases, and

our ongoing work addresses their adaptation and effect

on later phases.

In UML, requirements are specified with use cases at

the beginning of the life cycle. Use cases specify actors

and their intended usage of the envisioned system. Such

usage - usually, but not always - is specified in terms of

the interactions between the actors and the system,

thereby specifying the behavioral requirements of the

proposed software. Fowler and Scott say that, “a use

case is a set of scenarios tied together by a common

user goal” [12]. Use cases are written in an informal

natural language. Thus, different people may write

varying degrees of details for the same use case.

Currently, a use case is a textual description with:

1. Actors and/or their roles.
2. Preconditions and post conditions.
3. Normal scenarios with sequence of actions by the

actors and/or the system.

4. Abnormal or exceptional scenarios.

In contrast, a use case diagram visualizes actors and

their relationships with scenarios [5, 13]. As we shall

demonstrate during the course of this paper, use cases

are not sufficient to model the details of access control

policies. Consequently, we propose that use cases

need to be enriched with something analogous to

(soon to be discussed) operation schemas that we refer

to as access control policy schemas.

“Operation schemas introduced by Sendall and

Strohmeier [22] enriches use cases by introducing

conceptual operations and specifying their properties

using Object Constraints Language (OCL) syntax

[26]. An operation schema specifies operations that

apply to the whole system to be taken as one entity.

One of the advantages of operation schemas is that

they can be directly mapped to collaboration diagrams

that are used later in the analysis and design phases. It

is our position that high-level access control policies

should be applied at this level of detail.”

Although operation schemas are precise, they do

not specify system security. Therefore, we extended

the operation schemas to cover access control, and we

refer to the extended schemas as access control

policies schemas. Introducing access control schema

as a separate syntactic entity has several advantages.

Firstly, it isolates access control policies from other

functional requirements that are usually elaborated in

operation schemas. Secondly, this separation

Representing Access Control Policies in Use Cases 269

facilitates several access control policies to one use

case, thereby modularizing the design.

Unlike most functional requirements, access control

policies express many constraints that are to be

enforced by the system. For example, an employee - no

matter the rank in the organization must not be able to

approve his/her own salary increases. We show how to

specify and enforce such requirements using access

control schemas. In addition, use cases have

dependencies between them. For example a check

cannot be approved before it is written. We show how

such constraints can be specified and resolved using

access control schemas.

There is a need for negative authorization as there is

a need for positive authorization. In particular, with the

presence of subject hierarchy, the need for explicit

negative authorization is greater, because subjects do

not have explicit authorizations only but also it may

have implicit authorizations as well from the

inheritance of junior subject’s permissions. Therefore,

negative authorizations are used to block some positive

authorizations that have been granted to a subject. With

the introduction of negative authorization, there is also

a need to manage any conflict between authorizations

(positive and negative).

Work has been done by Sindre and Opdahl [24, 25]

to enrich use case diagram and its description with what

is called as misuse cases. Misuse cases-which have

been used in their industry [4] were introduced to

enhance the use case diagram to represent threats or

abuses scenarios that users do not want to happen and

must be prevented or mitigated. Along with misuse

cases which represent the scenario, mis-actor also was

introduced to represent special kind of actor who

invokes the misuse cases [24, 25]. However, misuse

cases or other work cannot represent all security threats

or requirements such as access control and flow control

policies which must be integrated into the original use

cases as those policies are related to the authorized

actor not just the mis-actor.

This paper expands and enhances the work done in

[3] by improving the representation and capturing of

security requirement especially access control policies

and expanding the work to capture new access control

policies in a simpler way. The representation of access

control policies in this paper allows analysts to capture

and represent the following access control polices:

• Positive authorization.

• Negative authorization.

• Grouping sensitive use cases that form a critical

business task.

• Static separation of duties.

• Dynamic separation of duties.

• Least privilege authorizations.

• Inheritance of authorizations.

• Security state of data inputted, stored and outputted.

Section 3 shows how those policies are represented

use case description while section 5 shows how those

policies are represented in use case diagram according

to our proposed addition.

The remainder of this paper is organized as follows.

Section 2 explains an example that will be used

throughout the paper. Section 3 shows the proposed

enhancement of use case description. Section 4, shows

the application constraint representation of separation

of duties policies. Section 5 demonstrates the

proposed enhancement of the use case diagram.

Section 6 discuses the proposed enhancements and

how our work relates to other contributions and

section 7 concludes the paper.

2. Running Example

The running example describes a purchasing process

where a set of tasks assigned to authorized roles as

shown in Figure 1. Role-Based Access Control

(RBAC) [21] is the access control model for this

example. The set of access control policies applicable

to this example are as follows:

1. Use cases such as record invoice arrival, verify
invoice validity, authorize payment and write a

check are to be applied in the specified order.

2. Each use case should be executed by an actor
playing an authorized role(s) as shown in Figure 1.

For example, write a check use case should be

invoked by (authorized to) clerk role. In addition,

the role hierarchy implicitly authorizes a

specialized role to inherit permissions. For

example, according to Figure 2, supervisor role

inherits purchasing officer’s permissions and

purchasing officer inherits clerk’s permissions.

3. Supervisor must not execute the write a check use

case.

4. No user should perform more than one use case on

each object. This one type of Dynamic Separation

of Duty (DSOD) policy. For example, a user should

not record and verify the same invoice. This policy

is claimed to prevent fraud and errors [6].

5. If the invoice’s total amount exceeds one million,

then two different supervisors must authorize the

invoice.

Figure 1. Use case diagram for purchasing payment example.

270 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

Figure 2. The role hierarchy for the running example.

3. Writing Access Control Policies in the Use
Case Description

As we discussed in section 1, operation schemas do not

cover access control policies. Therefore, we show

access control policy schema to specify them. Also, we

proposed several new attributes to the use case

description/ template that capture the access control

policies and labelling of the data.

Figure 3 shows a combined format of a use case

description from Kulak and Cockburn [7] and Guiney

[15].

Use Case: the use case name.

Primary Actor: user who invoke this use case.
Iteration: denoting how refined the description is.

Level: level of abstraction this use case in.
Stakeholders and Interest: Stakeholders

Summary: short textual description of the action.

Basic Course of events: the successful action of the use cases in the
form of steps.

Alternative Paths: less common path than the basic course.

Exception Paths: Path in case of errors
Extension Points: steps in the use case from where the extending use

case diverge.

Triggers: triggers that initiate this use case.
Assumptions: valid conditions for normal execution, but not necessary.

Preconditions: conditions that must be met before the execution of the

use case.
Postconditions: conditions that must be met before the execution of the

use case.

Related Business rules: rules for during operational stage.
Author: Author

Date: Date

Figure 3. Use case description/ template.

Figure 4 shows our proposed enhancement to the use

case description that captures the access control

policies and security. Figure 5 refers to the authorize a

payment use case of Figure 1. It allow the analyst to

specify the security measures, the required state of data

flowing and which use case proceeds this use case to

capture the order of use cases and also it allows an

analyst to specify who is the actor that must have a

positive permission to invoke this use case.

Object: the object of the use case.
Business Task Group: which group of use case that form a critical

business task

Security Measure: type of necessary security measure.
Security Label (Input): specifying the required security label and

condition for the inputted data, i.e. Hashed, Encrypted, Plaintext.

Security Label (Stored): specifying the required security label and
condition for the stored data, i.e. Hashed, Encrypted, Plaintext.

Security Label (Output): specifying the required security label and

condition for the outputted data, i.e. Hashed, Encrypted, Plaintext.
Proceeds: which use case it proceeds

Least Privilege for: shows which actors must be permitted for this use

case as a least privilege for him/her.
Declares: constants, variables, objects and data types used in the pre

and post conditions.
Authorized (user, group, and role): a list of users, groups or roles that

are authorized to access this operation on this object.

Denied (user, group, and role): a list of users, groups or roles that are
denied to access to this operation on this object.

Integrity Constraints (Pre): specify all integrity constraints that must be

satisfied before executing the operation written in OCL.
Integrity Constraints (Post): specify all integrity constraints that must

be satisfied after the operation is executed. It is written in OCL.

Figure 4. Proposed use case description attributes.

Use Case: Authorize Payment

Object: Invoice
Business Task Group: processing a payment

Security Measure: 1- Authentication must be at least two factor

authentication
 2- Must be logged

 3- Authorizing more than one million dollars must

be authorized by the
 approval of two supervisors

 4- User cannot authorize a payment that he/she

verify or record
 the arrival of invoice

Security Label (Input): encrypted

Security Label (stored): encrypted
Proceeds: “write a check” use case

Least Privilege for: Supervisor

Description: Actor authorizes the payment after it has been verified. If the
amount exceeds one million dollar then the authorization is partial until a

different supervisor completes it.

Declares:
UserWhoDidPreviousOperations: Set(History_Log) ::= History_Log�

select (User= CurrentUser AND (Operation=”Record_Invoice_Arrival”

OR Operation=”Verify_Invoice_Validity”)AND Object= CurrentObject);
--it will return a record or more if the current user has done one of the

previous use case.

Authorized (User, Group, Role): Supervisor--Role
Denied (User, Group, Role): none

Integrity Constraints (Pre):

 Invoice.verified=”true”;
 Invoice.TotalAmount<=1000000 implies Invoice.authorized= “false”;

 Invoice.TotalAmount>1000000 implies

 (Invoice.partialAuthorized= “false” OR Invoice.authorized=
“false”)

 UserWhoDidPreviousOperations � isEmpty; -- The current user did

not do other operation on the current invoice(Dynamic Separation Of
Duty)

Integrity Constraints (Post):

If (invoice.TotalAmount>1000000 AND
invoice.partialAuthorized@pre=“false”) then --the

 invoice has not been partially authorized by different Supervisor
before.

 Invoice.partialAuthorized=“true”;

else
 invoice.authorized= “true”;

Endif;

Figure 5. The improved use case description for the authorize

payment use case.

Representing Access Control Policies in Use Cases 271

What we mean by least privilege here is the minimum

number of authorized use cases necessary for an actor

to accomplish his/her work, least privilege principle

differs from simple authorization in way that least

privilege is a superset of authorization rather than

simple one authorization, denying actor from one of the

use cases that are part of a least privilege chain of use

cases for that actor will jeopardize the whole least

privilege principle, while denying an authorized actor

to an authorized use case may not break a bigger

picture. The least privilege for the verify invoice

validly use case should be purchasing officer and

supervisor, but this does not imply an explicit

authorization, it is just a condition that must be

considered when compiling access control policies to

make sure that all actors have access to their use case

and their permissions do not conflict with other

permissions. The pre-condition of the schema in Figure

5, has four constraints:

1. The invoice is already verified.
2. If the invoice’s total amount is less or equal to one

million, then the invoice must not be authorized yet.

3. If the invoice’s total amount exceeds one million,

then either the invoice is not yet partially authorized

or partially but not fully authorized.

4. The current user did not participate in any

prerequisite operation on the same invoice.

Conversely, the post condition ensures the

correctness of operations with respect to the access

control constraints.

4. Constraints

Authorizations in the form of authorized or denied

clauses in the access control schema do not capture all

access control constraints. Therefore, there is a need to

properly express application constraints such as

dynamic separation of duty. Next, we will provide

some access control constraints in commercial systems,

and we will consider several known versions of

Separation of Duty (SOD) policies. We show how to

write SOD policies as an OCL constraint in the

integrity constraint clause of the access control policy

schema. Figure 6 illustrates the relationship between

objects that are used to specify integrity constraints.

Role Operation

Object

1
+Operation*

* *

AllowR

* *

DisallowR

User

* *

AllowU

* *

DisallowU

* *

Assume

Figure 6. The access control model.

4.1. Static Separation of Duty Principles

Static SOD principles prevent subjects (role or user)

from gaining permissions to execute conflicting

operations. There are many kinds of static SOD

policies and they are listed below:

1. Mutually Exclusive Roles: A user shall not assume

two conflicting roles. For example, a user must not

assume both Purchasing Officer and Accounts

Payable Manager roles. This policy can be ensured

if no user is enrolled in two mutually exclusive

roles, say RoleA and RoleB and can be specified in

OCL as follows:
 (Role� select(name= “RoleA”)).user�

intersection(Role�select(name=“RoleB”).user)�si

ze=0

2. Business Task: A user must not execute a specified

business task that comprises a set of operations. For

example, user U must not be authorized to perform

Record, Verify and Authorize on the same object

and this can be specified as follows:
 User.AllowU�

 select(Operation=Operation1 OR

Operation=Operationn) � size<n

 Where n is the number of operations to perform a

critical task.

3. Mutually Exclusive Operations: Mutually exclusive

operations must not be included in one role, i.e.,

writing and signing a check must not be allowed to

the Manager role.
 OperationA.AllowR�intersection

(OperationB.AllowR)�size=0

4.2. Dynamic Separation of Duty Principles

Dynamic Separation of Duty (DSOD) allows user to

assume two conflicting roles but not to use

permissions assigned to both roles on the same object.

There are several types of this policy discussed in

[23], of which we will show some. One DSOD

constraint is to restrict user from performing Record,

Verify and Authorize use cases on the same object. In

order to specify this policy, a history of already

granted authorizations must exist. For this purpose, we

propose a formal syntactic object History_Log to

maintain a Table of (user, role, operation, object and

time), for deeper discussion of History_Log where

refer reader to [1].

Using the History Log, we specify some DSOD

principles in use.

• Dynamic Separation of Duty: This version says that
a user cannot perform more than n operation on the

same object, stated as a precondition of an

operation:
 History_Log� select (User= CurrentUser AND

 (Operation=Operation1 OR Operation=Operation2

 OR Operation=Operationn-1) AND Object=

 CurrentObject)� size<n-1

272 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

4.3. Other Access Control Constraints

• Role prerequisites: A user must be enrolled in a

particular role before assuming another role. This

can be stated as a postcondition of the role

assignment where RoleB is the prerequisite role as

follows:

 User.Role� includes(RoleA) implies User.Role�

 includes(RoleB)

• Permission Prerequisites: A role must be authorized

to execute a particular operation before granting that

role with another operation. This constraint can be

specified as a postcondition of permission

assignment where OperationB is the prerequisite

permission. For example, the Supervisor role can not

assume authorize a payment unless this role already

has a permission to read the invoice’s data.

 Role.Operation� includes(OperationA) implies

 Role.Operation� includes(OperationB)

• Cardinality Constraints: This constraint specifies a
maximum and/or a minimum number of operations

that can be executed by a user or a role. This policy

may be applied to the number of users for each role

or to the number of permissions for a specific role.

For example, Supervisor role must have at most one

user. This constraint can be specified as follows:

 (Role�select(name=RoleName)).User� size <sign>

 n, where <sign> is one of the following

 (<,>,<=,>=,<>,=) and n is the limit.

 (Role�select (name=RoleName)).Operation� size

 <sign> n, where <sign> is one of the following

 (<,>,<=,>=,<>,=) and n is the limit.

5. Drawing The Refined Use Case Diagram

Although use case diagrams visually represent the

behavioral requirements of a proposed software system,

they are not sufficient to represent existing access

control policies. At best, a use case diagram shows

some access control by stating the roles that actors are

permitted to invoke.

Thus, having visual representations of access control

policies is very much in accordance with the objectives

of UML. We propose a refined use case diagram Figure

7 for the our running example. The refined use case

diagram represents all possible access control policies

(positive, negative, explicit, implicit, limited and

integrity constraints), which provides clear visual

access control policies. The proposed refined use case

diagram has many desirable features as follows:

• A new stereotype <<Deny>> represents a deny-
negative- permission for specific actor to specific

use case.

• A new stereotype <<limited>> represents a limited

positive authorization, in another word, this type of

authorization is not obsolete, it has limited

authorization according to special condition like the

requirement of multiple actors action to run this

authorization. We use it in Figure 7 to denote a

limited permission to the supervisor to the

Authorize payment use case because in the running

example states that another Supervisor is required

to complete a payment authorization over one

million. It is enough to state this tag and leave the

details of the limitation in the use case description

to reduce complexity.

• The new refined use case diagram adopts a

relationship, which is introduced by the Open

Modeling Language (OML), called Precedes [11].

The relationship is used to specify dependencies

and order of invocation among use cases.

• Inheritance of permission requirement between

actors is captured by the large-head arrow, and

reflected in the explicit authorization arrow that

points to the use case that he/she has an explicit

authorization or implicit authorization derived from

inheritance. For example, because purchasing

officer is a specialized actor of clerk thus

purchasing officer inherits clerk permissions, as

result, purchasing officer has permission to both

verify invoice validly (explicit permission) and

record invoice arrival (implicit permission from

inherence) use cases and it is represented by

pointing to a inner box (titled Business Task 3) that

contains the two use cases.

• Having an inner box does not reduce the number of

arrows from actors to use case only, but also to

allow analyst to represent one of the access control

polices which is separation of duties. The running

example restricts any actor to invoke at most one

use case out of all, for a specific object, even if that

actor has a permission to invoke all. In another

word, although Supervisor has permission explicit

or implicit to invoke the first three use cases, he/she

must not be allowed to invoke all of them for the

same invoice to reduce the fraud, but he/she can

invoke any of the use cases for different invoices

and payments. We introduced a representation of

this policies in the form of N:M, where N denote

the maximum number of use case the actor can

invoke out of M which is the total number of use

cases he/she has permission on.

• There is no guarantee that this notation will provide
completeness by just representing those notations in

one use case diagram. Another work called

AuthUML [2] focused on introducing a logic based

language that checks the compatibility and

completeness of the access control policies

especially when tens or hundreds of access control

policies are embossed in multiple use cases in large

software systems.

Representing Access Control Policies in Use Cases 273

Figure 7. The refined use case diagram.

6. Discussion and Related Work

It is already stated that security requirements must be

considered in early stages to integrate well with other

requirements in the analysis, design, coding and testing.

The use case is part of the tools that capture software

requirements and it meant to be simple enough to allow

users to be involved in the analysis phase. However,

what we have introduced in this paper and what others

introduced in their work might be observed as

complicating the use case which contradicts with the

purpose of the use case.

That is true, but security requirements are considered

design-level and sometimes a programming-level [25]

yet, it must be captured in the analysis phase where

user or customer is involved. Thus, we do not consider

what we have introduced a complexity add-on, but

rather a mandatory representation for a mandatory

requirements (security requirements) if software

developer cares about thinking about security

requirements in the early stage of the software

development life cycle.

To come up with a recommendation that comply

with both sides of the debate, we could recommend an

iterative process of embossing access and flow control

policies into the use case, starting from simple use case

as one stage then adding security requirements in

another subsequent stage. It is something like summary

use case and detailed use case. However, it is a

mandatory process to capture user requirements instead

of leaving it vague for designer or programmer or even

tester! Fernandez and Hawkins [9] proposed to extend

use cases with rights. The extension is by means of a

stereotype that states the access constraints. In addition,

they propose an approach to generate rights for roles.

Their work and ours have some common objectives,

but the following differences exist:

1. They extend the use case by embedding security-

related requirements in the use case itself, cluttering

the use case. Our proposed schemas detaches

access control policies from use cases and writes

constraints in OCL.

2. Their work does not address complications arising

from hierarchies and how to resolve access control

conflicts.

Sendall and Strohmeier [22] introduced the concept of

operation schemas to describe the effect of system

operation and its functionality. Operation schemas

supplement the use cases and is written in OCL. In

addition, there is a one-to-one mapping between

operation schemas and collaboration diagrams. We

extended the operation schemas to represent the access

control policy in what we have called access control

policy schemas that focuses on access control and

integrity constraints that are related to access control.

Fernandez-Medina et al. [10], propose an extension

to the use case and Class models of UML. The

extensions of use case diagram which they introduced

were stereotypes: <<safe-UC>> and <<accredited -

actor>> as an indication of a secure use case and

authorized actor. As shown in this paper, stereotypes

are insufficient to specify access control policies of a

system. The extension does not address the type of

authorization that is granted to the accredited actor,

nor the integrity constraints associated with such

authorizations.

Brose et al. [14], extended UML to support the

automatic generation of access control policies in

order to conFigure a CORBA-based infrastructure.

They specify permissions and prohibitions on

accessing system’s objects (such as read, write,

execute, etc.,) explicitly by writing notes that are

attached to actors in the use case diagrams. The use

case extension which they proposed is similar to the

one we proposed in addressing role hierarchies and

negative authorizations. However, their work is based

on specification of static access control policies. It is

not flexible enough to specify dynamic access control

policies such as DSOD, nor can it enforce a flow

control requirement such as the order of operations in

a workflow system. We also based our access control

specification on OCL rather than a natural language.

Although, their work considers role hierarchies, no

propagation or conflict resolution policies have been

addressed for the inherited authorizations.

Alghathbar et al. introduced in [1] an extension to

the UML metamodel with an access control policy

constraint specification and enforcement module,

business tasks and history log for method calls. The

extension shows how access control requirements of

an application can be modeled in the design phase. In

contrast, this paper focuses on representing of access

control policies on the requirement phase. In relation

to this work, Alghathbar introduced in [2] AuthUML,

274 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

which is a logic programming based framework that

analyzes static access control requirements in the

requirements phase of the life cycle to produce a

consistent, complete and conflict-free access control

requirements.

Work has been done by Sindre and Opdahl [24, 25]

to enrich use case diagram and its description with what

is called as misuse use cases. Misuse use cases - which

have been used in the industry [4], introduced to

enhance the use case diagram to represent threats or

abuses scenarios that user do not want to happen and

must be prevented or mitigated. Along with misuse

which represent the scenario, mis-actor also was

introduced to represent special kind of actor who

invoke the misuse cases [24, 25].

Okubo and Tanaka [19] extended the misuse cases

model and presents an approach for identifying security

aspects and point cuts in a requirement analysis stage.

Matulevicicius et al. [16] aligned misuse cases with

security risk management. Also, Pauli and Xu [20]

introduced an approach to the architectural design and

analysis of secure software systems based on the

system requirements elicited in the form of use cases

and misuse cases.

However, misuse cases or other work introduced

cannot represent all security threats or concern such as

access control and flow control policies which must be

integrated into the original use cases as those policies

are related to the authorized actor not just the mis-actor.

Thus, we introduced in this paper a refined work of [3]

after considering more access control policies and

controls.

7. Conclusions

To achieve better security, security requirements should

be addressed in all phases of the development life

cycle. This paper introduced a new notation and format

to capture and represent more access control policies in

the use case diagram and use case description. Those

policies are positive and negative authorization;

grouping sensitive use cases that form a critical

business task; separation of duties – both static and

dynamic; least privilege; inheritance of authorizations;

and security state or label for data inputted, stored or

outputted. This proposed work falls in the effort to

provide more tools and notations to think and embed

security requirements in the early stage of the life cycle.

Other efforts were introduced elsewhere that

complement this work to capture more security

requirements other than access control policies.

There are need and room to compile and standardize

those efforts. Also, there is room to go further in

thinking of representing security requirements not just

in use cases but also in other UML tools and in

integrating UML tools into the programming phase.

References

[1] Alghathbar K. and Wijesekera D., “Modeling

Dynamic Role-Based Access Constraints using

UML,” in Proceedings of the International

Conference on Software Engineering Research

and Applications, USA, pp. 1-15, 2003.

[2] Alghathbar K. and Wijesekera D., “Validating

the Enforcement of Access Control Policies and

Separation of Duty Principle in Requirement

Engineering,” Journal of Information and

Software Technology, vol. 49, no. 2, pp. 142-

157, 2007.

[3] Alghathbar K. and Wijesekera D., “Consistent

and Complete Access Control Policies in Use

Cases,” in Proceedings of 6
th
 International

Conference on Unified Modeling Language, CA,

pp. 44-49, 2003.

[4] Alexander I., “Misuse Cases: Use Cases with

Hostile Intent,” IEEE Software, vol. 20, no. 1,

pp. 58-66, 2003.

[5] Booch G. and Rumbaugh J., The Unified

Modeling Language User Guide, Addison-

Wesley, UK, 1999.

[6] Clark D. and Wilsonv D., “A Comparison of

Commercial and Military Computer Security

Policies,” in Proceedings of IEEE Symposium on

Security and Privacy, CA, pp. 184-193, 1987.

[7] Cockburn A., Writing Effective use Cases,

Addison-Wesley, 2001.

[8] Devanbu P. and Stubblebine S., “Software

Engineering for Security: A Roadmap,” in

Proceedings of the Conference on the Future of

Software Engineering, USA, pp. 227-239, 2000.

[9] Fernandez E. and Hawkins J., “Determining

Role Rights from Use Cases,” in Proceedings of

2
nd
 ACM Workshop on Role-Based Access

Control, USA, pp. 121-125, 1997.

[10] Fernandez-Medina E., Martinez A., Medina C.,

and Piattini M., “Integrating Multilevel Security

in the Database Design Process,” in Proceedings

of the 6
th
 Biennial World Conference on the

Integrated Design and Process Technology, CA,

pp. 255-259, 2002.

[11] Firesmith S., Henderson-Sellers B., and Graham

I., OPEN Modeling Language Reference

Manual, SIGS Books, USA, 1997.

[12] Fowler M. and Scott K., UML Distilled: A Brief

Guide to the Standard Object Modeling

Language, Addison-Wesley, UK, 2003.

[13] Jacobson I., Object-Oriented Software

Engineering: A Use Case Driven Approval,

Addison-Wesley, 1992.

[14] Koch M., Parisi-Presicce A., and Pauls K.,

“Access Control Specification in UML

Integrating Security and Software Engineering:

Advances and Future Vision IDEA Group Inc,”

Technical Report, 2006.

Representing Access Control Policies in Use Cases 275

[15] Kulak D. and Guiney E., Use

Cases: Requirements in Context, ACM Press,

2000.

[16] Matulevicius R., Mayer N., and Heymans P.,

“Alignment of Misuse Cases with Security Risk

Management,” in Proceedings of the 3
rd

International Conference on Availability,

Reliability and Security, Spain, pp. 268-372,

2008.

[17] Nuseibeh B. and Easterbrook S., Requirements
Engineering: A Roadmap in A Finkelstein, ACM

Press, 2000.

[18] Object Management Group, OMG Unified

Modeling Language Specification, available at:

http://www.uml.org/, last visited 2009.

[19] Okubo T. and Tanaka H., “Identifying Security
Aspects in Early Development Stages,” in

Proceedings of the 2008 3
rd
 International

Conference on Availability Reliability and

Security, Spain, pp. 742-748, 2008.

[20] Pauli J. and Xu D., “Misuse Case-Based Design

and Analysis of Secure Software Architecture,” in

Proceedings of the International Conference on

Information Technology: Coding and Computing,

USA, pp. 522-526, 2005.

[21] Sandhu S., Coyne J., Feinstein L., and Youman

E., “Role-Based Access Control Models,” Journal

of IEEE Computer, vol. 29, no. 2, pp. 3-7, 1996.

[22] Sendall S. and Strohmeier A., “Using OCL and

UML to Specify System Behavior,” in

Proceedings of Object Modeling with the OCL,

Berlin, pp. 250-279, 2002.

[23] Simon R. and Zurko M., “Separation of Duty in

Role-Based Environments,” in Proceedings of the

10
th
 Computer Security Foundations Workshop,

USA, pp. 562-568, 1997.

[24] Sindre G. and Opdahl A., “Eliciting Security
Requirements with Misuse Cases,” Journal of

Requirements Engineering, vol. 10, no. 1, pp.

654-659, 2005.

[25] Sindre G. and Opdahl A., “Templates for Misuse

Case Description,” in Proceedings of the 7
th

International Workshop on Requirements

Engineering: Foundations for Software Quality,

Germany, pp. 77-79, 2002.

[26] Warmer J. and Kleppe A., The Object Constraint

Language: Precise Modeling with UML, Addison

Wesley, 1999.

Khaled Alghathbar PhD, CISSP,

CISM, PMP, BS7799 Lead Auditor,

is an associate professor and the

director of the Centre of Excellence

in Information Assurance in King

Saud University, Saudi Arabia. He

is a security advisor for several

government agencies. His main research interest is in

information security management, policies and design.

He received his PhD in Information Technology from

George Mason University, USA.

