The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012 535

Estimating Quality of JavaScript

Sanjay Misra' and Ferid Cafer”
'Department of Computer Engineering, Atilim University, Turkey
*Servus Bilgisayar, Turkey

Abstract: This paper proposes a complexity metric for Java script since JavaScript is the most popular scripting language
that can run in all of the major web browsers. The proposed metric “JavaScript Cognitive Complexity Measure (JCCM)” is
intended to assess the design quality of scripts. The metrics has been evaluated theoretically and validated empirically through
real test cases. The metric has also been compared with other similar metrics. The theoretical, empirical validation and

comparative study prove the worth and robustness of the metric.

Keywords: Software engineering, software quality, software metrics, java script.

Received July 21, 2010; accepted January 3, 2011

1. Introduction

It is well known that the maintainability is one of the
important factors that affect the quality of any kind of
software. JavaScript also requires modelling,
measurement, and quantification for the ease of
maintainability purpose. In addition software metrics
play an important role since they provide useful
feedback to the designers to impact the decisions that
are made during design, coding, architecture, or
specification phases. Without such feedback, many
decisions are made in Ad-hoc manner.

Number of researchers have proposed variety of
metrics [1, 5, 14] for different software, software
languages [15], software products and related
technologies [2, 3]. All the reported complexity
measures are supposed to cover the correctness,
effectiveness and clarity of a system and to provide
good estimate of these parameters. With the emergence
of the new technologies, also new measurement
techniques evolve. There is an ongoing effort to find
such a comprehensive measure, which addresses most
of the parameters for evaluating quality of the system.
In adition, the quality objectives may be listed as
performance, reliability, availability and maintainability
[17] that are all closely related with software
complexity.

Among several software measurement techniques
most of those measurements and metrics [6, 23] are
developed covering generally programming languages.
Although such an approach is efficient, the language-
independent methods may not be suitable for some
programming or scripting languages. More specifically,
only a few researches have been done to produce new
measurement techniques and metrics for JavaScript.
The lack of researches has also been an initiative for us
to start working on this issue. JavaScript has lots of
skills such as providing a programming tool for HTML,
making an HTML code dynamic, give response to

events; validate data, and get client side information
[19]. Because of not requiring a client-server
interaction, it increases the efficiency in using a web
page. All these issues imply that the design of the
JavaScript plays an important role and needs to be
quantified for the ease of maintainability. In this
respect, specific metrics should be developed. In the
present work, we develop a metric for JavaScript,
which is capable to calculate the structural and
cognitive complexity of the JavaScript.

The paper is organized in the following way. The
discussion for the need of new metric is given in
section 2. The metric is proposed and demonstrated in
section 3. The metric is validated theoretically in
section 4. The empirical validation with real test cases
has been given in section 5 and conclusion drawn on
this work is in section 6.

2. Need for A New Metric

There is no metric in the literature which specifically
measures the complexity of JavaScript. One way to
evaluate the complexity of JavaScript is going through
the traditional metrics, but these metrics are under
several criticisms. These criticisms are mainly based
on lacking a theoretical basis [10, 18], lacking in
desirable measurement properties [22] being
insufficiently generalized or too implementation
technology dependent [21], being too labor-intensive
to collect [11] and only confined on the features of
procedural languages. On the other hand, most of the
available metrics do not consider the cognitive
characteristics in calculating the complexity of a code,
which directly affects the cognitive complexity.
Complexity of a code directly affects understand
ability. Understand ability of a code is known as
program comprehension and is a cognitive process and
related to cognitive complexity. The cognitive

536 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

complexity is defined as the mental burden on the user
who deals with the code, for instance, the developers,
the testers and the maintenance staff. In our proposal,
we calculated cognitive complexity in terms of
cognitive weights [20]. Cognitive weights are defined
as the extent of difficulty or relative time and effort
required for comprehending given software, and
measure the complexity of logical structure of software.
A higher weight indicates a higher level of effort
required to understand the software. A high cognitive
complexity is undesirable due to several reasons, such
as increased fault-proneness and reduced
maintainability. Moreover, one of the programmers
may leave the project and another one may come to
sustain the project. In such a case, the code should have
a low complexity, that the latter programmer can easily
grasp the code without wasting too much time.
Additionally, cognitive complexity also provides
valuable information for the design of systems. High
cognitive complexity indicates poor design, which
sometimes can be unmanageable [4]. In such cases,
maintenance effort increases drastically.

Because of the current software metrics being subject
to some general criticism, it seems appropriate to
develop a new metric, which satisfy most of the
parameters of software and also include all the factors
responsible for complexity of JavaScript. Complexity
measure based on cognitive weight has already been
proved as a well-structured metric for procedural
languages [15] and object oriented languages [14]. Here
in this paper, we propose JavaScript Cognitive
Complexity Measurement (JCCM) metric, which is
intended to measure the architectural complexity of
JavaScript in terms of cognitive weight. The metric
follows the similar approaches that have taken by Misra
and Ibrahim [15]. We improve the metric proposed by
Misra and Ibrahim [15] by considering the contribution
of arbitrary and meaningful named variables, which are
also responsible for increasing the understand ability of
the program. As such, the paper has the following
agenda:

1. To propose a complexity measure that is constructed
with a firm basis in theoretical concepts, and also
take into account the architecture and features of
JavaScript.

2. To evaluate the proposed metric theoretically and
practically.

3. To empirically validate the proposed measure with
real examples.

Even though JavaScript codes are usually not too
complex, we propose a model to measure the cognitive
complexity of a JavaScript code in order to be able to
increase the coding efficiency in JavaScript.

3. The Proposed Metric: JavaScript
Cognitive Complexity Measure

Complexity is defined as [9] “the degree to which a
system or component has a design or implementation
that is difficult to understand and verify”. This
definition implies that all the factors which make code
difficult to understand are responsible for complexity.
Accordingly, first we should identify these factors
which are responsible for the complexity of
JavaScript. When we analyse JavaScript codes we find
that, the following factors are responsible for the
complexity:

1. Size in terms of lines of code.

2. Number of Arbitrarily Named Distinct Variables
(ANDV).

3. Number of Meaningfully Named Variables (MNV).

4. Cognitive weights of Basic Control Structures
(BCS’s).

5. Number of operators.

e Number of Lines of Code: Complexity of any
program depends on the size of the code. In our
formulation, we are including all the possible
factors and identities which are assumed to increase
the complexity of each line of a JavaScript code.
Our method is sensitive to size factor, since it
includes the complexity of only those lines which
consist of variable(s) or operator(s). Naturally, this
way of complexity calculation automatically
includes the size of JavaScript, without including
lines of code directly.

o Number of Arbitrarily Named Distinct Variables:
Once we talk about the understand ability of a code,
the names of variables used in the code play a very
important role in increasing or decreasing the
understand ability. If the name of a variable itself
shows its meaning, it becomes easier to understand
the code. Although, it is suggested that the name of
the variables should be chosen in such a way which
is meaningful in programming, most of the
developers do not follow it very strictly. If the
variable names are taken arbitrarily, there is no
problem if the developer himself is evaluating the
code. However, it is not the case in real life. After
the system is developed, especially during
maintenance time, arbitrarily named variables
increase the difficulty in understanding four times
more [12] than the meaningful names. In the
formulation of JCCM, we are considering the
weights of the arbitrarily named variables four
times more than the meaningfully named variables.

o Number of Meaningfully Named Variables: From
the discussion part taken in the above section, it is
clear that meaningful named variables are more
understandable than arbitrary named variables. We
are assigning the weight of meaningful named
variables as one unit.

Estimating Quality of JavaScript

o Cognitive Weights of Basic Control Structures:
Complexity of a program is directly proportional to
the cognitive weights of Basic Control Structures
(BCS). Cognitive weight [20] of software is the
extent of difficulty or relative time and effort for
comprehending given software modelled by a
number of BCS’. BCS’ [20] are basic logics which
build blocks of any software and their weights are
one, two and three respectively. These weights are
assigned on the classification of cognitive
phenomenon as discussed by Wang [20]. He proved
and assigned the weights for sub conscious function,
meta cognitive function and higher cognitive
function as 1, 2 and 3 respectively. Although, we
followed the similar approach with Wang [20], we
made some modifications in the weights of some
BCS. For example, we include try-catch BCS (a
special feature of JavaScript codes) in the list and
assigned the weight 2, based on its structure. Further,
the weight of nested loop is assigned to 3". The
weight of nested loop is 3", because it depends on
the number of nesting. As a result the identified BCS
and their corresponding weights are given in Table
1. From the Table it is clear that sequence, condition
and loops in JavaScript have similar structures with
other programming languages. The differences lies
in functional activity and exceptions, where
alert/prompt/throw, event, and try...catch are new
basic control structure. The new basic control
structures are demonstrated with a graph in Table 1.
The syntax exceptions and the structures with
examples are given as following.

Table 1. Basic control structures and weights (adopted from Wang’s
paper [15] with some modifications).

Category BCS CwWJ Flow Graph
Sequence sequence 1 I
Condition if-else 2

switch 2

go-to 2
Loop for 3

for...in 3

while/do...while 3

nested loop 3" B
Functional Activity function-call 2

alert/prompt/throw | 2

event 2

recursion 3 %}

, ®

Exception try...catch 2 / \

537

Structures of new basic Control Structure
Loop

for...in:

for (variable in object)

{

code to be executed

/

Functional activity

Functional activities are used to bind several functionalities
to the program. In case of occurrence of an event a function
is called. Also, alert triggers a function. For this reason,
their weights are reckoned as 2 similar to function calls.
Sfunction-call:

function functionname(varl,var2,...,varX)

{

some code

/

alert/prompt/throw:

alert("sometext");
prompt("sometext”,"defaultvalue”);
throw “exception”;

events.

<input type="text" size="30" id="email"
onchange="checkEmail()">

Exception

Exceptions are triggered in case of deviation from the
ordinary flow of the program.

try...catch:

try

{

//Run some code here

}

catch(err)

{

//Handle errors here

/

Syntax Exceptions

break and continue are counted as 1.

Inside an HTML code if any event is called it is counted as
2. For example;

onclick=“display()” is equal to 2.
onclick="“display(“Hello”) is equal to 2x2=4.
Calculating arrays:

var mycars=new Array(); 3x2=6

mycars[0]= “Saab”; 5x1=5

Calculating for...in:

for (x in mycars) 3x3=9

So, here in is included to the calculation.

Calculating try...catch:

try is not counted. Only catch is counted. For example;
tryf...}

catch(err) {...} 2x2=4

catch and the name of the error, which is err in this
program, are counted.

document.write(“The interest is ~+i+ “ percent.”);

Here + operators are not counted, but the variable, which
is 'i" in this program, is counted. Of course, also semi-colon
is counted.

If any function is called it is multiplied with 2. Even for
creating an object Date() function is also included.

this and with are counted as 1.

e Number of Operators: The number of operators
also increases the complexity of a JavaScript

538 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

program. Operators are responsible to increase the
size. By keeping these points in our mind, in
formulation of JCCM, the contribution of operators
are considered.

Accordingly the total complexity of a JavaScript is
given by the following formula:

e JavaScript Cognitive Complexity Measure (JCCM).

m;
i
= 2. ((4* ANDV + MNV + Operators) *CWJ ;; (1)

= U

Where complexity measure of a JavaScript code JCCM
is defined as the sum of complexity of its n modules if
any exists and module i consists of m; line of code. In
the context of formula 1, the concept of cognitive
weights is used as an integer multiplier. Therefore, the
unit of the JCCM is: JavaScript Cognitive Complexity
UNIT-JCCM which is always a positive integer
number. This implies achievement of scale
compatibility.

3.1. Demonstration of the Metric

For demonstration of JCCM, we consider 3 different
types of codes written in JavaScript taken from the
web. These programs are differentiated from each
other in their architecture. The calculations of JCCM
for these examples are given in Tables 2, 3 and 4.
The structures of all the three programs in tables are as
follows: The second column of the tables shows the
JavaScript codes. The sum of Arbitrarily Named
Distinct Variables (ANDV), the Meaningfully Named
Variables (MNV) and the operators in the line is
given in the third column of the table. The
cognitive weights of each JavaScript lines are
presented in the forth column. The JavaScript
complexity calculation measure for each line is shown
in the last column of Tables 2, 3 and 4.

Table 2. Example 1.

Line JavaScript Code ANDVA+MNV+ CWJ | JCCM
No. Operators
1 var i=0; 8 1 8
2 for (i=0;i<=5;i++) 10 3 30
3 { 0 1 0
document.write("T
4 he number is " + 3 1 3
i);
document.write("<
5 br />"); 1 1 1
6 } 0 1 0
Total - - 42

The first example script, given in Table 2, consists of
6 lines of codes. The highest complexity value is 30 for
line number 2. It is because; this line consists of a loop
and, ten variables. In other words, this line is the most
complex one in terms of structure and size. On the
contrary, complexity value is zero for lines 3 and 6,
since these lines do not contain any variable or operator
and, therefore, have the simplest possible structure.

The second program demonstrated in Table 3,
consists of 6 lines of code and is more complex than
first one. It is because of two nested loops. The weight
of second “for loop’ in line 3, is counted as 3* which is
equal to 9, it is because of nested loops make program
much more complex. As result, the overall complexity
for this code is 132, which is approximately four times
more than the first program, which is 42. It is worth to
point out that, what the contribution of JCCM is,
because it is obvious that the program with two nested
loops will be more complex than program consisting
of one loop.

Table 3. Example 2.

Line | ;. vascript Code | ANPVIMNVE 1 ows | scem

No. Operators

1 var i, j; 10 1 10
for

2 (i=0;i<=5;i++){ 10 3 30

for (j=0; j<=i;

3) 10 9 90

4 S?;ument.wrlte(1 1 1
document.write("

5
"); 1 1 1

6 } 0 1 0
Total - - 132

Table 4. Example 3.
If\;ne JavaScript Code ANDV+MNV+ CWJ JCCM
0. Operators

var d = new

1 Date(): 8 2 12
var time =

2 d.getHours(); 4 2 8

3 if (time<10) 3 2 6

4 { 0 1 0
document.write("

5 Good 1 1 1
morning");

6 } 0 1 0
else if (time>10

7 && time<16) 7 2 14

8 { 0 1 0
document.write("

9 Good 1 1 1
day");

10 } 0 1 0

11 else 0 1 0

12 { 0 1 0
document.write("

13 Hello 1 1 1
World!");

14 } 0 1 0
Total - - 43

Third program given in Table 4, consists of 14 lines
of code, have function calls in line 1 and 2. This is the
reason; the cognitive weights for these lines are
assigned as 2. It is worth to consider that, although
this program is the most complex in terms of lines of
code, i.e., 14, its JCCM value is 43, which is more
realistic. Table 5, represents the summary of the
complexity values for different complexity measures
for three examples JavaScript. =~ We have applied
Logical Line of Code (LLOC), Cyclomatic

Estimating Quality of JavaScript

Complexity (CC) [13], Volume (V), Difficulty (D),
Efforts (E) and Time (T) [8] to these JavaScript.

Table 5: Complexity values for different complexity measures of
the three examples.

P“I’Vg(fam JCCM | 1ILOC | cC Halstead
V [D] E | T
1 4 4 3 79 | 6 | 474 | 26
132 5 5 93 | 9 | 837 | 46
3 43 8 4 | 148 | 4 | 592 | 32

In fact, the important thing is to calculate the most
realistic value which really represents the complexity of
the script. If we compare complexity values of all
related complexity metrics given in Table 5, we find
that JCCM values are higher to line of code, cyclomatic
complexity, and T. Its reason is that, JCCM represents
the complexity values due to all parameters responsible
for complexity; however, all these parameters are
independently evaluated by different metrics. The
detailed comparison is demonstrated in section 5.

4. Evaluation of JCCM

The worth of any new measurement system should be
proved by proper validation and testing process. A
metric system should be theoretically evaluated for
showing that a new system is developed based on
strong theoretical base (scientific principles) and
validated empirically to prove its practical usefulness.
There are many validation criteria [7, 9, 16, 24] for
theoretical validation of a metric system; however,
most of them are based on principles of measurement
theory. In the next section, we are evaluating JCCM
against the principles of measurement theory [16].

4.1. JCCM and Measurement Theory

According to the measurement theory point of view, in
a measurement system there should be an entity whose
attributes are targeted for quantification, a property and
measurement mapping. The metric is the mapping of
entities to the values. For achieving to this definition,
first we have to define empirical relation system,
numerical relation system for our JCCM.

e Definition 1: Empirical Relational System-ERS for a
given attribute, an Empirical Relational System is an
ordered tuple ERS=<E, R,,...,R,, 0y,..., 0,> where E
is a set of entities, R;, ..., R, denote n empirical
relations such that each R; has an arity n;, and R; <
E". o0, ..., 0, denote m empirical binary operations
on the entities that produce new entities from the
existing ones, so o;; ExE—E and the operations are
represented with an infix notation, for example, e,=
e; o; e;. According to this definition, the components
of the quantification system are the values
representing the decided quantities; the binary
relations show the dependencies among them and the

539

binary operations describe the production of new
values from the existing ones. For JCCM, the
entities are the JavaScript scripts. The empirical
relation is assumed to be more or equal complex
and the only empirical binary operation is the
concatenation of scripts. This can be explained by a
solid example. Assume that a program body P is
given and a new program body Q is obtained by
simply duplicating P. One may easily establish the
relation more_or_equal_complex between P and Q.
Definition 2: Numerical Relational System-NRS is
an ordered tuple NRS=<V, S.,...,S,, p1,..., P> Where

V is set of values, S, ..., S, denote » relations such
that the arity of S; is equal to the arity of R;, and
S,cV" and py, ..., p, denote m numerical binary

operations on the values that produce new values
from the existing ones, so p;; VxV—=) and the
operations are represented with an infix notation,
for example, v,= v; p; vi. For JCCM, V is the set of
positive integers, the binary relation is assumed to
be > and the numerical binary operation is the
addition (i.e., +) of two positive integers.

Definition 3: Measure- m is a mapping of entities to
the values and it considers neither the empirical nor
the numerical knowledge about systems, i.e., m:
E—V. The measure for JCCM complexity is
defined by equation 1 in section 3.

Representation Condition

Definition 4: A new metric system must satisfy the
following two conditions known as representation
condition:

1. Viel....... nV<e,,...e,>€k,;
(<ej,...e,>eRi><m(ey),....me,)>€ S
2. Vjel...... m V<e,e;>eExE(m(ej0;e;=m(e))pm(e;)).

The first part of the Representation Condition says
that for a given empirically observed relation
between entities, there must exist a numerical
relation between corresponding measured values
and vice versa. In other words, any empirical
observation should be measurable and any
measurement result should be empirically
observable. The second part says a measured value
of an entity which is obtained by the application of
an empirical binary operation on two entities
should be equal to the value obtained by
corresponding numerical binary operation executed
over individually measured values of entities. In
other words, the complexity of the whole should be
definable in terms of the complexities of its parts.
For JCCM, the representation condition requires
that 1 if, for any scripts, e, and e, are in
more_or_equal complex relation (ie., <e,
e;>emore_or_equal complex) then the measured
JCCM complexity value of entity e; should be
greater than the measured complexity value of
entity e, (i.e., m(e;) > m(e,;)) and vice versa.

540 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

Considering the two JavaScript codes; if Q is the
double of P then the number of BCSs, and variables
for Q automatically becomes double. Consequently,
for part (1) of the condition, it is possible to say that
the empirically observed more or equal complex
relation between two program bodies leads to a
numerical binary relation > among those entities or
vice versa. However, part (1) is only satisfied if there
are such clear empirically observable relations
between program bodies; for example P and Q.

For part two of the representation condition, we can say
that the JCCM complexity value of a program body
which is obtained by concatenation (i.e., the empirical
binary operation) of e; and e, is equal to the sum (i.e.,
the numerical binary operation) of their calculated
complexity values. Therefore, JCCM satisfies the
second part of the representation condition. Hence, we
can say that JCCM satisfies the representation
condition.

4.2. Evaluation of Measure Based on Scale

JCCM was evaluated through the measurement theory
and found to be satisfied by the representation
condition. Our next step is to find the scale of the
JCCM. We can investigate the scale of JCCM through
admissible transformation and extensive structures.
Admissible transformation is the simplest way to find
the scale of a measure. On the other hand, Zuse [24]
has stressed the advantage of using extensive structure
because it is one of the most important measurement
structures which characterises empirical conditions of
reality, hypothesis of reality and empirical conditions
behind the software measure. However, both give the
1dea about the scale of metric. Therefore, we evaluated
JCCM only by admissible transformation.

4.2.1. Admissible Transformation

o Definition 5: A scale is a triple <ERS, NRS, m>,
where ERS is Empirical Relational System, NRS is
Numerical Relational System, and m is the measure
that satisfies the representation condition. For
JCCM, we have already defined ERS, NRS and m in
previous section.

o Definition 6: Given a scale <ERS, NRS, m>, the
transformation of a scale f is admissible if m’= fo m
(i.e. m' is the composition of f and m) and <ERS,
NRS, m’> is a scale. Based on admissible
transformation, four different types of scales can be
considered as follows [24]:

1. Nominal Scale: Each entity is labelled in
categories and there is no ordering relation among
them. An example for nominal scale is labelling
given programs according to the name of their
authors.

2. Ordinal Scale: Entities are categorised in the
form of total ordering. The associated values

make entities comparable. As an example,
program bodies can be assigned degrees from 1
to 5 with comparative meanings (e.g., 1 is the
least reliable one and 5 is the most reliable one).

3. Interval Scale: The difference among the
assigned numerical values can be quantified in
their amount. A new scale m" from m can only
be obtained through transformations of the form
m’=a*m+b where a>0. An example for this can
be the scale of Celsius that can be converted into
Fahrenheit.

4. Ratio Scale: The ratio among the numerical
values associated with the entities is used for
quantification. The form of transformation is:
m'=a*m where a>0. The main difference
between interval and ratio scale is the existence
of true zero-point in ratio scale. An example of
ratio scale is the LLOC measure of a program
body.

For case of JCCM, it can be very easily proved that
<ERS, NRS, m> for JCCM 1is a ratio scale.
Reconsidering the two program bodies P and O,
Q/P=2 and then ag=2. This implies that m =2%m.
Therefore, it can be informally stated that the
proposed measure JCCM is defined on ratio scale.

5. Empirical Validation of JCCM and
Comparison

There is no specific metrics for calculating JavaScript
codes. However, we are comparing our metrics with
some popular metrics which are developed to be used
for most of the programming languages. For not being
developed specifically for JavaScript code, their
deficiencies are obvious in comparison with JCCM.
For empirical validation of the JCCM metric, we have
analysed thirty JavaScript files shown as Table 6.
Most of the files of the analysed scripts were extracted
from the web. The statistics that we have collected
after analysing these JavaScript codes to evaluate the
JCCM measures are shown in Table 7. Actually, our
agenda of empirical validation is two-fold. First, we
applied well known metrics like LLOC, CC [13], and
volume, efforts, difficulty and time estimations from
Halstead metrics [8]. Since, these metrics have not
been tested in JavaScript; our studies evaluate the
applicability of these metrics to JavaScript codes.
Second, the statistics that we have collected from
those metrics is compared with the values obtained
from JCCM. It will prove the usefulness and
effectiveness of our proposal.

All these complexity metricss under consideration
have been applied on 30 JavaScript files. We believe
that the selected 30 scripts are significant in number
for comparison since they include different structures
and, therefore, contain most of the characteristics of a
system required for the validation of the proposed

Estimating Quality of JavaScript

measure. The complexity values of different measures
for the cases are summarized in Table 7.

Table 6. References for Java script.

http://www.w3schools.com/js/tryit.asp?filename=tryjs functionl
http://www.w3schools.com/js/tryit.asp?filename=tryjs_switch
http://www.w3schools.com/js/tryit.asp?filename=tryjs_elseif
http://www.w3schools.com/js/tryit.asp?filename=tryjs_fornext
http://www.w3schools.com/js/tryit.asp?filename=tryjs break
http://www.w3schools.com/js/tryit.asp?filename=tryjs_array_for
in

http://www.w3schools.com/js/tryit.asp?filename=tryjs_try catch
http://www.w3schools.com/js/tryit.asp?filename=tryjs_throw
http://www.webdevelopersjournal.com/articles/jsintro3/js_begin3
.html
http://www.scriptci.com/modules.php?name=Downloads&d_op=
getit&lid=287
http://www.scriptci.com/modules.php?name=Downloads&d_op=
getit&lid=885
http://www.java2s.com/Tutorial/JavaScript/0500 Object-
Oriented/Inheritance.htm

13.| http://javascript.internet.com/user-details/ip.html

14. | http://www.web-source.net/javascript_status_clock.htm

15.| http://www.buildwebsite4u.com/advanced/javascript-code.shtml
16. | http://www.sislands.com/coin70/week2/NestedLoops1.htm

17. | http://www.sislands.com/coin70/week3/slideshow.htm

18. | http:/www.sislands.com/coin70/week7/counter.htm

19 http://www.java2s.com/Tutorial/JavaScript/0080__Development/
" | Trycatchexception.htm
http://www.java2s.com/Tutorial/JavaScript/0300__ Event/Seteven
treturnvaluetofalselE.htm
http://www.java2s.com/Tutorial/JavaScript/0140__Function/Nest
edfunctioncall.htm
http://www.java2s.com/Tutorial/JavaScript/0140__Function/Retu
rnbooleanvaluefromfunction.htm
http://www.java2s.com/Tutorial/JavaScript/0140__ Function/Passi
ntegertofunction.htm
http://www.java2s.com/Tutorial/JavaScript/0180__Math/Mathlog
.htm

http://www.java2s.com/Tutorial/JavaScript/0120__ String/Conver
tStringtouppercase.htm

26. | http://examples.oreilly.com/jscript2/7.2.txt

27.| http://examples.oreilly.com/jscript2/14.3.txt

28.| http://examples.oreilly.com/jscript2/16.2.html

29.| http://examples.oreilly.com/jscript2/14.1.txt

30.| http://examples.oreilly.com/jscript2/6.2.txt

R Pl AN P Pl Rl o o

-
e

11.

12.

20.

21.

22.

23.

24.

25.

The lines of code, variables (arbitrary names and
meaningful names), basic control structures, i.e.,
sequence, branch, iteration and function call are
directly related to complexity of code in Table 3. The
weight assigned to a line is 1 even if there is none of
these factors in the code of that line since JCCM
considers the sequential structure of each line. On the
other hand, if this line does not contain any variable, its
JCCM value becomes zero. All these prove that the
proposed measure considers the size as a factor of
complexity, which may not include every line, which
are useless and do not contain any variable or operator.
The graphs depicted in Figure 1 show the comparison
results between the LLOC and the JCCM. It is clear
from the graph that JCCM values are normally higher
than LLOC. It is because that JCCM consists of
complexity values due to other parameters/factors
responsible for complexity also. Obviously, it includes
the size as a factor, because, JCCM is intended to
measure the complexity of each line of code CC can be
estimated by CC=e-n+2p for a flow graph having n ver-

541

tices, ¢ edges and p connected components and
attempts to determine the number of execution paths
in a program. CC neither considers size, (due to length
of program and due to variables) nor the internal
complexity of architecture of line. For this reason, for
example, CC values for programs 1, 4, 13, 15, 20, 24
and 25, are equal CC=2 in Figure 2 and are minimum
since these programs have no extra modules.
However, JCCM does not only consider the size factor
but also complexity due to number of modules and its
internal structures. The JCCM values for the above
mentioned programs are 7, 33, 27, 16, 9, 19, and 19
respectively, which indicate the complexity
differences between programs better and therefore
provide more information.

Table 7. Complexity values for different complexity measures.

Halstead
Program 1ILOC CC JCCM

\% D E T
1 2 2 7 13 1 13 0
2 14 5 39 148 3 244 24
3 8 4 35 148 4 592 32
4 3 2 33 79 6 474 26
5 6 4 44 114 8 912 50
6 7 3 35 93 2 186 10
7 9 3 31 167 3 501 27
8 15 9 72 237 4 948 52
9 12 3 68 212 6 1274 70
10 32 3 163 212 12 2544 | 141
11 20 5 40 237 4 948 52
12 13 3 62 220 4 880 48
13 4 2 27 129 4 516 28
14 21 5 120 748 6 4488 | 249
15 4 2 16 148 3 444 24
16 10 7 153 152 16 2432 | 135
17 10 4 42 366 12 4392 | 244
18 8 3 34 93 2 186 10
19 7 3 10 63 1 63 3
20 3 2 9 48 2 96 5
21 5 3 10 23 1 13 1
22 6 3 24 76 2 152 8
23 5 4 30 93 2 186 10
24 4 2 19 76 2 152 8
25 4 2 19 48 1 48 2
26 5 4 28 171 3 513 28
27 6 5 54 259 4 1039 57
28 13 10 107 514 12 6168 | 342
29 6 4 38 192 4 768 42
30 20 31 128 696 4 2784 | 154

A graph which covers the comparison between CC,
LLOC and JCCM is also plotted in Figure 3, to
observe similarities and differences between them. A
close inspection of this graph shown as Figure 3

542

shows that JCCM is closely related and CC and LLOC.
This can easily be seen and observed in Figure 3, in
which JCCM, CC and LLOC reflect similar trends. In
other words, high JCCM values are due to large size,
large number of variables, large number of iterations,
branching structures, function calls or including all of
them together in their content. For example, JCCM has
the highest value for script 10 (163), which is due to
having the maximum lines of code (32), variables and
complex control structures.

We have also compared JCCM with the Halstead
metrics. The graphs between JCCM, volume, difficulty
and time have been demonstrated in Figure 4. It is
observed that JCCM has similar trends with volume,
difficulty and time. Further, JCCM values are less than
volume measurement of Halstead but are almost similar
with time measurement of Halstead in most of the
scripts (except 14, 17 and 28). Actually, time
measurement of Halstead is approximate time spent to
understand a program and JCCM reflects the similar
values to time measurement. This proves that JCCM is
also a strong predictor of understandability.

LLOC and JCCM
180

m LLOC
| jCCM

Complexity values

SNE D
NESSs505 00

Il 1 I | M | 1 |
WAL I o d LT

10 13 16 19 22 25 28

o

[
afld 1.
1 4

Programs

Figure 1. Comparison between logical line of code and JCCM.

CC and JCCM

180
160
140
120

100 @mCC
mJCCM

Complexity value

N B O
o OO o

1

L
INRREURPREENT
7

| | 1
ol

9 11 13 15 17 19 21 23 25 27 29

o
e

- o
T

1

T

5

w

Programs

Figure 2. Comparison between cyclomatic complexity and JCCM.

Comparsion between LOC, CC & JCCM

200
8
% 150
> ——ILOC
-§100 —=—CC
o
= JCCM
g 50
o I
@) 2

0v\!\\!\\‘!-_\.i.\-!\-!\\\\‘!\ﬁ‘!\!\\\!
1 4 7 10 13 16 19 22 25 28
Programs

Figure 3. Relative graph between ILOC, CC and JCCM.

The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

Comparative study with JCCM & volume, difficulty

@ and time

S 800

E 1 7 | —e—JCCM

Z 600 ‘

% no —=— Volume

5 400 J‘ ‘:] 1)

% 200 Bagna | W\ Difficulty
-] o » .

8 0 ”M:M*NMMA{ Time

“/\!TTT\ FTTT O T TTT T T T T T
1 3 5 7 911131517 19 21 23 25 27 29
Programs

Figure 4. Relative graph between volume, difficulty, time and
JCCM.

6. Conclusions

In the paper, we presented a measurement method for
evaluating quality of JavaScript codes. The
experiments show that none of the well known
metrics/measures are as efficient to evaluate the
quality of JavaScript, as JCCM. JCCM considers all
the factors responsible for complexity, which is the
major difference between the proposed measurement
technique and others. The metric is theoretically
evaluated and empirically validated. For future
research, more experiments can be held and more
details can be discussed in order to create a more
stable metric.

References

[1] Basci D. and Misra S., “Entropy as a Measure of
Complexity of XML Schema Documents,” The
International Arab Journal of Information
Technology, vol. 8, no. 1, pp. 16-25, 2011.

[2] Basci D. and Misra S., “Data Complexity
Metrics for Web-Services,” Advances in
Electrical and Computer Engineering, vol. 9, no.
2, pp-9-15, 2009.

[3] Basci D. and Misra S., “Measuring and
Evaluating a Design Complexity Metric for
XML Schema Documents,” Journal of
Information Science and Engineering, vol. 25,
no. 3, pp. 1415-1425, 2009.

[4] Briand L., Bunse C., and Daly J., “A Controlled
Experiments For Evaluating Quality Guidelines
on The Maintainability of Object-Oriented
Design,” [EEE Transactions on Software
Engineering, vol. 27, no. 6, pp. 513-530, 2001.

[5] Costagliola G. and Tortora G., “Class Points: An
Approach for the Size Estimation of Object-
Oriented Systems,” [EEE Transactions on
Software Engineering, vol. 31, no. 1, pp. 52-74,
2005.

[6] Fenton N. and Pfleeger S., Software Metrics: A
Rigorous and Practical Approach, PWS
Publishing, 1997.

[71 Fenton N., “Software measurement: A
Necessary Scientific Basis,” IEEE Transaction
Software Engineering, vol. 20, no. 3, pp. 199-
206, 1994.

Estimating Quality of JavaScript

[8]
[9]

[10]

[11]

[13]

[14]

[15]

[17]

Halstead M., FElements of Software Science,
Elsevier North-Holland, 1997.

IEEE Computer Society: Standard for Software
Quality Metrics Methodology, Revision IEEE
Standard, 1998.

Kearney J., “Software Complexity Measurement,”
Communications of the ACM, vol. 29, no. 11, pp.
1044-1050, 1986.

Kemerer C., “Reliability of Function Points
Measurement: A Field Experiment,”
Communications of the ACM, vol. 36, no. 2, pp.
85-97, 1993.

Kushwaha D. and Misra A., “Improved Cognitive
Information Complexity Measure: A Metric that
Establishes Program Comprehension Effort,”
ACM SIGSOFT Software Engineering Notes, vol.
31, no. 5, pp. 1-5, 2006.

McCabe T., “A Complexity Measure,” [EEE
Transactions Software Engineering, vol. 2, no. 6,
pp. 308-320, 1976.

Misra S. and Ibrahim A., “Weighted Class
Complexity: A Measure of Complexity for Object
Oriented Systems,” Journal of Information
Science and Engineering, vol. 24, no. 1, pp. 1689-
1708, 2008.

Misra S. and Ibrahim A., “Unified Complexity
Metric: A measure of Complexity,” in
Proceedings of National Academy of Sciences
Section A, pp. 167-176, 2010.

Morasca S., Software Measurement, Handbook of
Software Engineering and Knowledge
Engineering, World Scientific Publishing, 2001.
Pressman R., Software Engineering: A
Practitioner’s approach, McGraw Hill, 2001.
Vessey 1. and Weber R., “Research on Structured
Programming: An Empiricist's Evaluation,” /EEE
Transactions on Software Engineering, vol. 10,
no. 4, pp. 394-407, 1984.

W3schools, available at:
http://www.w3schools.com /JS/ js_intro.asp, last
visited 2009.

Wang Y. and Shao J., “A New Measure of
Software Complexity Based on Cognitive
Weights,” Canadian Journal of Electrical and
Computer Engineering, vol. 28, no. 2, pp. 69-
74, 2003.

Wand Y. and Weber R., “Toward a Theory of the
Deep Structure of Information Systems,” in
Proceedings of International Conference on
Information Systems, Denmark, pp. 61-71, 1990.
Weyuker E., “Evaluating Software Complexity
Measures,” [EEE Transactions on Software
Engineering, vol. 14, no. 9, pp. 1357-1365, 1988.
Zuse H., Software Complexity Measures, Walter
de Gruyter, Berlin, 1998.

Zuse H., Framework of Software Measurement,
Walter de Gruyter, Berlin, 1998.

543

Sanjay Misra obtained M.Tech.
degree in software engineering from
Motilal Nehru National Natioanal
Institue of Technology, India and
D.Phil. from University of
Allahabad, India. Presently, he is a
Professor of Computer Engineering
and chairing the Cyber Security Department of
Federal University of Technology, Nigeria. He is a
software engineer and previously held academic
positions at Atilim University, Turkey, Subharati
University, and UP Technical University India. His
current researches cover the areas of: software quality,
software measurement, software metrics, software
process improvement, software project management,
object oriented technologies, XML, SOA, web
services, and cognitive informatics. He published
more than 100 papers in these areas. He is the founder
chair of several annual international workshops:
Software Engineering Process and Applications,
Software Quality and Tools and Techniques in
Software Development Processes. The proceedings of
these workshops are published by Springer and IEEE.
Presently, he is chief editor of International Journal of
Physical Sciences and serving as editor, associate
editor and serving as editorial board member of
several journals of international repute.

Ferid Cafer received his BSc
degree from Bilkent University,
Ankara and MSc in software
engineering in 2010 from Atilim
University, Turkey. Presently, he is
working as software engineer in
Servus Bilgisayar, Turkey. His area
of interests are software measurements, object
oriented design and programming, especially in
python, web design and development, project
management and software quality. He is a motivated
researcher and has produced some very good results in
recent research papers.

