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Abstract: In this study, we establish and pioneer an approximate Computational Tree Logic (CTL) Model Checking (MC) 

technique, in order to avoid the famous State Explosion (SE) problem in the Computational Tree Logic Model Checking 

(CTLMC). To this end, some Machine Learning (ML) algorithms are introduced and employed. On this basis, CTL model 

checking is induced to binary classification of machine learning, by mapping all the two different results of CTL model checking 

into all the two different results of binary classification of machine learning, respectively. The experimental results indicate that 

the newly proposed approach has a maximal accuracy of 100% on our randomly generated data set, compared with the latest 

algorithm in the classical CTL model checking. Furthermore, the average speed of the new approach is at most 120 thousand 

times higher than that of the latest algorithm, which appears in the current version of a popular model checker called NuXMV, in 

the classical CTL model checking. These observations prompt that the new method can get CTL model checking results quickly 

and accurately, since the SE problem is avoided completely. 
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1. Introduction 

Temporal logic model checking (model checking for 

short) was developed Clarke and Emerson [16] in the 

1980s, who were recognized by the 2007 Turing 

Award from the Association for Computing Machinery 

(ACM). This formal technique has been used widely 

for more than three decades. 

There are some notable real-world examples about 

Model Checking (MC) applications, such as Stanford 

University’s MC verification of a network protocol [31], 

Microsoft’s MC-based software verifier for analyzing 

the source code of Windows device drivers [5, 27], the 

Turing laureate Prof. Clarke’s assertion about model 

checking for detecting the Pentium floating-point 

dividing bug, i.e., the most famous of the Intel 

microprocessor bugs [14, 17, 35], National Aeronautics 

and Space Administration (NASA)’s applications about 

model checking for analyzing avionics software [20]. 

Even outside of computer science, model checking also 

play a vital role in analyzing an active structural control 

system to make buildings more resistant to earthquakes 

[15]. 

In general, the procedure of model checking (refers to 

qualitative model checking in this paper) is as follows. 

A temporal logic formula specifies a property which 

should be satisfied by a computational system, as well as 

an automaton or Kripke structure models this system. 

The MC result will be “yes”, if a model checking 

algorithm automatically finds that the Kripke structure 

satisfies the formula. Otherwise, the MC result will be  

 

“no”.  

There are many temporal logics. The two most 

frequently used in the MC practices of the information 

technology industry are Linear Temporal Logic (LTL) 

[33] and Computational Tree Logic (CTL) [8, 22]. LTL 

was introduced to computer science by Pnueli [33] who 

is also a Turing Award winner. CTL was presented by 

Prof. Clarke, another Turing Award winner [16]. The 

different temporal logics express the different properties 

and, thus, have varied definitions, MC algorithms, MC 

tools, and applications. For example, SPIN is an LTL 

model checker, while its-ctl is a CTL model checker. 

Furthermore, NuSMX and NuXMV are model checkers 

for both LTL formulas and CTL formulas.  

The SE problem has become a major bottleneck, both 

in LTL model checking and CTL model checking, so 

that Clarke listed the State Explosion (SE) problem as 

the first main disadvantage of the concurrent model 

checking [15]. Much progress has been made on this 

problem [15]. The many existing approaches 

(the state reduction technique, see [2, 4, 18, 19, 21, 25, 

28, 34, 38] for details on many works combating the 

famous SE problem) can reduce the huge state space 

effectively. However, the SE problem remains. 

“unavoidable in worst case, but steady progress over the 

past 28 years using clever algorithms, data structures, 

and engineering”, Clarke wrote, in one of his 

PowerPoint documents entitled “Model Checking: My 

30 Year Quest to Conquer the State Explosion Problem” 

[14].  

Since the SE problem cannot be avoided in the 
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framework of accurate computing, how about 

approximate computing? 

Aiming to combat SE in CTL model checking, we try 

to propose an approximate CTL model checking 

approach in this study. To this end, we employ the more 

machine learning algorithms (the sixteen Machine 

Learning (ML) algorithms) to predict CTL model 

checking results, respectively. Our experimental results 

show that each of these machine learning algorithms can 

conduct predictions with a high optimal accuracy (from 

90% to 100%), supposing an accurate/classical CTL 

model checking approach has an accuracy of 1. With the 

newly proposed method, the efficiency is improved by 

thousands of times, even hundreds of thousands of times, 

compared with state of the art of the algorithm in the 

classical CTL model checking, which is employed by 

the nuXmv model checker [9]. As shown in section 4, 

our experiments will demonstrate this point. 

These observations indicate that it is possible to avoid 

the SE in CTL model checking using approximate 

computing, although the cost is also possible. As a result, 

the approximate CTL model checking technique is 

formed. This is the contribution of this paper. 

It should be noted that, we do not regard the machine 

learning as a panacea in advance. And we just wonder 

whether this popular technique can address our problem 

or not, when this problem has not been solved by the 

existing approaches. Thus, we explore it with an 

objective experimental way. In order to improve the 

readability, we use some intuition meaning and figures 

instead of formal definitions to express model checking, 

machine learning and our idea in this paper. 

The remainder of this paper is organized as follows. 

Section 2 briefs some preliminaries. The newly 

proposed approach will be illustrated in section 3. In 

section 4, we will conduct the comprehensive 

experiments. And the newly proposed approach and 

some related ones will be compared in section 5. In the 

last section, we will draw our conclusion. 

2. Background 

2.1. NuXMV 

As a symbolic CTL model checker, NuXMV was 

designed by Carnegie Mellon University [9]. And it 

employs a state of the art of CTLMC algorithms [9], as 

claimed by [9].  

NuXMV can be employed to model checking 

finite-state systematic models and infinite-state 

systematic models. And both CTL and LTL are 

supported by this tool. 

In order to perform CTL model checking, a user’s 

standard process can be depicted as follows: 

1. The user should write a document to describe his/her 

systematic model, i.e., an automaton or a Kripke 

structure, in NuXMV language. Yes, NuXMV is not 

only a model checking tool, but also a program 

language. 

2. The user’s CTL formulas should be written in the 

same document in the same language. And the 

location is behind the description of systematic 

model. 

3. The above document should be closed, and a given 

NuXMV command will be manually executed in 

command-line environment by the user, to get the 

returned model checking results. 

See [9] for more details on NuXMV. 

2.2. ML Algorithms and the Tools 

Machine learning has been applied to many fields, such 

as natural language process [1], image process. Data 

classification is one of the major missions of machine 

learning. And a lot of ML algorithms can do it. In this 

paper, we employ the following algorithms: Boosted 

Tree (BT), Random Forest (RF), Decision tree (DT), 

Logistic Regression (LR), Extra Trees (ET), K-Nearest 

Neighbors (KNN), Nearest Centroid (NC), Ridge 

(RIDGE), Passive Aggressive (PA), Stochastic Gradient 

Descent (SGD), Linear Support Vector Classification 

(L_SVC), Nu Support Vector Classification (N_SVC), 

C-Support Vector Classification (C_SVC), Gaussian 

Process (GPC), Naive Bayes classifier for multivariate 

Bernoulli models (NB_BER) and Gaussian Naive Bayes 

(NB_GAU). Furthermore, Turi Create [3] and 

Scikit-learn [24] integrate some popular ML algorithms 

mentioned above, as well as implement them. See [3, 24] 

for more details on these algorithms and tools. 

3. The Key Principle of the Newly Proposed 

Approach 

The approximate Computational Tree Logic Model 

Checking (CTLMC) can be defined as follows: giving a 

pair of systematic model K and a CTL formula f, how to 

decide whether K satisfies f, with a machine learning 

algorithm.  

The key principle of the newly proposed approach is 

illustrated in Figure 1. And this figure shows some 

information about the core steps of the new method, as 

follows. At first, similar to the approximate Linear 

Temporal Logic Model Checking (LTLMC) [41], some 

records about Kripke structures, temporal logic formulas 

and their model checking results will be inputted to take 

part in the process of training. And then, the obtained 

ML model can predict the CTLMC result for another 

pair of formula and Kripke structure. Differing from the 

approximate LTLMC [41], this time, CTL formula f and 

Kripke structures K make up the two ML features and 

the only one label is CTL model checking result r, as 

well as CTL model checking results instead of LTL ones 

can be predicted. 
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a) For a given pair of Kripke structure K and a CTL formula f, one can determine 

whether K satisfies f or not, using the classical CTL model checking. 

 
b) A ML model M which can predict the model checking result for another pair of 

Km1+1 and fm1+1, since M is obtained by training m1 groups of K, f and their model 

checking results. 

Figure 1. Given one pair of systematic model and formula, the 

new method predicts whether this model satisfies this formula or 

not. 

How to vectorize the ML features consisting of 

automata and CTL formulas before a ML training is 

started? An automaton can be transformed into a digital 

string, and this string can be input into the training set 

and the testing set, as shown in example 1 in section 4.3. 

As for a CTL formula, its original form can be input 

directly into the training set and the testing set, and 

many ML tools provide a function which can regularize 

the values of the ML features, guaranteeing the quality 

of the following ML training. As a result, a ML 

algorithm can directly access this training set to start the 

training process. 

4. Experiments 

4.1. Experimental Target 

The efficiency and the power of the newly proposed 

approach will be explored. And the approximate CTL 

model checking (based on machine learning/learning 

from data) and the classical CTL model checking (based 

on accurate computing/state exploration) will be 

compared in terms of the efficiency and the power, as 

well as the approximate CTL model checking based on 

the different machine learning algorithms will be also 

compared in terms of the efficiency and the power. 

4.2. Platform 

1. CPU: Intel(R) Core (TM) i7-4770 @3.40GHz. 

2. RAM: 16.0 G. 

3. Operating System (OS): Windows 7 64 bit. 

4. NuXMV: CTL model checker. 

5. Graphlab: for implementing the following four 

machine learning algorithms: RF, BT, DT and LR. 

6. Scikit-learn: for implementing the following sixteen 

ML algorithms: RF, BT, ET, DT, KNN, NC, LR, 

RIDGE, PA, SGD, L_SVC, N_SVC, C_SVC, GPC, 

NB_BER and NB_GAU. 

4.3. Experimental Procedures 

This time, we produced randomly 50 Kripke structures 
K and 200 CTL formulas f, where the length of each of 
formula (L) is 500 (each formula has 500 symbols).  

To this end, we conducted ten thousand 

(200*50=10000) groups of sub-experiments with 

NuXMV, in order to find out whether these fifty Kripke 

structures satisfy two hundred CTL formulas, 

respectively. The obtained data set A consists of these 

10000 records, and each record contains the following 

three fields: K, f and r. The experimental steps in this 

study is similar with the ones in [41]. No more detail is 

given here due to the simplicity. 

It should be noted that there are three data sets related 

with A, i.e., A1, A2 and A3. These data sets are formed 

in the following way:  

1. A1 is a sub set of A, and it contains seven thousand 

records (L=500) which are selected randomly from 

A.  

2. A2 is a sub set of A, and it contains one thousand 

records (L=500) which are selected randomly from 

A. 

3. The intersection of A1 and A2 is empty. 

4. A3 is an external data set of A, i.e., the intersection of 

A3 and A is empty, and it contains one thousand 

records (L=500). These different data sets will play 

different roles for the different objectives in the 

following experiments. Please see the section 4.7 for 

more details. 

We provide here an example to illustrate how to obtain a 

record in the data set A, according to a given CTL 

formula and a given Kripke structure.  

Example 1, Let us suppose the Kripke structure K is 

illustrated in Figure 2, and we can encode this Kripke 

structure as K= 

“0000100100101110110122124303243”. See [41] for 

more details on the way of encoding. 

 

Figure 2. a Kripke structure K. 
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 Supposing the CTL formula ff1 is shown in Figure 

3-a), we can use NuXMV to conduct CTL model 

checking. The result is illustrated by Figure 4-a), 

indicating K satisfies ff1. Thus, a record is added to A, 

and this record contains the three fields: 

“0000100100101110110122124303243”, 

“A[(!(p=0&q=0|r=0))U……” and “true”, where the first 

two fields are the features and the last one is the label 

when ML training comes. 

 

a) ff1. 

b) ff2. 

Figure 3. The two CTL formulas. 

 
a) MC result for ff1. 

 
b) MC result for ff2.  

Figure 4. The model checking results on the K and the two CTL 

formulas. 

Now, the CTL formula ff2 is shown in Figure 3-b). 

We also use NuXMV to conduct CTL model checking. 

The result is illustrated by Figure 4-b), indicating K does 

not satisfy ff2. Thus, another record is added to A, and 

this record contains the three fields: 

“0000100100101110110122124303243”, 

“EF(!AF(E[(AF!(p=0&q=0|r=0))U……” and “false”, 

where the first two fields are the features and the last 

one is the label when ML training comes.  

In this way, we can produce more records to build A. 

Example 1 is over. 

In our scikit-learn and graph lab experiments, the 

above three data sets provide the raw data for machine 

learning. As for the division of training sets and test sets, 

we use the same way to do it with [41], due to the same 

reason with [41]. In fact, the hypermeter “fraction” 

means the ratio of number of records in a training set to 

number of records in a data set. 

4.4. Experimental Results 

In this subsection, we will conduct our experiments on 

A1 with graph lab.  

 First, Tables 1 and 3 compares the four algorithms 

on A1 in terms of the optimal accuracies and average 

time for one record, and Table 2 shows the values of the 

hyper-parameters while the results of Table 1 occur. In 

this tables, the used metrics are AUC, TNR, TPR, 

precision, accuracy and running speed. The first five 

metrics are related to the power of the new method, and 

the last one indicates the efficiency of the new method. 

Table 1. Graph Lab experiments where length of each formula is 
500 (A1 is used). 

Algorithms RF BT DT LR 

AUC 0.74 0.96 0.59 1 

Specificity (TNR) 0.482 0.615 0.172 1 

Sensitivity (TPR) 1 1 1 1 

Precision 0.916 0.939 0.889 1 

Predictive Accuracy 0.922 0.944 0.891 1 

Running time per 

record (in second) 
0.000029 0.000028 0.000023 0.000022 

Table 2. What are the values of the parameters and the 

hyper-parameters if the illustrations of Table 1 occur. 

Algorithms RF BT DT LR 

Training record # 6268 6285 6291 6271 

Testing record # 732 715 709 729 

Seed 456 2242 2289 2233 

Fraction 0.89 0.9 0.9 0.9 

Table 3. Graph Lab experiments where length of each formula is 500 
(A1 is used). 

Length of 

formulas, 

i.e., L 

Average running 

time (t1) of 

NuXMV for one 

pair of Kripke 

structure and 

formula (s) 

ML 

algorithms 

Average 

predictive time 

(t2) of the new 

method based on 

ML for one 

record (s) 

t1 / t2 

L=500 0.0762 

RF 0.000029 2628 

BT 0.000028 2721 

DT 0.000023 3313 

LR 0.000022 3464 
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Let NuXMV’s accuracy be 1, the approach based on 

machine learning has a highest accuracy of 100% 

(L=500), when LR is used, as listed in Table 1. In other 

words, the newly proposed approach has approached the 

latest algorithm in the classical MC technique, in terms 

of predictive accuracy. The reason is that CTLMC is a 

strongly learnable problem, causing a ML-based 

approach has a good learning ability. 

See Table 3, compared to state of the art of approach 

in the classical CTLMC technique, the 

machine-learning-based approach is several thousand 

times faster, due to strongly learnable problem again. 

4.5. Discussions 

First, A1 has seven thousand records, including 5790 

positive samples and 1210 negative ones, ensuring the 

generalization ability and preventing the data from 

imbalance.  

Second, as depicted in Table 1, the different 

algorithms have the different optimum predictive 

accuracies. RF, BT and DT have the low accuracies, and 

they are wholly unsuited to approximate CTLMC. 

In contrast, LR is the preferred algorithm. 

4.6. More Comparisons Among the Different 

Machine Learning Algorithms 

In addition to accuracy, Area Under Curve (AUC), 
Receiver Operating Characteristic (ROC) curve, 

specificity, i.e., True Negative Rate (TNR), sensitivity, 

i.e., True Positive Rate (TPR) and precision are often 

used as the metrics for evaluating binary classifiers. 

Table 1 depicts TPR, TNR and precision for the four 

optimum classifiers originated from the four machine 

learning algorithms (L=500). And Figure 5 shows their 

ROC curves, and their AUC values are given in Table 1. 

It is widely known that, AUC is the entire area beneath a 

ROC curve and AUC measures how well a model is 

able to distinguish between classes. Generally speaking, 

the classifier which has a bigger AUC value is the better 

one. As illustrated in Figure 5 and Table 1, LR shows a 

better performance. 

In the above discussion, our Graph-lab program 

automatically tunes the two hyper-parameters’ values 

and searches the optimum accuracy for every algorithm. 

And the different algorithm has its different optimal 

accuracy although the hyper-parameters are set to the 

different values.  

Now, the obvious question becomes: what happen if 

all the algorithms have the same values of the 

hyper-parameters? Figure 6 shows the distribution of 

accuracies varying in space of a great number of values 

of the several hyperparameters, for each algorithm. For 

example, RF get its optimal accuracy when 

fraction=0.89, and Figure 6-a) shows all the three 

thousand values of accuracy when fraction=0.89. 

Obviously, the optimal value of accuracy occurs, when 

fraction=0.89 and seed=456. And the location pointed 

by a red arrow indicates this situation. Similarly, Figure 

6-b) shows us what will happen if other three ML 

algorithms are used, respectively. And the third 

sub-figure makes a summary. In this case, Figure 6 

indicates that LR is better than RF, BT and DT in terms 

of the overall accuracy (L=500).  

 
a) RF.                          b) BT.                                  c) DT.                             d) LR. 

Figure 5. Roc curve of the optimal classifiers, (L=500 and A1 is used). 

   a) Obtained various classifiers when fraction=0.89.        b) Obtained various classifiers when fraction=0.9.     c) Obtained various classifiers (a combination of the 

                                                                                      above two sub-figures). 

Figure 6. Comparison of performance of ML algorithms with the same values of hyper-parameters (seed and fraction) (L=500 and A1 is used).  
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4.7. More Comparisons on the Different Data 

Until now, data set is fixed and test set varies with the 

change of the hyper-parameters’ values, in order to 

explore the new method based on the different ML 

algorithms in terms of ability and the efficiency on a 

given data set. Next, we will use a given data set A2 to 

test the above four optimum classifiers, in order to 

explore the above optimal ML models originating from 

the different ML algorithms in terms of generalization 

ability and the efficiency on a given testing set. 

As shown in Tables 4 and 5, LR provides the fast and 

accurate classifier, where the LR optimal model is best 

again, although the other three classifiers are also fast, as 

shown in Table 5. It should be noted that the first 

column in Table 5 shows the average running time for 

one record using NuXMV, and the third column shows 

the average running time for one record using different 

ML algorithm. How many times has the efficiency been 

improved? One can get the answers by dividing the 

value of the first column by a value of the third column. 

 

Table 4. Graph Lab experiments where length of each formula is 500 
(A2 is used). 

Algorithms RF BT DT LR 

Prediction Accuracy 0.852 0.904 0.852 1 

Running time per record (in second) 0.000031 0.000032 0.00003 0.00003 

AUC 0.721 0.976 0.61 1 

Specificity (TNR) 0.221 0.495 0.221 1 

Sensitivity (TPR) 1 1 1 1 

Precision 0.846 0.894 0.846 1 

Table 5. Compared with NuXMV, the new method enhances the 
efficiency of CTL model Checking (L=500 and A2 is used). 

Average running time 

(t1) of NuXMV for one 

pair of Kripke structure 

and formula (s) 

ML 

algorithms 

Average predictive time 

(t2) of the new method 

based on ML for one 

record (s) 

t1/t2 

0.073 

RF 0.000031 2355 

BT 0.000032 2281 

DT 0.00003 2433 

LR 0.00003 2433 

Furthermore, Figure 7 provides their ROC curves. As 

shown in this figure, LR does the best again. 

Now, all the four classifiers run on A3. Table 6 

shows the results, and the performance is unacceptable 

at all!  
  

    
            a) RF.                                  b) BT.                              c) DT.                              d) LR. 

Figure 7. Roc curve of the optimal classifiers, (L=500 and A2 is used). 

Similar to the approximate LTLMC [41], the 

combination of Tables 4 and 6 demonstrates the one 

thing again: the new method would not perform well, if 

an appropriate data set could not be constructed 

beforehand. See [41] for more details.  

Table 6. Graph Lab experiments where length of each formula is 500 
(A3 is used). 

Algorithms RF BT DT LR 

Prediction Accuracy 0.41 0.41 0.41 0.41 

It should be noted that, no benchmark set is used in 

this work, because up to now there is no such thing as a 

benchmark platform or original data available for the 

approximate CTL model checking based on machine 

learning. Why not use an existing benchmark set in term 

of the classical CTL model checking? The reason is that 

the different formulas have different lengths in the 

existing related benchmark sets, so that they cannot be 

employed directly to perform training, testing and 

predictions. After all, not enough formulas are available 

in them, if only the formulas which have the same 

length are selected for ML training and testing. 

Furthermore, an ML experiment on a very small data set 

will be unconvincing and infeasible. 

4.8. More Comparisons on the Different 

Platforms 

In the prior context, the NuXMV model checker 

employs the later CTLMC algorithm [9], whereas graph 

lab does not employ latest machine learning algorithm. 

The thing is the new method employing a common 

machine learning algorithm performs better than the 

latest CTLMC algorithm, demonstrated by the above 

experiments. Thus, the conclusion about the advantage 

of the new method is convincing. 

Now, Let us relax our constraints, and see what 

happens if some latest ML algorithms are used. In this 

subsection, our machine learning experiments will be 

conducted on scikit-learn. And the sixteen ML 

algorithms are employed, respectively.  
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Table 7. The optimal accuracies and the evaluation indexes on Scikit-learn. 

Algorithms 
optimal 

accuracies 

running 

time 
AUC sensitivity specificity precision Algorithms 

optimal 

accuracies 

running 

time 
AUC sensitivity specificity precision 

RF 1 1.14E-5 1 1 1 1 PA 1 1.26E-6 1 1 1 1 

BT 1 4.06E-6 1 1 1 1 SGD 1 1.07E-6 1 1 1 1 

ET 1 1.28E-5 1 1 1 1 L-SVC 1 7.96E-7 1 1 1 1 

DT 1 1.49E-6 1 1 1 1 N-SVC 1 1.82E-5 1 1 1 1 

KNN 1 5.79E-5 1 1 1 1 C-SVC 0.977 1.96E-5 0.875 1 0.75 0.976 

NC 1 2.01E-6 1 1 1 1 GPC 1 1.78E-5 1 1 1 1 

LR 1 8.68E-7 1 1 1 1 NB_BER 1 1.57E-6 1 1 1 1 

RIDGE 1 6.25E-7 1 1 1 1 NB_GAU 0.925 2.82E-6 0.94 0.88 1 1 

Table 8. The values of the hyper-parameters when the results in table 

7 occurs. 

Algorithms fraction seed seed_clf 

RF 0.82 3 29 

BT 0.88 69 0 

ET 0.83 69 10 

DT 0.88 69 0 

KNN 0.9 2218 —— 

NC 0.81 2112 —— 

LR 0.86 743 —— 

RIDGE 0.81 431 —— 

PA 0.88 4 77 

SGD 0.89 12 34 

L-SVC 0.82 431 —— 

N-SVC 0.83 431 —— 

C-SVC 0.89 2519 —— 

GPC 0.87 270 —— 

NB_BER 0.81 431 —— 

NB_GAU 0.9 1062 —— 

Table 9. Compared with NuXMV, the new method based on 
scikit-learn enhances the efficiency of CTL model Checking. 

algorithms 

For a pair of Kripke 

structures and CTL 

formulas, the average 

running time t1 with 

NuXMV (seconds) 

Average prediction time t2 

(seconds) for one record 

with ML algorithm on 

scikit-learn 

t1/t2 

RF 0.0762 1.14025E-05 6927 

BT 0.0762 4.05844E-06 19050 

ET 0.0762 1.27909E-05 5862 

DT 0.0762 1.49E-06 50800 

KNN 0.0762 5.78504E-05 1314 

NC 0.0762 2.01208E-06 38100 

LR 0.0762 8.68075E-07 87586 

RIDGE 0.0762 6.25226E-07 120952 

PA 0.0762 1.25949E-06 58615 

SGD 0.0762 1.07059E-06 69273 

L-SVC 0.0762 7.96381E-07 95250 

N-SVC 0.0762 1.81793E-05 4233 

C-SVC 0.0762 1.95727E-05 3810 

GPC 0.0762 1.77928E-05 4281 

NB_BER 0.0762 1.57289E-06 47625 

NB_GAU 0.0762 2.8167E-06 27214 

Table 7 depicts the experimental results, and Table 8 

describes the corresponding values of the 

hyper-parameters. Furthermore, Figure 8 illustrates the 

sixteen ROC curves. In addition, Table 9 compares the 

new method based on scikit-learn and state of the art of 

the CTLMC in terms of the efficiency. As shown in 

Tables 7 and 9, some algorithms naming “regression” 

perform well, such as LR and RIDGE. Especially for 

RIDGE, it has an optimal accuracy of 1, as well as 

RIDGE is over 100000 times faster than the latest CTL 

model checking algorithm. The reason is that RIDGE 

regression inherits the advantage of linear regression, i.e., 

high speed, and it reduces over-fitting by adding 

regularization term L2. Obviously, our experiments  

demonstrate these two “regression”-based optimal 

classifiers are very suitable for the approximate CTL 

model checking. 

5. Comparisons between the New Method 

and the Relevant Approaches 

5.1. The Studies Related with both Machine 

Learning and Model Checking 

In an existing study [41], the authors investigate some 

researches related with both MC and ML [6, 7, 10, 11, 

12, 13, 26, 29, 30, 32, 36, 37]. 

 However, there exist fundamental differences 

between the new approach and these related ones [41]. 

These studies do not directly use machine learning to 

perform model checking. However, the new method 

can do this, as shown in Figure 1. 
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a) RF.                                b) BT.                              c) ET.                               d) DT. 

 
e) KNN.                             f) NC.                                g) LR.                               h) RIDGE. 

    
i) PA.                              j) SGD.                            k) L-SVC.                            l) N-SVC. 

    
m) C-SVC.                           n) GPC.                               o) NB_BER.                       p) NB_GAU. 

Figure 8. Roc curve of the sixteen optimal classifiers on scikit-learn. 

5.2. Comparison to the Existing CTLMC 

In fact, the newly proposed approximate CTLMC 

technique has some disadvantages. 

Similar to the approximate LTLMC [41], the newly 

proposed approximate CTL one is not recommended for 

users of safety-critical systems, at present. Furthermore, 

no counterexample is generated, as well as a massive 

data set which has been conducted beforehand, is 

needed. 

However, the most important advantage of the new 

method is that the SE dissolves into nothingness.  

All existing CTL model checking approaches needs 

to explore exhaustively state space, whereas the newly 

proposed approximate CTLMC technique based on 

machine learning never explores any state space, as well 

as it only perform predictions based on data. It is this 

reason that causes the well performance in our 

experiments. 

It should be noted that, generally speaking, the more 

serious the state space explosion problem is, the more 

memory the computation consumes. This phenomenon 

indirectly leads to a sharp decline in efficiency. In our 

experiments, the length of each CTL formula is 500. 

Even so, the new method has shown tens of thousands 

of improvements over the traditional methods, in terms 

of efficiency. Image what the advantage of the new 

method should be, if the CTL formulas would be longer 

and longer. 
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In summarize, it is safe to say that the newly 

proposed approximate CTL model checking technique 

and the classical CTL model checking technique 

complement each other. They have a complementary 

relationship rather than the alternative one. 

5.3. Comparison to the Approximate LTLMC 

In an existing study [41], the four ML algorithms were 

employed and an approximate LTL model checking 

method was presented. Lucky, the SE in LTL model 

checking is totally avoided with this method in our 

experimental conditions, although it seems that the cost 

is inevitable, and the usage is limited from the point of 

view of the current technical level. However, it is the 

first time that hopefully model checking will not be 

bothered by the SE problem, although it is just an 

approximate solution rather than the accurate one. 

Just as LTL model checking and CTL model 

checking take part in making up of temporal logic model 

checking, one sub-problem named SE in LTL model 

checking and another sub-problem named SE in CTL 

model checking forms the major aspects of SE problem 

in temporal logic model checking. Obviously, it seems 

that something is missing for us, in terms of the 

approximate LTL model checking for dealing with the 

SE problem. Yes, it is another sub-problem: 

approximate model checking for CTL. 

Compared with the ML-based approach for predict 

LTL model checking results [41], the newly proposed 

method can predict CTL model checking results, using 

machine learning algorithms. In this way, these two 

approaches make up a complete approximate model 

checking technique.  

Table 10 summarizes the comparisons between these 

two methods. Obviously, these two works aim to 

combat the different sub-problem of the SE problem in 

model checking, as well as employ the different 

machine learning algorithms as the core engines. And 

the different experimental results are obtained. 

Table 10. Comparison among the approximate LTL Model 
checking method and the new one. 

 
The approximate LTL model 

checking algorithm in [41] 
The new method 

State explosion 

problem 
Has been avoided Has been avoided 

Time complexity polynomial polynomial 

For LTL model 

checking or CTL 

one? 

LTL model checking CTL model checking 

How many ML 
algorithms are 

compared? 

Four machine learning 

algorithms 

Sixteen machine 

learning algorithms 

Which ML 
algorithm is the 

most suitable? 

LR RIDGE 

The max predictive 
accuracy 

1 1 

How many times 

faster than classical 
MC? 

At most 6.3 million times, due to 

SE and time complexity. 

At most 120 thousand 

times, due to SE 

In fact, CTL model checking needs an approximate 

solution more than LTL model checking does, while a 

temporal logic formula is very long. The reason is as 

follows. 

As shown in this table, the combination of the two 

factors, i.e., avoiding SE and the reduction of time 

complexity, causes the efficiency is improved by million 

times at most in terms of LTL. In comparison, only the 

one factor, i.e., avoiding SE, causes the efficiency is 

improved by hundreds of thousand times at most in 

terms of CTL. Note that SE problem usually has a 

greater effect on memory than on time, generally 

speaking. Obviously, the SE problem is so serious that a 

serious lack of memory occurs, and it is the serious 

shortage of memory rather than time complexity itself 

leads to the decrease of time efficiency, while a CTL 

formula has a length of 500. Thus, a long CTL formula 

needs a way to avoid SE more than a long LTL formula 

does, while model checking is performed.  

In a word, the topics, the used algorithms and the 

results are all different between the approximate LTL 

model checking and the approximate CTL one. And it is 

necessary to study the two temporal logics separately. 

It should be noted that there exists some works also 

naming “approximate model checking”. However, they 

are the different things at all, and they just have the same 

title with our works, as analyzed in [41]. 

In summary, this paper proposes an approximate 

CTL model checking technique while [41] put 

forwarded an approximate LTL model checking one. As 

a result, the approximate model checking technique is 

formed. 

5.4. Comparison with Some Works Based on 

DNA Computing 

As far as model checking is concerned, the SE restricts 

the scale of MC applications, which can be alleviated 

rather than avoided in classical computing. To this end, 

some studies explore a different way. 

Deoxyribo Nucleic Acid (DNA) molecules can be 

employed to perform model checking. This idea was 

first proposed by Prof. Emerson, the Turing Award 

winner [23]. In one existing research, the authors 

proposed several DNA-computing-based approaches to 

conduct model checking, in which DNA molecules 

exhibite tremendous power in terms of parallel 

computing [39, 40, 42]. As a result, DNA model 

checking is forming. 

In terms of computing environments of model 

checking, the platforms used in the above methods are 

DNA computing devices rather than electronic 

computers. This is the essential difference between the 

approximate model checking and DNA model checking. 

However, how to avoid the SE problem? It is a common 

goal and mission for both the approximate model 

checking and DNA model checking. Considering the 

former method run on electronic computers rather than 
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DNA computing devices, it is safe to say that the former 

method has a wider prospect, compared to the latter one. 

6. Conclusions 

This study pioneers an approximate CTL model 

checking technique, avoiding SE in CTLMC completely. 

Up to now, state of the art of CTL model checking is 

inadequate to verify very large-scale OSs against the 

complex branch temporal properties in practice, due to 

the SE problem. This background will help us 

understand the benefit of using the new method.  
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