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Abstract: It is always a challenging work to develop an accurate and effective method to reconstruct a degraded image. In this 

paper, the nonlocal variation Fractional Total Variation (FTV) regularization technique for image zooming is investigated. To 

enhance edges, yet preserve textures, fractional order calculus based image zooming method is proposed, which can deal well 

with fine structures like textures. To solve the nonlinear Euler-Lagrange equation associated with the nonlocal variation FTV 

regularization model, we propose a nonlocal total variation method for image zooming based on the split Bregman iteration. 

Enlarging and de-noising experimental results show that the proposed method has effectiveness and reliability by comparing 

to some methods mentioned in the paper. 
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1. Introduction 

Image zooming technique is increasingly popular 

nowadays, because it is important in image application 

fields such as medical imaging [37], electronic 

publishing, satellite images, images found on web [2, 

12, 24], license plate identification and face 

recognition system.  

A variety of zooming methods were proposed in the 

past few decades. The simplest method for enlarging 

an image is pixel replication, which is easy to 

implement. But the method may cause the processed 

image blurring and blocky effects. Bilinear 

Interpolation (BLI) [25] and Bicubic Interpolation 

(BCI) [21], which are both with superior accuracy than 

pixel replication, were proposed, due to BLI and BCI 

use polynomials for up-sampling image. However, 

these linear interpolation methods are easy to 

complement, but would degrade the zoomed quality. 

Whereas, the higher order interpolation method can 

gives better performances, but requires much 

computation. The ordinary drawbacks of the above 

methods cause desired image jagged or synthetic edges 

or low-quality edge blurring. Thus, finding a method 

that can eliminate blocky effects and look natural in 

processed image is a focus of current research. 

In recent years, methods based on Partial 

Differential Equations (PDEs) have been proposed and 

have shown better performance than previous methods. 

They include anisotropic diffusion equations [8, 10, 

28, 33], total variation models [32] and curve evolution 

equations [22]. One of the most famous techniques, 

which can well solve the image reconstruct problem, is 

the Total Variation (TV) regularization method 

proposed by Rudin, Osher, and Fatemi (ROF) model, 

which has the following form: 

2

2
| | || ||

2u

λ
min Ñu + u - f  

Where f stands for the observed data, u represents the 

desired data, | | denotes the l1 norm of its variation, 

λ>0 is a regularization parameter. The ROF model can 

well protect the edge information. However, staircase 

effects are generated when enlarging the image with 

classical TV norm. 

In order to remove staircase effects, the authors of 

[6] exploited a higher order nonlinear partial 

differential equation to smooth the image. In literatures 

[7, 18, 27, 36], the authors have proposed second-order 

or fourth-order telegraph-diffusion equations for noise 

removal, which adding a second time derivative of the 

image in PDEs, these methods can effectively 

eliminate the diffusion effect to some degree. These 

methods mentioned above are based on local image 

operators, which preserve edges and smooth regions 

and de-noise very well, but they cannot deal well with 

fine structures like texture, because texture is not local 

in nature [20]. 

Recently, a lot of nonlocal methods have been 

proposed for image processing. Gilboa and Osher [15] 

proposed a Nonlocal H
1
 (NL-H

1
) regularization energy 

variational formulation by embedding the nonlocal 

means. Subsequently, Gilboa and Osher [16] presented 

a variational model, which depends on Nonlocal Total 

Variation (NL-TV). Yang et al. [35] proposed a split 

Bregman algorithm for the NL-TV regularization 

image zooming. Mathieu et al. [26] proposed an edge 

(1) 
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detection method by introducing the fractional 

differentiation. Bai and Feng [4] proposed a new 

method of fractional order anisotropic diffusion 

equations for noise removal. A Fractional order TV 

(FTV) regularization functional for image 

super-resolution was proposed in literature [31], which 

integrated traditional TV, fractional TV and data 

fidelity term. 

Inspired by the ideas of [31, 35], in this paper, we 

proposed a method to use the FTV regularization 

model to up-sample images. To solve the FTV 

variational minimization problem in the discrete case, 

we proposed a method based on split Bregman 

iteration algorithm and FTV regularization for image 

zooming. The split Bregman method has some 

advantages: Fast computational speed; relatively small 

memory footprint and easy to code. Numerical 

experiments show that the proposed Bregmanized 

nonlocal total variation-fractional total variation 

regularization algorithm can recover more details of 

the image than other methods. 

The organization of the rest of the paper is as 

follows. In section 2, we give a description of related 

work. The proposed model and its discretization are 

introduced in section 3. Section 4 is devoted to 

implementation details of numerical experiments. 

Finally, some conclusions are given in section 5. 

2. Related Work 

The aim of image zooming is to estimate the desired 

image from a given degraded image. Because of the 

ill-posed nature of super resolution, Equation 1 is not a 

unique model. To find an effective method of image 

zooming, lots of authors try to presents many 

algorithms [2, 23, 34, 35, 37]. In recent years, many 

varieties of total variation were presented based on 

non-local notion [14, 23, 29, 30, 34, 35]. Those 

algorithms were proposed based on non-local notion, 

which can deal fine with structures such as texture 

because texture is a non-local feature. Pu et al. [29, 30] 

discussed the capabilities of the fractional differential 

approach for enhancing texture features of 

two-dimensional digital images. Bai and Feng [4] 

introduced a new class of fractional order anisotropic 

diffusion equations for image de-noising. The 

following section will reviews the non-local operator 

of fractional calculus and the split Bregman iteration 

algorithm.  

2.1. The Non-local Operator of Fractional 

Calculus 

Fractional calculus is proposed with respect to the 

traditional integer order calculus, and fractional 

calculus can be seen as the generalization of the integer 

order calculus. We can find more than one fractional 

order derivative exist in literatures, such as definition 

of Rieman-Liouville (R-L) and Grünwald-Letnikov 

(G-L). However, we use the frequency domain 

definition in this paper because it has less computation. 

For any function 2
( ) ( )f t L R , the Fourier transform 

of it is: 

ˆ( ) ( ) ( )f ω = f t exp -jωt dt  

Where 1j    is the imaginary unit. The equivalent 

formulation of the n
th
 derivative in the frequency 

domain is 

               
ˆ( ) ( ) ( )

n n
D f t « jω f ω  

Where “” stands for the Fourier transform pair. It is 

meaningful for any number n at the right-hand side of 

Equation 3. So, the fractional order derivative of the 

function f(t) of order v is defined as: 

            
-1 ˆ( ) (( ) ( )) 0

v v
D f t = F jω f ω , v >  

Similarly, for any 2 2( , ) ( )f x y L R , the corresponding 

2-D fractional order derivatives of it have the 

following forms [4]: 

          
-1

1 1 2

ˆ( , ) (( ) ( , ))
v v

x
D f x y = F jω f ω ω  

          
-1

2 1 2

ˆ( , ) (( ) , ))
v v

y
D f x y = F jω f(ω ω  

So, fractional order gradient is defined as: 

        
( , ) ( , ) ( , )

v v

ftv x y
Grad f x y = D f x y i + D f x y j  

In order to write simply, replace gradient symbol 

Gradftv with Gftv. And the module of fractional order 

gradient according to Equation 7 can be written as: 

           
2 2

| | ( ) ( )
v v

ftv x y
G = D f + D f  

Assuming the vector field ( , )A x y is given by: 

        
( , ) ( , ) ( , )A x y = P x y i +Q x y j  

Where P(x, y) and Q(x, y)
 
are two components of A(x, 

y) which having fractional v order continuous 

derivatives, so Dx
v
P+Dy

v
Q be called fractional order 

divergence of vector field A(x, y), written as divA, that 

is: 

             

v v

ftv x y
div A = D P + D Q  

The fractional Laplacian is defined by: 

        
[ ]

v v v v v

ftv ftv x x y y
Δ u = div G = Ñ Ñ u + Ñ Ñ u  

We consider the following functional defined in the 

space of continuous images over a support of Ω, then 

the fractional TV regularization defined by: 

             

( ) (| |)
v

Ω

E u = f D u dΩ  

 

The corresponding Euler-Lagrange equation can be 

written as: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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* *

v v v v v v

x x x y y y
D c D u D u + D c D u D u =  

Where 
*v

xD and
*v

yD are adjoints of v

xD u
 

and v

yD u , 

respectively. c(•) is a diffusion coefficient given by: 

               

( )
( )

'
f s

c s =
s

 

2.2. The Split Bregman Iteration Algorithm 

Bregman iteration is a new method of image 

restoration based on the ROF model in recent years. 

Goldstein and Osher [17] presented a fast computation 

split Bregman iterative method using the technique of 

separation variables.   

 Definition 1: Subdifferential for arbitrary convex 

functional J: χ→R, it’s subdifferential ∂J(u) at u be 

defined as [35]: 

    
 *

( ) : | ( ) ( ) , .J u p J v J u p v u v          

 Definition 2: Bregman distance assuming J is a 

convex functional, ∂E(v) is subdifferential at v of 

functional J, ( )p J v , then Bregman distance of u 

and v with regard to functional J is defined as [35]:  

        
( , ) : ( ) ( ) ,

p

J
D u v J u J v p v u     

The split Bregman iteration is used for the 

l1-regularized of the object function. Equation 1 can be 

rewrite equivalently as follows: 

| ( ) | ( , )
u

min u H u f   

Let d denotes the function of u, d=ϕ(u). Then we get 

an effective solution of the Equation 17 using the split 

Bregman iteration method: 

1 1

2,

2

2,

2
( , ) ( , , , ) ( )

2

( , ) , , ( )
2

k k p k k k k

E
u d

k k k k k k k k

u d
u d

u d arg min D u u d d d u

arg min E u d p u u p d d d u







 
  

      

 

1 1 1
( ) ( )

k k T k k

u u
p p u d  

  
     

1 1 1
( )

k k k k

d d
p p d u 

  
    

We can get the following simplified format by the 

equivalence of Bregman iterative first form and the 

second form. 

    

2
1 1

1
2,

( , ) || || ( , ) ( )
2

k k k k k k k

u d

u d arg min d H u f d u b



 

      

            
1 1 1

( )
k k k k

b b d u
  
    

For Equation 21, we can perform this minimization 

efficiently by iteratively minimizing with respect to u 

and d separately. The two steps we must perform are: 

 Step 1. 2
1

2

( , ) ( )
2

k k k k k

u

u arg min H u f d u b




     

 Step 2. 
2

1 1

2

|| || ( )1
2

k k k k k

d

d arg min d d u b



 
     

There are many methods for solving steps 1 and 2, the 

specific discussion can be found in literature [17]. 

3. The Proposed Image Zooming Method 

In this section, we firstly give a description of the 

proposed fractional total variation image zooming 

method and discretization of the proposed method. 

We know that the regularization process is to 

smoothing an image using the curvature in the ROF 

model, and the higher curvature of the image is, the 

stronger the regularization is. Yet, the traditional total 

variation norm constraints limit details in image with 

higher curvature [3, 9]. We propose the image 

zooming method based on fractional order TV using 

the split Bregman iteration because fractional calculus 

can enhance the high frequency while preserving the 

low frequency information in image. The proposed 

model is as follows: 

          

2

2
| | | |

2

v v

x y
u

min u u u f


      

Where  >0
 
is a regularization parameter. 

According to the split Bregman iteration algorithm, 

we rewrite the Equation 23 as follows: 

     

1 2 2

2

1 2

1 1 1

|| || || ||
2 2

|| ||
2

| | || ||
2

k + k v k

x x x
u

k v k

y y y

k + k k v k

d

k + k v k + k +

u λ
u = arg min u - f + d - Ñ u - b

λ
+ d - Ñ u - b

λ
d = arg min d + d - Ñ u - b

b = b + Ñ u - d











  

The Euler-Lagrange equation for the solution u
k+1

 in 

Equation 23 are given by: 

     
1 1

( ) ( ) ( ) 0
k v k k v k k v k

x x x y y y
u f d b d b u   

 
           

Which leads to: 

       

1 1
[ ( ) ( )]

k v k k v k k

x x y yv
u f d b d b  

 


      

 

 

The solution of d
k+1

 is corresponding to a shrinkage 

operator: 

          
 1 1k v k k

d shrink u b
 
    

Where operator ( , )shrink x y equals to the equation 

sgn(x)*max(|x|-y, 0).  

Finally, we update the Bregman variable simply by 

renewing b
k+1

, 

             
1 1 1k k v k k

b b u d
  
     

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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The flow chart of this proposed method is given as 

follows: 

 Initialization: choose u
0
=f, d

0
=b

0
=0, set k=0, set 

convergence precision tol and inner loop number N. 

1

1 2 2 2

1 2

1 1 1

1

|| || || || || ||
2 2 2

| | || ||
2

k k

k k v k k v k

x x x y y y
u

k k k v k

d

k k v k k

while u u

for n to

u
u arg min u f d u b d u b

d arg min d d u b

end

b b u d

end while

 









  





         

    

   

  

4. Numerical Experiments and Analysis 

In this section, various experiments are implemented 

on white Gaussian noise under MATLAB 2013a for 

validating the performance and effectiveness of the 

proposed algorithm. The experimental results of 

methods based on fractional TV are compared with 

some well-known algorithms, such as: BLI [25], BCI 

[21], the classical ROF model-based image restoration 

method [32], the fourth-order model PDE image 

restoration method [13], and NL-TV [23]. The 

experiments environment is: Microsoft Windows 7 

operating system, Matlab 2013a and PC with an Intel 

Core(TM) i3-2120 CPU at 3.30GHz and 8.00GB of 

memory. 

Firstly, we zoomed three group images to test 

capability of the proposed method in the image 

amplification. Secondly, in order to measure the 

quality of numerical results of the proposed method, 

three concepts are introduced: Peak Signal-to-Noise 

Ratio (PSNR), the Mean Squared Error (MSE), and 

Mean Structural Similarity Index Measurement 

(MSSIM), respectively, defined at discrete level by: 

              

2

10

255
10PSNR = log

MSE

 

         

 
2

1 1

1
ˆ( , ) ( , )

m n

i j

MSE I i j I i j
m n  

  


 

     
1

1
ˆ ˆ ˆ( , ) ( , ) ( , )

L a b c

i

MSSIM l I I c I I s I I
L 

    

Where, m×n is the size of the image, I and Î are the 

original and restored image, respectively, L is the 

number of blocks of the image. l(·), c(·), s(·) are 

luminance, contrast, structure comparison functions 

respectively. a>0, b>0, c>0 are weighted parameters 

that used to regulate the relative importance of the 

three components. The stopping criterion that checking 

the maximum variation between u
k+1

 and u
k

 is less than 

10
-3

. Higher MSSIM indicates more similar structure 

between the reconstructed image and the original 

image. The lower MSSIM is, the more precise the 

reconstructed image is. 

In order to test the effectiveness of the proposed 

method, we do some experiments on gray-scale 

images: “bara”, “cameraman” and RGB color images: 

“butterfly”, “parrot”. We firstly state the effectiveness 

of the proposed method with images: “bara”, 

“cameraman”, “butterfly” and “parrot” enlarging 4 

times, respectively. Secondly, we magnify the part of 

images “butterfly” and “parrot”. Finally, adding 

additive white Gaussian noise of =25 on images 

“boat”, we compare performance of the proposed 

method with other methods. 

Capability of different image restoration algorithms: 

PSNR, MSE and MSSIM results on five noisy images 

(additive Gaussian noise, variance is 25, mean value is 

zero) for 4×magnification. For each image, we have 

three rows. The upper row is PSNR, the middle row is 

MSE, the under row is MSSIM. 

The compared results of image zooming 

experiments are shown as in Figures 1, 2 and 3. The 

BCI method brings the most unsatisfied zooming 

images with blurred edge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison(4×)of zooming results on images by 

different methods (from top to button: Methods are BCI [21], BLI 

[25], fourth PDE [13] ( 0.4, 200t iter   ), ROF [32] ( 0.05, 0.001tol  

), NL-TV [32] ( =0.01, 0.001tol  ), NL-BF [1], proposed (

0.05, 0.001tol   )). 

The NL-TV and ROF methods are able to 

effectively suppress jaggy artifacts along edges, but it 

generate obvious blur. The fourth PDE and BLI 

methods can effectively suppress blur, but omit many 

fine details. The proposed method can obtain better 

result than the previous methods, which is most 

    

    

    

    

    

    

    
(29) 

(30) 

(31) 
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accurate to the ground truth. It can prevent artifacts and 

produce zooming images with sharper edges and finer 

details. This is mainly due to fractional order total 

variation, which can better handle non-local details 

than integer order total variation. Therefore, the 

proposed method can availably rebuild more reliable 

zooming images. 

 

    

a) NL-TV 

( =0.01, 0.001tol  ). b) BCI. c) BLI. 
d) Fourth PDE 

( 0.4, 200t iter   ). 

   

e) ROF ( 0.05, 0.001tol   ). f) NL-BF. g) Proposed ( 0.05, 0.001tol   ). 

Figure 2. Portion of zooming results on image butterfly by different 

methods.  

    

a) NL-TV 

( =0.01, 0.001tol  ). b) BCI. c) BLI. 
d) Fourth PDE 

( 0.4, 200t iter   ). 

   

e) ROF ( 0.05, 0.001tol   ). f) NL-BF. g) Proposed ( 0.05, 0.001tol   ). 

Figure 3. Portion of zooming results on image parrot by different 

methods. 

Figure 4 illustrates the results of de-noising on 

image boat.  

   

a) Fourth PDE 

( 0.4, 200t iter   ). 
b) FDPM (the number of 

iteration is 2000 times) [4]. 

c) ROF 

( 0.05, 0.001tol   ). 

   

d) NL-TV 

( =0.01, 0.001tol  ). 

e) Proposed 

( =0.01, 0.001tol  ). f) NL-BF [1]. 

Figure 4. Performance of de-noising (Gaussian white noise, 

variance is 25, mean value is zero) by different methods. 

We can see that the result of the fourth PDE method is 

the worst, where there are a lot of noises. Fractional 

Diffusion Perona-Malik (FDPM) and NL-TV methods 

can effectively handle noise, but many details are 

smoothed. The ROF method can preserve edges, 

meanwhile smoothed some noises, but it not as good as 

the result of the proposed method in preserve edges 

and in visual effect. 

In Table 1, the quantitative evaluation is given for 

different restoration algorithms for the Bara, 

Cameraman, Lena, Boat and Dollar images using the 

index of PSNR, MSE and MSSIM under the same noise 

intensity. From table, it is found that the value of 

PSNR, MSE and MSSIM of the proposed method are 

almost best. So the proposed method is effectively for 

image de-noising. 

Table 1. Capability of different image restoration algorithms. 

Images 

Methods 

Fourth 

PDE 
FDPM [4] ROF NL-TV Proposed 

Bara 

PSNR 

MSE 

MSSIM 

28.7669 

86.3755 

0.6464 

24.8577 

212.48 

0.7870 

24.4845 

231.5435 

0.8353 

24.9114 

209.8661 

0.8567 

29.2213 

86.0100 

0.8360 

Cameraman 

PSNR 

MSE 

MSSIM 

28.7828 

86.0600 

0.5359 

26.7491 

137.46 

0.7213 

27.4706 

116.4181 

0.8931 

29.2041 

78.1037 

0.9228 

30.0463 

64.3361 

0.9298 

Lena 

PSNR 

MSE 

MSSIM 

28.7592 

86.7284 

0.3320 

27.1389 

125.66 

0.7741 

28.3576 

94.9110 

0.9064 

26.6458 

140.7659 

0.7934 

29.5955 

85.8452 

0.9178 

Boat 

PSNR 

MSE 

MSSIM 

28.7709 

86.2950 

0.3695 

26.9312 

131.81 

0.7878 

28.4389 

93.1507 

0.9005 

25.7276 

173.9074 

0.7383 

29.4995 

82.2943 

0.9177 

Dollar 

PSNR 

MSE 

MSSIM 

28.7427 

86.8585 

0.7535 

23.0232 

324.16 

0.8339 

20.7987 

541.0186 

0.8732 

22.9944 

326.3161 

0.8712 

28.3546 

87.1957 

0.9713 

5. Conclusions 

In this paper, we propose an image zooming method 

combined fractional order total variation and the split 

Bregman iteration. The proposed method make use of 

the characteristic of fractional order calculus: 

Fractional order calculus can enhance the high 

frequency information (such as edges), and preserve 

the low frequency information (such as texture, 

details). Our model can magnifies the resolution of a 

low resolved image and is able to rebuild when it 

degraded by noise, blur, and down-sampling. We solve 

the nonlinear Euler-Lagrange equation by using the 

split Bregman iteration, which has been demonstrated 

to be an efficient and accurate algorithm related in 

section 2.2. The good performance of the proposed 

method has been tested for image degraded with 

Gaussian white noise and up-sampling. Quantitative 

experiment results demonstrate that the proposed 

method does better than other state-of-the-art methods. 

In our future work, we may utilize other energy 

functional to reconstruct image using the split 

Bregman iteration. 
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