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1. Introduction 

The Unified Modeling Language (UML) is a graphical 
modeling language for object-oriented software and 
systems. It has been specifically designed for 
visualizing, specifying, constructing and documenting 
several aspects of or views on systems. Different 
diagrams are used for the description of the different 
views.  

To model the behavior of a system, a modeler must 
use the interaction diagrams. Except state machine 
diagram which models the internal behavior of an 
object at run-time, sequence, communication, timing 
and global interaction overview are diagrams that 
capture the interaction between objects or participants 
involved in a given situation. Sequence Diagram (SD), 
also called language of scenarios, focuses on the 
chronological order of messages exchanged. 

The Interaction Fragment (IF) is a specific notion 
for UML 2.0 with new graphical notation and 
semantics [15]. Defining its concrete syntax, this new 
notation is essentially borrowed from Message 
Sequence Chart (MSC) [17] to change the graphical 
notations of UML 1.x SD to support more complex 
logical structures such as concurrency, branching, 
iteration and their hierarchical composition in a 
compact and concise manner via Combined Fragments 
(CF) which are also responsible for the change of 
control flow. 

Using CF and their hierarchical constructs lead to 
complex models. To verify such models at early stages, 
one has to translate them in a formal model. To do this, 
we must first identify and isolate their elementary 
components with preserving the initial control flow. 
This situation is a hard task when we must deal with 
the graphical model level regardless the internal 
representation.  

On the other hand, graph transformation [4, 10] 

approach is a thoroughly studied area with many 

potential applications domain. The main idea of graph  

transformation consists in the local manipulation of 

graphs via the application of a rule. There exist various 

tools that implement graph transformation and may be 

used to specify visual languages or to generate diagram 

editors. Since, UML SD can be represented as graphs 

in a straightforward way, graph transformation rules 

can be employed to visually specify transformations 

between models. 

In this paper, we propose an approach of model 

transformation based on graph rewriting which 

translate a SD in the rough with an arbitrary level of 

imbrications of structures as source model to the same 

but decomposed model as target model. We consider 

our approach as a simple and visual alternative to the 

“first step” of the unwinding algorithm based on 

locations and horizontal cuts proposed by Brill et al. 

[6, 19] for Live Sequence Chart (LSC) [7] whose MSC 

is the ancestry and adopted by Knapp and Wuttke [20] 

for UML 2.0 interactions. 
We propose a meta-model, a visual environment for 

modeling an infinity of valid UML 2.0 SDs and a 
reusable graph grammar for their decomposition. This 
work is the central part of our global project for formal 
verification of UML’s models by model-checking 
techniques [5], where we translate SDs into interaction 
automata and PROMELA code [2, 3]. We use the same 
grammar, as startup, for both cases. 

In this research paper, we focus on SD’s syntactical 
aspect and visual appearance, for different semantics 
[22] where many meanings of UML 2.0 interaction are 
summarized. 

The remainder of this paper is structured as follows: 
In section 2, we review the basic concepts of UML 2.0 
SD. A brief presentation of model and graph 
transformation is introduced. In sections 3 and 4 we 
describe our approach for SDs decomposition. Section 
5 reports on the results on an anonymous example. 
Section 6 concludes with an outlook on our future 
work. 
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2. Basic Concepts 

SDs has been popular ever since Jacobson et al. [18] 

introduced them as a means of documenting behavior 

within use cases. Because of their practical ability to 

show what is happening in a use case, SDs are popular 

with both business analysts and system designers. 

Rumbaugh et al. [27] describe a SD as a two-

dimensional chart. The vertical dimension is the time 

axis, which runs from the top to the bottom of the 

diagram. The horizontal dimension shows the classifier 

roles that represent the individual objects collaborating 

with each other by sending messages. The SD thus, 

shows the interactions among the collaborating objects 

between two given points in time. 

Object-Modeling Language (OMG) [24] the OMG 

adopts the MSC’s visual notation in UML 2.0 

superstructures to introduce structured control 

constructs into SD holding more complex structures 

such as concurrency, branching, iterations and 

imbrications in a simple and compact manner. Hence, 

the concept of IF emerges. Each IF alone is a partial 

view of the system behavior but when combined all 

together by means of the new Interaction Operators 

(IO), interactions provide relatively a whole system 

description. 

An IF consists of a Basic Interaction (BI) and 

optionally, one or more CF. We refers to a SD without 

CF as a BI. A CF defines the structural articulations 

and comprises an IO defining the meaning of the 

particular fragment, and one or more IO. The IO 

themselves are IFs; they can be guarded by an optional 

condition or Interaction Constraints (IC), limiting the 

possibilities for when this operand may be executed. 

The unary operators are option, loop, break and neg. 

The others have more than one operand, such as alt, 

par, strict and seq. An IF can refer another one by an 

Interaction Use (IU) using keyword Ref. 

A Life Line (LL) is a vertical line representing 

participating (objects, components, actor, etc.,) 

involved. A horizontal line between lifelines is a 

Message, which has a name. Each message is sent 

from its source lifeline to its target lifeline and has two 

endpoints. Each endpoint is an intersection with a 

lifeline and is called an Occurrence Specification (OS), 

denoting a sending or receiving Observable Event 

(OE). OSs can also be the beginning or end of an 

Execution Specification (ES), indicating the execution 

of a unit of behavior within a LL. 
To describe the syntax or visual appearance, we 

refer to Figure 1 which shows an example with 
annotated syntactic constructs. It contains an 
interaction with three participants (A, B and C), 
exchanging five messages (m1, m2, m3, m4, m5, and 
m6) with an enclosing CF (Strict) and three IO. The 
second operand contains a nested CF (Option) which 
has one operand. On Strict CF, operands are executed 
in the graphical order. That’s not the case for other 
CFs. 

 

Figure 1. UML 2.0 SD. 

There are two major difference between UML 1.x 
and UML 2.0 SDs: Syntactic, due the introduction of 
CFs for articulation constructs; and semantic, while 
UML 1.x’s SD focuses on messages exchanging; UML 
2.0’s SD focuses on events generated from that 
exchange (Send/Receive). Additionally, CFs; 
therefore, they are responsible for changing the control 
flow in an execution trace. This generates the 
unobservable events that are the intersection between 
the CF and the incoming control flow [26]. 

Finally, interactions in SD are considered as 
collections of events instead of ordered collections of 
messages [14] which are based on traces semantics. 
These stimuli are partially ordered based on which 
execution thread LL they belong to. The partial order is 
defined by three conditions: Events on same LL are 
totally ordered, receiving event must appear after 
sending event for the same message and events on 
different LLs are concurrent and come in parallel or in 
an arbitrary order (interleaved). 

There are other structured control constructs that 
have been introduced to express various control flows. 
General Ordering (GO) imposes (graphically) a binary 
relation to restrict the order between two OSs on 
different lifelines. 

3. Model and Graph Transformation 

Modeling enhances quality because it enhances 
communication. Through modeling, communication 
becomes efficient and effective. This is so because 
modeling raises abstraction to a level where only the 
core essentials matter. The resultant advantage is 
twofold: Easier understanding of the reality that exists 
and efficient creation of a new reality. 

The trend among developers is to raise the 
abstraction level requiring programming technologies 
to improve continuously. From bit, assembler, 
procedural, object-oriented, component programming 
languages and finally models technology, a 
considerable experience is gained to reach the 
perspective of non-programming where, by non-
programming, we mean mainly modeling. Hence, code 
is no longer a central element but derived or generated 
one.  

Models technology or Model Driven Engineering 

(MDE) [11] is based on models and model 

transformation along life cycle of software production 
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where many approaches have been adopted: Structural, 

relational, graphical and hybrid ones [25]. Graphical 

approaches are simply based on graph transformation 

techniques. 

Basically, graph transformation is suitable for model 

transformation because of the following characteristics:  

 Natural: Most of models are considered as graphs. 

 Visual: Based on visual graphical notations. 

 Declarative: Focus on “what to do” and not “How to 

do”. 

 Intuitive: No standard methods to follow. 

 High-level: deal with the model level. 

 Formal: Mathematical foundations based on set and 

sets category theory. 

 Supported by tools such as: AToM
3
, PROGRES, 

GreAT, FUJABA and AGG [1, 8, 12, 13, 23]. 

3.1. Graph Transformation 

In this section we present a short overview of the graph 

transformation approach, which is considered as the 

theoretical foundation of the proposed approach in 

section 4. 
Graph grammars extend the generative grammars of 

Chomsky into the domain of graphs to deal with non 
linear structures. Different from string grammar 
expressing sentences in sequence of characters, graph 
grammars are suitable for specifying visual modeling 
in multi-dimensional fashions. The main idea of graph 
transformation is the rule based modification of graphs 
(rewriting or gluing) as shown in Figure 2. 

 

Figure 2. Graph transformation steps. 

The core of a rule (production) p= (L, K, R) is pair 

of graphs (L, R) called Left Hand Side (LHS) and 

Right Hand Side (RHS) and a gluing or interface graph 

K expressing the shared part between L and R. 

Applying the rule p on a graph instance (called host 

graph) means to find a match of L in the host graph 

and to replace L by R leading to the target graph of the 

transformation. Any transformation of graphs can be 

realized by applying a sequence of production rules. 

Moreover, the transformation process termites when no 

more transformation rules can be applied. Briefly, 

graph transformation is a kind of programming by 

example [16]. 

SD has a well-known graphical form which is a 

graph (nodes, edges), thus it is natural to use graphical 

notation to depict and transform them through graph 

transformation. The transformation process produces a 

new graph from the input host graph after applying 

transformation rules. In our case, the host graph is an 

UML 2.0’s SD; the output graph is an UML 2.0’s SD 

adorned with control flow.  

To illustrate graph transformation process, let L be 

the LHS of a grammar rule p, R be the RHS of the rule, 

and K the interface graph. Let G be a host graph. The 

transformation from graph G to graph H by rule p can 

be achieved through the following steps [4]: 

1. Recognize sub-graph L in the host graph G. 

2. Check if the transformation rule can be applied. 

3. Remove the occurrence of L up to the occurrence of 

K from G. This yields the context graph D of L 

which still contains an occurrence of K. 

4. Glue the graph D and R according to the occurrences 

of K in D and R. This yields the gluing graph E. 

5. Connect the dangling edges on E if the node is 

marked to preserve the association surrounding of 

the replaced sub-graph L. This yields the modified 

graph H. 

Steps 1 and 2 can be classified as a pattern matching 

process while steps 3, 4 and 5 are used to update the 

surrounding connections with the host graph. Figure 2 

shows our vision of graph transformation process 

which illustrates, visually, the steps above where K is 

the graph in blue. The application of p to G yielding H 

is called a direct derivation from G to H through p. 

3.2. AToM
3
 Tool 

AToM
3 

is a tool for meta-modeling and multi-

formalism, it can generate Domain Specific Visual 

Language (DSVL) [28, 29] for one or more desired 

formalisms to instantiate an infinity of valid models 

that conform to their meta-models. It can also perform 

models transformation by means of graph grammar 

using Push out approaches [9].  

To define meta-models, the tool uses a meta-

formalism in UML’s class diagram notation to describe 

concrete/abstract classes, associations, multiplicities, 
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specialization and additional constraints described with 

Python code [21]. Also, for each concrete class, 

AToM
3
 can associate a visual appearance to define the 

concrete syntax of the modeled domain. For each 

graph grammar, rules are modeled in concrete syntax 

with their execution priority and textual pre/post 

conditions that must be satisfied before application and 

finally an action to be performed when rule is 

executed. To execute one or more ordered graph 

grammars, in the same session, the graph rewriting 

system loops on rules until no one is applicable. 

 In addition, AToM
3
 incorporates in its Kernel a 

generic meta-formalism called generic graph 

composed of two elements: Generic graph node and 

generic graph edge to make links, during 

transformation process, between models under 

transformation. We intensively use both elements in 

this paper to materialize graphically our control flow 

description. 

Our choice of AToM
3
 tool is motivated by the 

following reasons: AToM
3
 is one of the few graph 

transformation tools using concrete syntax that users 

are familiar with, its looping execution mode is useful 

to deal with nested structures which are our case and 

its dedicated methods to perform hierarchical 

relationships (Father/Child). These reasons seem to be 

the major advantages of AToM
3
 compared to other 

tools such as AGG [1] and others. 

4. Our Approach 

The proposed approach is based on the manipulation of 
control flow in the SD. The first step of the idea is to 
make appear explicitly (draw) control flow which is 
usually implicit between OEs (intersection between 
messages and lifelines) (CF. Section 2) as they appear 
in their chronologic order on the vertical axis without 
considering CF neither the interleaving of events. In 
other words, the control flow will play the role of GO 
on all events to define one execution trace. The second 
step is to update the control flow according to the 
apparition of the CF-which are responsible for 
changing the control flow by definition-to capture 
unobservable events (intersection between control 
flows, established in the first step and the CF). Due to 
the rectangular shape of the IO defined in section 4.1, 
we extend the same notion of unobservable events for 
them; hence, we update also the control flow according 
to the IO. The control flow in BI is kept unchanged. 

Using model transformation taxonomy, we can say 
that we propose a meta-modeling approach which is a 
model to model transformation, endogenous, in place, 
horizontal and (1×1) cardinality in a declarative 
manner using graph transformation techniques and 
AToM

3
 tool as shown below. 

4.1. SD Meta-Model Description  

In order to perform transformation of SD as source 

model into a decomposed equivalent one as target 

model, we have to propose meta-models to define the 

abstract and concrete syntax using UML class diagram 

notation for both. However, our source and target 

models are the same (endogenous) unless the presence 

of control flows on the target one. That’s why we have 

to propose just one meta-model for SD. We use the 

elements for generic graph (section 3.2) to draw the 

control flow.  

The proposed meta-model as shown in Figure 3 

consists of five concrete classes, two visible 

relationships and four invisible and hierarchical 

relationships to represent the most useful aspects of 

this study. The entities whose icons have a hexagonal 

shape at the top are generated as relationships/edges. 

AToM
3
 is designed to keep track of such hierarchical 

relationships, so finding parents and children is easy 

via dedicated methods. 

 
Figure 3. SD meta-model. 

 Class Interaction: Is a representation of the entire 
model. All other entities will be contained by this 
entity. 

 Class LL: Represents an individual participant in the 
interaction. A lifeline has two attributes which 
represent the name of the participant class 
(instanceName) and the name of an instance of that 
class (className) respectively. 

 Class ES: Is used to hold the OEs at ends and 
beginnings of Messages (intersection between 
messages and Lifelines). It denotes the atomic 
actions for sending and receiving messages with the 
restriction of having a single point of connection on 
each side. The vertical order of each ES is 
significant chronologically according to its 
apparition along the same LL. This is the central 
class in the sense that it captures the elements of 
interest in this project (events) and it is the basic 
entity in any interaction diagram. Hence, it has 
relations with all other entities of the meta-model, 
among which two visible relationships: “Message” 
and “Connect” that bind together two ES in the 
horizontal and vertical direction respectively. 

 Class CF: At this stage we introduce important and 
distinctive element for UML 2.0 interactions: CF to 
form the CF and hierarchies. This class has two 
attributes, its “Name” and “Operator” to designate 
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IO (enumerated type of 12 items). A CF can contain 
one or more IO by the invisible relationship 
CFContain according to the IO involved. 

 Class IO: This class defines the content of a CF: IO 
as a nested element with the relationship 
CFContain. It has a “Guard” as a logical expression 
conditioning its execution C and a “Name” 
attributes to identify it. This class has also, invisible 
and hierarchical relationships with the classes CF 
and ES by the relation IOContain. 

The visible relationships “Message” (with attribute 
name) and Connect (ES to LL) appear with their 
graphical forms in models. The hierarchical ones 
(IContain, CFContain, IOContain, LLContain) are 
invisible because they do not belong to UML’s 
standard elements; they just have countenance effects 
in models. 

Relationships CFContain and IOContain allow 
combinations or imbrications of CF so to define the 
hierarchy (Father/Child). A CF must contain at least 
one interaction operand. An IO can enclose a BI or/and 
one or more CF and vice versa. Hence, we can 
construct an arbitrary number of hierarchy layers. 

Figure 4 shows the concrete syntax chosen for each 
visible element in the meta-model. All are conforming 
to UML standard, unless the IO where the dashed lines 
in Figure 1 is replaced by a rectangular form enclosing 
the whole interaction. This form is easy to match 
during the graph rewriting process.  

 

 

 

 

 

 

      
Figure 4. SD concrete syntax. 

After meta-modeling phase, the DSVL for SD is 
instantaneously generated by the tool. Hence, we can 
instantiate an infinity of valid models expressed in 
concrete syntax.  

4.2. Graph Grammar  

Our graph grammar consists of fourteen rules where 
both LHS and RHS are graphs, centered on 
establishing and updating control flow. The updating 
of control flow does not concern all BIs in the model. 
Using priority mechanism, rules are designed in the 
five following categories: 

1. The first category of rules deals with BI and consists 
of two rules to establish main control flow 
independently of CF and interleaving concept. This 
category captures the OEs. 

2. Second category updates the CF’s incoming control 
flow from outside ES. Composed of tree rules that 
returns the control flow to outside, with capturing 
unobservable events from IO to the enclosing CF 
and from CF to the enclosing IO and vice versa. 
This category starts on the deepest CF. 

3. Third category is the same as the second one, but it 
deals with outgoing control flow from CF to outside 
ES. 

4. Fourth category deals with CFs of the same 
imbrications level and contains three rules. 

5. Fifth category deals with IOs of the same 
imbrications level and contains also three rules. 

Table 1 summarizes the entire graph grammar 
proposed with a short description for each rule. Due to 
space constraints we present only the most important 
ones namely 1, 3 and 6. 

Table 1. Graph grammar rules. 

Cat Name Priority Description 

1 
MainCtrFlow 1 Establish the main control flow 

TmpFLastES 2 Generalization of IFs 

2 

CFFromOutES 3 Link outside (top) ES to the deepest CF and IO 

CFIOFromOutES 4 Link CF to its enclosing IO 

CFFromOutES_2 5 Link CF to the nested IO(different layer) 

3 

CFForOutES 6 Link outside (bottom) ES to the deepest CF 

CFIOForOutES 7 Link CF (bottom) to its enclosing IO 

CFForOutES_2 8 Link CF (bottom) to the nested IO(different layer) 

4 

CFForCFInsideES 9 Link same level CFs (ES inside) 

CFForInsideES 10 Link CF to inside ES (with operand) 

CFForIOInsidES 11 Link CF to Enclosing IO 

5 

IOInESForIOInES 12 Link two contingent IO (ES inside) 

IOInESFromIO 13 Link two contingent IO (ES inside the first IO) 

IOForIOInES 14 Link two contingent IO (ES inside the second IO) 

 
 Rule 1. MainCtrFlow as shown in Figure 5: Which 

is the central rule to establish the main control flow 
according the graphical position of OEs from up to 
down (time axis) and the direction of the message? 
The elements 10, 11 and 12 materialize the control 
flow using generic graph edge and generic graph 
node (section 3.2). As mentioned before, there is no 
CF in the rule. Also, the interleaving of events is 
delayed according to the semantic and syntax of the 
target model. Additionally, this rule has to 
determinate the first and the last event of the IF as a 
final action. It considers the entire IF as a BI with a 
GO on all events. 

 
Figure 5. MainCtrFlow rule. 

 Rule 3. CFFromOutES as shown in Figure 6: 
Updates the incoming control flow from an outside 
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OE to the deepest CF. In fact, the current CF and IO 
can themselves be enclosed in an enclosing IO; that 
justify the usage of two other rules in same 
category. As pre-condition, the OE must be outside 
of the current CF. 

 

Figure 6. CFFromOutES rule. 

 Rule 6. CFForOutES: Follows the same logic of rule 

3 except that it acts on the CF’s outgoing control 

Flow. As pre-condition, the OE must be outside 

(bottom) of the current CF. the green dashed circles 

on Figure 7 show the capture of non- OEs. 

LHS 

 

 RHS 

 

Figure 7. CFForOutES rule. 

5. Example 

We have tested our approach on numerous academic 

examples leading to correct results. To illustrate the 

concepts and benefits of our approach, let’s consider 

the representative model depicted previously in Figure 

1.  

We use our DSVL for SD to model the scenarios as 

source model. After application of our graph grammar 

we obtain the result or (target model) shown in Figure 

8. 

 
Figure 8. Decomposed SD corresponding to the Figure 1. 

All initial elements and their structure are not 

changed. The control flow established in purple color 

show the single execution trace between observable 

and unobservable events from up to bottom updated 

according to CFs. OEs are shown in dashed red circle 

witch concern all endpoints of messages. Green dashed 

circles show the capture of all unobservable events on 

CFs and IOs of the interaction.  

At this stage, one who wants to transform UML 2.0 

SD to any other model must concentrate only on 

elementary elements and their mapping in syntax and 

semantic of that desired target model without matter 

about the content and the complexity of an arbitrary 

graphical representation of the initial interaction body. 

Hens, our obtained diagram will play the role of source 

model for further transformation. 

6. Conclusions and Future Work 

We have presented a reusable, visual, declarative, 

high-level and formal approach to decompose any 

UML 2.0 SD to an adorned one with control flow 

information. We proposed a meta-model, a DSVL and 

a graph grammar using AToM
3
 graph transformation 

tool to identify and isolate elementary elements of an 

arbitrary SD while preserving the initial control flow 

and execution trace. 
Our contribution is not an end in itself but a 

mandatory startup step for model transformations 
whose have SD as source model. This proposal 
(control flow approach) is based on materialization and 
manipulation of control flow which can be seen as a 
simple and visual alternative to the unwinding 
algorithm. We have experienced this graph grammar to 
produce the PROMELA code and interaction automata 
corresponding to any SD  

We intend to integrate the remaining features 
specified by the UML 2.0 specification, such IU and 
gates. Also, we plan to extend our approach to deal 
with global interaction overview diagram that we can 
construct more complex interaction scenarios. 
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