
The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016 1099

Visual Decomposition of UML 2.0 Interactions

Abdelkrim Amirat and Ahcen Menasria

Department of Computer Science, University of Souk-Ahras, Algeria

Abstract: Interaction Fragment model (IF) is a specific notion added in Unified Modeling Language (UML) 2.0

superstructures. Using the graphical notation, it can be used to represent the behavioral aspect of a system in a given

scenario. Transforming such models, at early stages, requires the identification of elementary elements and their chronology.

In this paper, we propose a visual and intuitive solution to identify and isolate each of which of graphical components while

preserving the initial control flow. To that end, we suggest a reusable graph grammar to establish and update the control flow

leading to a decomposed interaction. Our proposal can be used as first step to each transformation process whose having an

UML 2.0 interaction as a source model.

Keywords: UML 2.0 interaction, control flow, graph transformation, AToM
3
.

Received September 4, 2013; accepted March 27, 2014; published online June 11, 2015

1. Introduction

The Unified Modeling Language (UML) is a graphical
modeling language for object-oriented software and
systems. It has been specifically designed for
visualizing, specifying, constructing and documenting
several aspects of or views on systems. Different
diagrams are used for the description of the different
views.

To model the behavior of a system, a modeler must
use the interaction diagrams. Except state machine
diagram which models the internal behavior of an
object at run-time, sequence, communication, timing
and global interaction overview are diagrams that
capture the interaction between objects or participants
involved in a given situation. Sequence Diagram (SD),
also called language of scenarios, focuses on the
chronological order of messages exchanged.

The Interaction Fragment (IF) is a specific notion
for UML 2.0 with new graphical notation and
semantics [15]. Defining its concrete syntax, this new
notation is essentially borrowed from Message
Sequence Chart (MSC) [17] to change the graphical
notations of UML 1.x SD to support more complex
logical structures such as concurrency, branching,
iteration and their hierarchical composition in a
compact and concise manner via Combined Fragments
(CF) which are also responsible for the change of
control flow.

Using CF and their hierarchical constructs lead to
complex models. To verify such models at early stages,
one has to translate them in a formal model. To do this,
we must first identify and isolate their elementary
components with preserving the initial control flow.
This situation is a hard task when we must deal with
the graphical model level regardless the internal
representation.

On the other hand, graph transformation [4, 10]

approach is a thoroughly studied area with many

potential applications domain. The main idea of graph

transformation consists in the local manipulation of

graphs via the application of a rule. There exist various

tools that implement graph transformation and may be

used to specify visual languages or to generate diagram

editors. Since, UML SD can be represented as graphs

in a straightforward way, graph transformation rules

can be employed to visually specify transformations

between models.

In this paper, we propose an approach of model

transformation based on graph rewriting which

translate a SD in the rough with an arbitrary level of

imbrications of structures as source model to the same

but decomposed model as target model. We consider

our approach as a simple and visual alternative to the

“first step” of the unwinding algorithm based on

locations and horizontal cuts proposed by Brill et al.

[6, 19] for Live Sequence Chart (LSC) [7] whose MSC

is the ancestry and adopted by Knapp and Wuttke [20]

for UML 2.0 interactions.
We propose a meta-model, a visual environment for

modeling an infinity of valid UML 2.0 SDs and a
reusable graph grammar for their decomposition. This
work is the central part of our global project for formal
verification of UML’s models by model-checking
techniques [5], where we translate SDs into interaction
automata and PROMELA code [2, 3]. We use the same
grammar, as startup, for both cases.

In this research paper, we focus on SD’s syntactical
aspect and visual appearance, for different semantics
[22] where many meanings of UML 2.0 interaction are
summarized.

The remainder of this paper is structured as follows:
In section 2, we review the basic concepts of UML 2.0
SD. A brief presentation of model and graph
transformation is introduced. In sections 3 and 4 we
describe our approach for SDs decomposition. Section
5 reports on the results on an anonymous example.
Section 6 concludes with an outlook on our future
work.

1100 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

2. Basic Concepts

SDs has been popular ever since Jacobson et al. [18]

introduced them as a means of documenting behavior

within use cases. Because of their practical ability to

show what is happening in a use case, SDs are popular

with both business analysts and system designers.

Rumbaugh et al. [27] describe a SD as a two-

dimensional chart. The vertical dimension is the time

axis, which runs from the top to the bottom of the

diagram. The horizontal dimension shows the classifier

roles that represent the individual objects collaborating

with each other by sending messages. The SD thus,

shows the interactions among the collaborating objects

between two given points in time.

Object-Modeling Language (OMG) [24] the OMG

adopts the MSC’s visual notation in UML 2.0

superstructures to introduce structured control

constructs into SD holding more complex structures

such as concurrency, branching, iterations and

imbrications in a simple and compact manner. Hence,

the concept of IF emerges. Each IF alone is a partial

view of the system behavior but when combined all

together by means of the new Interaction Operators

(IO), interactions provide relatively a whole system

description.

An IF consists of a Basic Interaction (BI) and

optionally, one or more CF. We refers to a SD without

CF as a BI. A CF defines the structural articulations

and comprises an IO defining the meaning of the

particular fragment, and one or more IO. The IO

themselves are IFs; they can be guarded by an optional

condition or Interaction Constraints (IC), limiting the

possibilities for when this operand may be executed.

The unary operators are option, loop, break and neg.

The others have more than one operand, such as alt,

par, strict and seq. An IF can refer another one by an

Interaction Use (IU) using keyword Ref.

A Life Line (LL) is a vertical line representing

participating (objects, components, actor, etc.,)

involved. A horizontal line between lifelines is a

Message, which has a name. Each message is sent

from its source lifeline to its target lifeline and has two

endpoints. Each endpoint is an intersection with a

lifeline and is called an Occurrence Specification (OS),

denoting a sending or receiving Observable Event

(OE). OSs can also be the beginning or end of an

Execution Specification (ES), indicating the execution

of a unit of behavior within a LL.
To describe the syntax or visual appearance, we

refer to Figure 1 which shows an example with
annotated syntactic constructs. It contains an
interaction with three participants (A, B and C),
exchanging five messages (m1, m2, m3, m4, m5, and
m6) with an enclosing CF (Strict) and three IO. The
second operand contains a nested CF (Option) which
has one operand. On Strict CF, operands are executed
in the graphical order. That’s not the case for other
CFs.

Figure 1. UML 2.0 SD.

There are two major difference between UML 1.x
and UML 2.0 SDs: Syntactic, due the introduction of
CFs for articulation constructs; and semantic, while
UML 1.x’s SD focuses on messages exchanging; UML
2.0’s SD focuses on events generated from that
exchange (Send/Receive). Additionally, CFs;
therefore, they are responsible for changing the control
flow in an execution trace. This generates the
unobservable events that are the intersection between
the CF and the incoming control flow [26].

Finally, interactions in SD are considered as
collections of events instead of ordered collections of
messages [14] which are based on traces semantics.
These stimuli are partially ordered based on which
execution thread LL they belong to. The partial order is
defined by three conditions: Events on same LL are
totally ordered, receiving event must appear after
sending event for the same message and events on
different LLs are concurrent and come in parallel or in
an arbitrary order (interleaved).

There are other structured control constructs that
have been introduced to express various control flows.
General Ordering (GO) imposes (graphically) a binary
relation to restrict the order between two OSs on
different lifelines.

3. Model and Graph Transformation

Modeling enhances quality because it enhances
communication. Through modeling, communication
becomes efficient and effective. This is so because
modeling raises abstraction to a level where only the
core essentials matter. The resultant advantage is
twofold: Easier understanding of the reality that exists
and efficient creation of a new reality.

The trend among developers is to raise the
abstraction level requiring programming technologies
to improve continuously. From bit, assembler,
procedural, object-oriented, component programming
languages and finally models technology, a
considerable experience is gained to reach the
perspective of non-programming where, by non-
programming, we mean mainly modeling. Hence, code
is no longer a central element but derived or generated
one.

Models technology or Model Driven Engineering

(MDE) [11] is based on models and model

transformation along life cycle of software production

IC

SD/I

F LL

ES

IOp

Enclosin

g

CF

CF
Nested

CF

CF

Message

CF

CF

IO

CF

OS

BI

BI

Time

Axis

https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjyqK7w9_bLAhWQJhoKHQcoAxQQFggtMAM&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FObject-modeling_language&usg=AFQjCNGDXAp0RKxWmuJutYC_l56wfktXKw&bvm=bv.118443451,d.bGg

Visual Decomposition of UML 2.0 Interactions 1101

where many approaches have been adopted: Structural,

relational, graphical and hybrid ones [25]. Graphical

approaches are simply based on graph transformation

techniques.

Basically, graph transformation is suitable for model

transformation because of the following characteristics:

 Natural: Most of models are considered as graphs.

 Visual: Based on visual graphical notations.

 Declarative: Focus on “what to do” and not “How to

do”.

 Intuitive: No standard methods to follow.

 High-level: deal with the model level.

 Formal: Mathematical foundations based on set and

sets category theory.

 Supported by tools such as: AToM
3
, PROGRES,

GreAT, FUJABA and AGG [1, 8, 12, 13, 23].

3.1. Graph Transformation

In this section we present a short overview of the graph

transformation approach, which is considered as the

theoretical foundation of the proposed approach in

section 4.
Graph grammars extend the generative grammars of

Chomsky into the domain of graphs to deal with non
linear structures. Different from string grammar
expressing sentences in sequence of characters, graph
grammars are suitable for specifying visual modeling
in multi-dimensional fashions. The main idea of graph
transformation is the rule based modification of graphs
(rewriting or gluing) as shown in Figure 2.

Figure 2. Graph transformation steps.

The core of a rule (production) p= (L, K, R) is pair

of graphs (L, R) called Left Hand Side (LHS) and

Right Hand Side (RHS) and a gluing or interface graph

K expressing the shared part between L and R.

Applying the rule p on a graph instance (called host

graph) means to find a match of L in the host graph

and to replace L by R leading to the target graph of the

transformation. Any transformation of graphs can be

realized by applying a sequence of production rules.

Moreover, the transformation process termites when no

more transformation rules can be applied. Briefly,

graph transformation is a kind of programming by

example [16].

SD has a well-known graphical form which is a

graph (nodes, edges), thus it is natural to use graphical

notation to depict and transform them through graph

transformation. The transformation process produces a

new graph from the input host graph after applying

transformation rules. In our case, the host graph is an

UML 2.0’s SD; the output graph is an UML 2.0’s SD

adorned with control flow.

To illustrate graph transformation process, let L be

the LHS of a grammar rule p, R be the RHS of the rule,

and K the interface graph. Let G be a host graph. The

transformation from graph G to graph H by rule p can

be achieved through the following steps [4]:

1. Recognize sub-graph L in the host graph G.

2. Check if the transformation rule can be applied.

3. Remove the occurrence of L up to the occurrence of

K from G. This yields the context graph D of L

which still contains an occurrence of K.

4. Glue the graph D and R according to the occurrences

of K in D and R. This yields the gluing graph E.

5. Connect the dangling edges on E if the node is

marked to preserve the association surrounding of

the replaced sub-graph L. This yields the modified

graph H.

Steps 1 and 2 can be classified as a pattern matching

process while steps 3, 4 and 5 are used to update the

surrounding connections with the host graph. Figure 2

shows our vision of graph transformation process

which illustrates, visually, the steps above where K is

the graph in blue. The application of p to G yielding H

is called a direct derivation from G to H through p.

3.2. AToM
3
 Tool

AToM
3

is a tool for meta-modeling and multi-

formalism, it can generate Domain Specific Visual

Language (DSVL) [28, 29] for one or more desired

formalisms to instantiate an infinity of valid models

that conform to their meta-models. It can also perform

models transformation by means of graph grammar

using Push out approaches [9].

To define meta-models, the tool uses a meta-

formalism in UML’s class diagram notation to describe

concrete/abstract classes, associations, multiplicities,

LHS RHS

H

D E

K

 R
ec

o
gn

iz
e

 C
h

ec
k

R
o

m
o

v
e

Glue

C
o

n
n

ec
t

Glue

 1 2

3

4

5

1102 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

specialization and additional constraints described with

Python code [21]. Also, for each concrete class,

AToM
3
 can associate a visual appearance to define the

concrete syntax of the modeled domain. For each

graph grammar, rules are modeled in concrete syntax

with their execution priority and textual pre/post

conditions that must be satisfied before application and

finally an action to be performed when rule is

executed. To execute one or more ordered graph

grammars, in the same session, the graph rewriting

system loops on rules until no one is applicable.

 In addition, AToM
3
 incorporates in its Kernel a

generic meta-formalism called generic graph

composed of two elements: Generic graph node and

generic graph edge to make links, during

transformation process, between models under

transformation. We intensively use both elements in

this paper to materialize graphically our control flow

description.

Our choice of AToM
3
 tool is motivated by the

following reasons: AToM
3
 is one of the few graph

transformation tools using concrete syntax that users

are familiar with, its looping execution mode is useful

to deal with nested structures which are our case and

its dedicated methods to perform hierarchical

relationships (Father/Child). These reasons seem to be

the major advantages of AToM
3
 compared to other

tools such as AGG [1] and others.

4. Our Approach

The proposed approach is based on the manipulation of
control flow in the SD. The first step of the idea is to
make appear explicitly (draw) control flow which is
usually implicit between OEs (intersection between
messages and lifelines) (CF. Section 2) as they appear
in their chronologic order on the vertical axis without
considering CF neither the interleaving of events. In
other words, the control flow will play the role of GO
on all events to define one execution trace. The second
step is to update the control flow according to the
apparition of the CF-which are responsible for
changing the control flow by definition-to capture
unobservable events (intersection between control
flows, established in the first step and the CF). Due to
the rectangular shape of the IO defined in section 4.1,
we extend the same notion of unobservable events for
them; hence, we update also the control flow according
to the IO. The control flow in BI is kept unchanged.

Using model transformation taxonomy, we can say
that we propose a meta-modeling approach which is a
model to model transformation, endogenous, in place,
horizontal and (1×1) cardinality in a declarative
manner using graph transformation techniques and
AToM

3
 tool as shown below.

4.1. SD Meta-Model Description

In order to perform transformation of SD as source

model into a decomposed equivalent one as target

model, we have to propose meta-models to define the

abstract and concrete syntax using UML class diagram

notation for both. However, our source and target

models are the same (endogenous) unless the presence

of control flows on the target one. That’s why we have

to propose just one meta-model for SD. We use the

elements for generic graph (section 3.2) to draw the

control flow.

The proposed meta-model as shown in Figure 3

consists of five concrete classes, two visible

relationships and four invisible and hierarchical

relationships to represent the most useful aspects of

this study. The entities whose icons have a hexagonal

shape at the top are generated as relationships/edges.

AToM
3
 is designed to keep track of such hierarchical

relationships, so finding parents and children is easy

via dedicated methods.

Figure 3. SD meta-model.

 Class Interaction: Is a representation of the entire
model. All other entities will be contained by this
entity.

 Class LL: Represents an individual participant in the
interaction. A lifeline has two attributes which
represent the name of the participant class
(instanceName) and the name of an instance of that
class (className) respectively.

 Class ES: Is used to hold the OEs at ends and
beginnings of Messages (intersection between
messages and Lifelines). It denotes the atomic
actions for sending and receiving messages with the
restriction of having a single point of connection on
each side. The vertical order of each ES is
significant chronologically according to its
apparition along the same LL. This is the central
class in the sense that it captures the elements of
interest in this project (events) and it is the basic
entity in any interaction diagram. Hence, it has
relations with all other entities of the meta-model,
among which two visible relationships: “Message”
and “Connect” that bind together two ES in the
horizontal and vertical direction respectively.

 Class CF: At this stage we introduce important and
distinctive element for UML 2.0 interactions: CF to
form the CF and hierarchies. This class has two
attributes, its “Name” and “Operator” to designate

Visual Decomposition of UML 2.0 Interactions 1103

IO (enumerated type of 12 items). A CF can contain
one or more IO by the invisible relationship
CFContain according to the IO involved.

 Class IO: This class defines the content of a CF: IO
as a nested element with the relationship
CFContain. It has a “Guard” as a logical expression
conditioning its execution C and a “Name”
attributes to identify it. This class has also, invisible
and hierarchical relationships with the classes CF
and ES by the relation IOContain.

The visible relationships “Message” (with attribute
name) and Connect (ES to LL) appear with their
graphical forms in models. The hierarchical ones
(IContain, CFContain, IOContain, LLContain) are
invisible because they do not belong to UML’s
standard elements; they just have countenance effects
in models.

Relationships CFContain and IOContain allow
combinations or imbrications of CF so to define the
hierarchy (Father/Child). A CF must contain at least
one interaction operand. An IO can enclose a BI or/and
one or more CF and vice versa. Hence, we can
construct an arbitrary number of hierarchy layers.

Figure 4 shows the concrete syntax chosen for each
visible element in the meta-model. All are conforming
to UML standard, unless the IO where the dashed lines
in Figure 1 is replaced by a rectangular form enclosing
the whole interaction. This form is easy to match
during the graph rewriting process.

Figure 4. SD concrete syntax.

After meta-modeling phase, the DSVL for SD is
instantaneously generated by the tool. Hence, we can
instantiate an infinity of valid models expressed in
concrete syntax.

4.2. Graph Grammar

Our graph grammar consists of fourteen rules where
both LHS and RHS are graphs, centered on
establishing and updating control flow. The updating
of control flow does not concern all BIs in the model.
Using priority mechanism, rules are designed in the
five following categories:

1. The first category of rules deals with BI and consists
of two rules to establish main control flow
independently of CF and interleaving concept. This
category captures the OEs.

2. Second category updates the CF’s incoming control
flow from outside ES. Composed of tree rules that
returns the control flow to outside, with capturing
unobservable events from IO to the enclosing CF
and from CF to the enclosing IO and vice versa.
This category starts on the deepest CF.

3. Third category is the same as the second one, but it
deals with outgoing control flow from CF to outside
ES.

4. Fourth category deals with CFs of the same
imbrications level and contains three rules.

5. Fifth category deals with IOs of the same
imbrications level and contains also three rules.

Table 1 summarizes the entire graph grammar
proposed with a short description for each rule. Due to
space constraints we present only the most important
ones namely 1, 3 and 6.

Table 1. Graph grammar rules.

Cat Name Priority Description

1
MainCtrFlow 1 Establish the main control flow

TmpFLastES 2 Generalization of IFs

2

CFFromOutES 3 Link outside (top) ES to the deepest CF and IO

CFIOFromOutES 4 Link CF to its enclosing IO

CFFromOutES_2 5 Link CF to the nested IO(different layer)

3

CFForOutES 6 Link outside (bottom) ES to the deepest CF

CFIOForOutES 7 Link CF (bottom) to its enclosing IO

CFForOutES_2 8 Link CF (bottom) to the nested IO(different layer)

4

CFForCFInsideES 9 Link same level CFs (ES inside)

CFForInsideES 10 Link CF to inside ES (with operand)

CFForIOInsidES 11 Link CF to Enclosing IO

5

IOInESForIOInES 12 Link two contingent IO (ES inside)

IOInESFromIO 13 Link two contingent IO (ES inside the first IO)

IOForIOInES 14 Link two contingent IO (ES inside the second IO)

 Rule 1. MainCtrFlow as shown in Figure 5: Which

is the central rule to establish the main control flow
according the graphical position of OEs from up to
down (time axis) and the direction of the message?
The elements 10, 11 and 12 materialize the control
flow using generic graph edge and generic graph
node (section 3.2). As mentioned before, there is no
CF in the rule. Also, the interleaving of events is
delayed according to the semantic and syntax of the
target model. Additionally, this rule has to
determinate the first and the last event of the IF as a
final action. It considers the entire IF as a BI with a
GO on all events.

Figure 5. MainCtrFlow rule.

 Rule 3. CFFromOutES as shown in Figure 6:
Updates the incoming control flow from an outside

2 1

<ANY>

LHS

4 3

<ANY>

5

6

2 1

<COPIED>

RHS

4 3

<COPIED>

5

6

12
10

InteractionFragment

Interaction

LineLife

ExecutionS Connect Message

SD Name

Class : Object Guard

CombinedFragment

Operator

1104 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

OE to the deepest CF. In fact, the current CF and IO
can themselves be enclosed in an enclosing IO; that
justify the usage of two other rules in same
category. As pre-condition, the OE must be outside
of the current CF.

Figure 6. CFFromOutES rule.

 Rule 6. CFForOutES: Follows the same logic of rule

3 except that it acts on the CF’s outgoing control

Flow. As pre-condition, the OE must be outside

(bottom) of the current CF. the green dashed circles

on Figure 7 show the capture of non- OEs.

LHS

 RHS

Figure 7. CFForOutES rule.

5. Example

We have tested our approach on numerous academic

examples leading to correct results. To illustrate the

concepts and benefits of our approach, let’s consider

the representative model depicted previously in Figure

1.

We use our DSVL for SD to model the scenarios as

source model. After application of our graph grammar

we obtain the result or (target model) shown in Figure

8.

Figure 8. Decomposed SD corresponding to the Figure 1.

All initial elements and their structure are not

changed. The control flow established in purple color

show the single execution trace between observable

and unobservable events from up to bottom updated

according to CFs. OEs are shown in dashed red circle

witch concern all endpoints of messages. Green dashed

circles show the capture of all unobservable events on

CFs and IOs of the interaction.

At this stage, one who wants to transform UML 2.0

SD to any other model must concentrate only on

elementary elements and their mapping in syntax and

semantic of that desired target model without matter

about the content and the complexity of an arbitrary

graphical representation of the initial interaction body.

Hens, our obtained diagram will play the role of source

model for further transformation.

6. Conclusions and Future Work

We have presented a reusable, visual, declarative,

high-level and formal approach to decompose any

UML 2.0 SD to an adorned one with control flow

information. We proposed a meta-model, a DSVL and

a graph grammar using AToM
3
 graph transformation

tool to identify and isolate elementary elements of an

arbitrary SD while preserving the initial control flow

and execution trace.
Our contribution is not an end in itself but a

mandatory startup step for model transformations
whose have SD as source model. This proposal
(control flow approach) is based on materialization and
manipulation of control flow which can be seen as a
simple and visual alternative to the unwinding
algorithm. We have experienced this graph grammar to
produce the PROMELA code and interaction automata
corresponding to any SD

We intend to integrate the remaining features
specified by the UML 2.0 specification, such IU and
gates. Also, we plan to extend our approach to deal
with global interaction overview diagram that we can
construct more complex interaction scenarios.

References

[1] AGG home page., available at: http://tfs.cs.tu-

berlin.de/agg/, last visited 2014.

[2] AitOubelli M., Younsi N., Amirat A., and

Menasria A., “From UML 2.0 Sequence

Diagrams to PROMELA Code by Graph

Transformation using AToM
3
,” available at:

http://ceur-ws.org/Vol-825/paper_183.pdf, last

visited Algeria 2011.

[3] Amirat A., Menasria A., Ait Oubelli M., and

Younsi N., “Automatic Generation of

PROMELA Code from Sequence Diagram with

Imbricate Combined Fragments,” in Proceedings

of the 2
nd

 International Conference on Innovative

Computing Technology, Casablanca, Morocco,

pp. 111-116, 2012.

LHS RHS

<ANY>

3

5

9

2

7

9
4

6

<COPIED>

3

5

8

<ANY> <COPIED>

4

6

7

10

2

12

25

13
15

14

16

1 1

http://tfs.cs.tu-berlin.de/agg/
http://tfs.cs.tu-berlin.de/agg/

Visual Decomposition of UML 2.0 Interactions 1105

[4] Andries M., Engels G., Habel A., Hoffmann B.,

Kreowski H., Kuske S., Plump D., Schürr A., and

Taentzer G., “Graph Transformation for

Specification and Programming,” Science of

Computer Programming, vol. 34, no. 1, pp. 1-54,

1999.

[5] Baier C. and Katoen J., Principles of Model

Checking, MIT Press, UK, 2008.

[6] Brill M., Damm W., Klose J., Westphal B., and

Wittke H., “Live Sequence Charts,” Integration

of Software Specification Techniques for

Applications in Engineering, pp. 374-399, 2004.

[7] Damm W. and Harel D., “LSCs: Breathing Life

into Message Sequence Charts,” Formal Methods

in System Design, vol. 19, no. 1, pp. 45-80, 2001.

[8] DeLara J. and Vangheluwe H., “AToM3: A Tool

for Multi-Formalism and Meta-Modelling,” in

proceedings of the 5
th

International Conference,

FASE 2002 Held as Part of the Joint European

Conferences on Theory and Practice of Software,

France, pp. 174-188, 2002.

[9] Ehrig H., Ehrig K., Prange U., and Taentzer G.,

Fundamentals of Algebraic Graph

Transformation, Heidelberg: Springer, 2006.

[10] Ehrig H., Engels G., and Rozenberg G.,

Handbook of Graph Grammars and Computing

by Graph Transformation: Applications,

Languages and Tools, world Scientific, 1999.

[11] France R. and Rumpe B., “Model-Driven

Development of Complex Software: A Research

Roadmap,” in Proceedings of Future of Software

Engineering, MN, USA, pp. 37-54, 2007.

[12] FUJABA Home Page., available at:

http://www.fujaba.de, last visited 2012.

[13] GreAT Home Page., available at:

http://www.escherinstitute.org/Plone/tools/, last

visited 2004.

[14] Hammal Y., “Branching Time Semantics for

UML 2.0 Sequence Diagrams,” in Proceedings of

the 26
th
 International Conference IFIP WG 6.1,

Paris, France, pp. 259-274, 2006.

[15] Haugen Ø., “Comparing UML 2.0 Interactions

and MSC-2000,” in Proceedings of the 4
th

International SDL and MSC Workshop, Ottawa,

Canada, pp. 65-79, 2005.

[16] Heckel R., “Graph Transformation in a

Nutshell,” Electronic Notes in Theoretical

Computer Science, vol. 148, no. 1, pp.187-198,

2006.

[17] ITU-T.Z.120., available at:

http://www.itu.int/ITU-T/studygroups/com10/

languages/Z.120_1199.pdf, last visited 1999.

[18] Jacobson I., Christerson M., and Övergaard G.,

Object-Oriented Software Engineering, a Use

Case Driven Approach, Pearson Education India,

1992.

[19] Klose J. and Wittke H., “An Automata Based

Interpretation of Live Sequence Charts,” in

Proceedings of the 7
th
 International Conference

TACAS, Genova, Italy, pp. 512-527, 2001.

[20] Knapp A. and Wuttke J., “Model checking of

UML 2.0 interactions,” in Proceedings of

Workshops and Symposia at MoDEL, Genoa,

Italy, pp. 42-51, 2007.

[21] Lutz M., Programming Python, O'Reilly Media,

Inc., 2010.

[22] Micskei Z. and Waeselynck H., “The many

meanings of UML 2 Sequence Diagrams: a

Survey,” Software and Systems Modeling, vol.

10, no. 4, pp. 489-514, 2011.

[23] Nagl M., Schurr A., and Munch M.,

“Applications of Graph Transformations with

Industrial Relevance,” in Proceedings of

International Workshop, AGTIVE’99 Kerkrade,

Netherlands, 2000.

[24] OMG., Unified Modeling Language: Super-

Structure 2.0, 2003.

[25] Prakash N., Srivastava S., and Sabharwal S.,

“The Classification Framework for Model

Transformation,” Journal of Computer Science,

vol. 2, no. 2, pp. 166-170, 2006.

[26] Rajabi B. and Lee S., “Consistent Integration

between Object Oriented and Coloured Petri Nets

Models,” the International Arab Journal of

Information Technology, vol. 11, no. 4, pp. 406-

415, 2014.

[27] Rumbaugh J., Blaha M., Premerlani W., Eddy F.,

and Lorensen W., Object-Oriented Modeling and

Design, Prentice Hall, 1991.

[28] Sprinkle J. and Karsai G, “A Domain-Specific

Visual Language for Domain Model Evolution,”

Journal of Visual Languages and Computing,

vol. 15, no. 3, pp. 291-307, 2004.

[29] Vangheluwe H. and de Lara J., “Computer

Automated Multi-Paradigm Modelling for

Analysis and Design of Traffic Networks,” in

Proceedings of the 36
th
 Conference on Winter

Simulation, pp. 249-258, 2004.

Abdelkrim Amirat received his

PhD degree in computer science in

2007 and University Habilitation in

2010. Currently, he is a Professor at

Computer Science department at the

University of Souk-Ahras, Algeria.

He is the Director of Mathematics

and Computer Science Laboratory and the chief of the

software architecture modelling team. His main

research concerns is software architectures and their

evolution, modelling and metamodeling. He worked on

several national projects in software engeneering.

Amirat has published several refereed journal and

conference papers in the fields of software architecture,

component-based and object oriented modelling. He

has served on program committees of several

international journals and conferences.

http://www.escherinstitute.org/Plone/tools/
http://dl.acm.org/author_page.cfm?id=81100432067&coll=DL&dl=ACM&trk=0&cfid=85260690&cftoken=48319762
http://dl.acm.org/author_page.cfm?id=81100432067&coll=DL&dl=ACM&trk=0&cfid=85260690&cftoken=48319762
http://dl.acm.org/author_page.cfm?id=81100432067&coll=DL&dl=ACM&trk=0&cfid=85260690&cftoken=48319762
http://dl.acm.org/author_page.cfm?id=81100432067&coll=DL&dl=ACM&trk=0&cfid=85260690&cftoken=48319762

1106 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

Ahcen Menasria is Assistant

professor in the department of

computer science, University of

Souk-Ahras, Algeria. His research

field is object-oriented, component,

formal methods and modeling

approaches.

