
486 The International Arab Journal of Information Technology, Vol. 10, No. 5, September 2013

Efficient Scheduling Strategy for Task Graphs

in Heterogeneous Computing Environment

Samia Ijaz1, Ehsan Ullah Munir1, Waqas Anwar2, and Wasif Nasir1
1Department of Computer Science, COMSATS Institute of Information Technology, WahCantt, Pakistan

2Department of Computer Science, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Abstract: Today’s multi-computer systems are heterogeneous in nature, i.e., the machines they are composed of, have varying
processing capabilities and are interconnected through high speed networks, thus, making them suitable for performing
diverse set of computing-intensive applications. In order to exploit the high performance of such a distributed system, efficient
mapping of the tasks on available machines is necessary. This is an active research topic and different strategies have been
adopted in literature for the mapping problem. A novel approach has been introduced in the paper for the efficient mapping of
the DAG-based applications. The approach that takes into account the lower and upper bounds for the start time of the tasks.
The algorithm is based on list scheduling approach and has been compared with the well known list scheduling algorithms
existing in the literature. The comparison results for the randomly synthesized graphs as well as the graphs from the real
world elucidate that the proposed algorithm significantly outperforms the existing ones on the basis of different cost and
performance metrics.

Keywords: Directed acyclic graphs, task scheduling, task prioritization, makespan.

Received August 9, 2011; accepted December 30, 2011; published online August 5, 2012

1. Introduction

Availability of distributed set of powerful machines,

intercommunicating through high speed links, provides

a computing platform for executing applications with

multifarious computational demands [1]. In order to

fully exploit such Heterogeneous Distributed

Computing Systems (HDCS), applications running on

them are decomposed into different number of tasks

that may have or have no dependencies among

themselves [11].

Optimal mapping of the tasks, i.e., their matching

and then appropriate scheduling on diverse set of

machines in a way to step up the overall efficiency of

the system and gain promising potentials of the

distributed resources is a very critical aspect. Mapping

of tasks to machines should be done so as to lessen the

overall time for the execution of the application. The

scheduling problem becomes more complex in a HDCS

due to the multiformity of not only the resources on

which tasks are to be executed but also due to varying

speeds of intercommunicating links between them as

time required for the single task execution on different

resources or for transferring same amount of data will

be different. Generally, the task scheduling problem is

modeled by Directed Acyclic Graph (DAG) in which

application tasks are shown through the graph nodes

and dependencies for the data among different tasks are

depicted through edges. Communication costs are

marked on the edges and computation costs are labeled

on the nodes. The task scheduling problem addressed

here is a static model as different properties of the

application for example, execution times of all the

tasks on distinct resources and inter-task

communication costs are known in advance.

To achieve promising results from the multifarious

distributed resources and eminent speed networks,

efficient strategies for the scheduling of the

applications have prime importance and therefore, this

area is an active topic of research. Plethora of

algorithms exists in the literature for solving the

problem of task scheduling but, being NP-complete

[4], finding near optimal solution for the problem

requires more efficient scheduling strategies. High

speedup and efficiency can be attained only if the

mapping of tasks on machines is done appropriately as

it can truly exploit system parallelism.

List scheduling strategy has been adopted in the

research work proposed in the paper. Proposed work

has been compared with the work in [14, 15] in terms

of different performance and speed metrics such as

efficiency, speedup, schedule length ratio and

makespan. The results obtained through extensive

simulation analysis affirm that the proposed algorithm

surpasses the previous ones quite significantly.

The paper is organized as follow: The task

scheduling problem has been addressed in section 2.

Section 3 gives a brief review of the related work in

the field. Proposed algorithm is demonstrated in

section 4 with experimental investigation being shown

in section 5. Finally, section 6 concludes the paper.

Efficient Scheduling Strategy for Task Graphs in Heterogeneous Computing Environment 487

2. Task Scheduling Problem

The basic elements of a scheduling system are an

application program, certain environment to run the

application on and some strategy for the scheduling of

the application. Generally, a DAG is used for this

purpose, with a set V of nodes representing n number of

tasks of the application and a set E of edges showing

the dependencies among the tasks. There is an entry

task for each DAG with no parents and an end task with

no children.

The heterogeneous computing environment, on

which the application is to be executed, consists of a set

P of m autonomous processors intercommunicating

with each other through high speed networks of varying

bandwidth described in Bmxm matrix. Estimated time to

compute a task on every processor is given in a

computation cost matrix W of size n×m. The

communication cost, Ci,j, for transferring output, datai,j,

of a task ti to tj , if both are being executed on same

processors, is 0. If the situation is different and both are

being executed on different processors then the

communication cost, Ci,j, between the two dependent

tasks is computed using the following relation:

yxjiji BdataC ,,, /= (1)

For the sake of simplicity, data transfer cost is assumed

to be 1.0 in this case. A task graph of Figure 1 has been

chosen for the thorough elaboration of the proposed

algorithm. Computation cost matrix is given in Table 1.

Figure 1. Directed acyclic graph.

Table 1. Computation cost matrix.

Task P1 P2 P3

1 17 19 8

2 7 6 7

3 21 29 14

4 8 10 11

5 33 30 50

6 11 13 11

7 11 6 15

8 12 20 14

9 26 31 27

10 13 12 13

Let the earliest start time and earliest completion

time for the execution of a task ti on a processor pj be

EST(ti,pj) and ECT(ti,pj) respectively. EST for the

entry task, on all the processors, is 0, i.e.

0 jEST (t , p) 0= (2)

 For the rest of the tasks in the application graph, the

EST and ECT values are recursively figured out using

the equations 3 and 4. An important consideration here

is that a task can be scheduled to execute only if the

execution of its parent tasks has finished and once a

task has been executed, EST and ECT values become

the AST (actual start time) and ACT (actual completion

time) respectively for the task.

))}Ct(ACTmax(],j[availmax{)p,t(EST j,ipji += (3)

),(),(, jijiji ptESTWptTEC += (4)

where tp belongs to the immediate predecessor set of

task ti, the time when processor pj will be free from the

execution of already scheduled tasks and is available

for the execution of the task ti is depicted by avail[j]
and Ci,j is the communication cost needed for

transferring the output of the parent task to its

currently executing child task (ti in this case). The

internal max block in equation 3 is returning the time

when all the necessary information for ti has reached

the processor pj. When EST value for ti on pj has been

computed, the earliest time by which the computation

of ti can be completed can be found out using equation

4. Here, the computation time of ti (Wi,j) is added up in

its earliest start time on pj (EST (ti, pj)) to get ECT (ti,
pj). Finally, after all the tasks are mapped on

appropriate processors, the actual completion time for

the end task gives the schedule length (or the

makespan) for the entire application, i.e.

 endmakespan max{ ACT (t)}= (5)

Efficient scheduling of the application requires

adopting a scheduling strategy that minimizes the

makespan.

3. Related Work

High performance of the HDCS demands for the

efficient scheduling strategies for an application.

Because of its fundamental significance, extensive

study has been made in the field and bunch of

algorithms exist in the literature. The classification of

the algorithms has been done as: list scheduling

algorithms [7, 8, 12, 14], guided random algorithms

[5], cluster based [9] and task duplication algorithms

[2, 3, 6].

List scheduling algorithms have been chosen as a

research area for the work proposed in the paper.

Here, priority based approach is followed and an

ordered list of tasks is maintained on the basis of their

priorities [14]. Few of the algorithms in this category

that exist in literature are Modified Critical Path

1

2 3 4

6

7 8 9

52

21
22

27

58

15
32

44 52

10

42

48
46

5

488 The International Arab Journal of Information Technology, Vol. 10, No. 5, September 2013

(MCP) [16], Mapping Heuristics (MH) [7], Levelized

Min Time (LMT) [8], Dynamic Critical Path for Grids

(DCP-G) [13], Heterogeneous Earliest Finish Time

(HEFT) [14], Critical Path on a Processor (CPOP) [14]

and Performance Effective Task Scheduling (PETS)

[15]. A brief description of some algorithms is given

below.

3.1. Mapping Heuristics (MH)

The computation costs for a task, in case of MH, is the

ratio of the total count of instructions that have to run in

the task and the processor speed. Static upward ranks

are computed for the tasks, on the basis of which

priorities are assigned. The main drawback associated

with the MH algorithm is that it does not follow

insertion based strategy.

3.2. Levelized Min Time (LMT)

The two phase algorithm initially performs task

prioritization and then the selection of processor phase

takes place. In first phase, level-wise prioritization of

the tasks is done such that a lower level task has higher

rank than the higher level task. Second phase allots the

tasks to the quickest processor on the basis of

computation and communication costs. LMT, however,

considers only the computation costs of the tasks to

assign the priorities.

3.3. Dynamic Critical Path for Grids (DCP-G)

This algorithm considers the lower and higher limits for

the starting time of a task and generates a critical path

on this basis. It follows Min-Min algorithm strategy as

a task is allotted to a processor that finishes its

execution fastest. The emphasis here is to minimize the

critical path length.

3.4. Heterogeneous Earliest Finish Time

(HEFT)

One of the most well-known scheduling algorithms,

HEFT, prioritizes the tasks considering their upward

ranks which are computed using average of execution

times of tasks and mean communication costs among

the processors of two successive tasks. A processor that

yields minimum finish time for a task is chosen for its

execution.

3.5. Critical Path on a Processor (CPOP)

CPOP uses downward ranks along with upward ranks

for the task prioritization. Here, Critical Path (CP) is

maintained for a graph and a critical processor is used

for mapping of tasks that lie on the CP. For the

remaining tasks, the processor which gives minimum

finish time is selected for execution.

3.6. Performance Effective Task Scheduling

(PETS)

PETS algorithms has three phases. It performs level-

wise sorting of the tasks before task prioritization and

processor selection phases. Firstly, grouping of

independent tasks is done in a way that their

concurrent execution can be performed. Processor

selection phase for PETS is same as for HEFT and

CPOP.

4. Proposed Work

4.1. Minimal Latest Start Time (MLST)

MLST is the proposed algorithm in the paper. The

time limits for beginning the scheduling of a task are

taken into account. The objective behind the approach

is that a task whose latest time to start scheduling has

approached must be put for scheduling. Delaying the

execution of the task even if its start time has reached

its maximum limit will result in an increase in the

execution time of the entire application. The time

limits have been considered for scheduling in the

earlier proposed algorithms in the literature such as in

[13, 16, 17], but the novelty introduced in the paper is

that an extra phase has been adopted that performs

level-wise task sorting. The algorithm has also task

prioritization and processor selection phases. For

assigning priorities, the lower and upper bounds for

the start time of a task have been considered and a task

whose latest start time among all the tasks is minimal

is assigned a higher rank. The prioritization of the

tasks is done level wise such that a task at a lower

level has higher rank than a task at a higher level.

DAG is traversed in such a way that independent tasks

at each level are grouped in a way that their concurrent

execution is possible. Absolute Earliest Start Time

(AEST) of the tasks is computed recursively starting

from the entry node [17]. AEST for the entry node is 0

and for the other tasks, it is figured out using the

following relation,

 AEST (t) max { AEST w C }t t t ,ti t pred (t) p p pp ii
= + +

∈
 (6)

where tp is the immediate predecessor of the task ti.

When AEST values for all the tasks are known,

Absolute Latest Start Time (ALST) for each task is

computed recursively by traversing the DAG upward.

Equations 6 and 7 are used for the calculation of

ALST.

endend tt AESTALST = (7)

isisi ts,it)t(succtt w}CALST{minALST −−=
∈

 (8)

where ts is the set of immediate successors of the task

ti.

Efficient Scheduling Strategy for Task Graphs in Heterogeneous Computing Environment 489

Finally, the prioritization of the tasks is done level wise

on the basis of ALST of the tasks. A task that has

minimal ALST among all the tasks at a level has higher

priority (rank). For the processor selection phase, EST

and ECT for a task on each processor is reckoned using

the equations 2, 3 and 4 and the processor which gives

the least ECT for a task is assigned the task for

execution. The MLST works on insertion based

approach in which scheduling of a task is allowed

between already scheduled tasks if there is an idle time

slot available, provided the priority constraints are not

violated.

Table 2. Computed attributes for MLST.

Tasks

w.r.t

Priority

Processors
Final

Processor
P1 P2 P3

EST ECT EST EST ECT EST

1 0 17 0 19 0 8 P3

3 26 67 26 75 8 32 P3

2 90 97 90 96 32 39 P3

4 74 77 74 79 39 45 P3

5 63 96 63 93 45 95 P2

6 99 110 99 112 45 56 P3

9 171 177 93 104 171 178 P2

8 118 130 118 138 56 70 P3

7 61 72 104 110 70 85 P1

10 176 179 116 118 176 179 P2

The summary of the proposed algorithm is given in

Figure 2.

Input: DAG, Number of Processors
Output: Scheduled Tasks, Makespan

1. Beginning from the entry node of the DAG, do
a. Calculate the absolute earliest start time (AEST) for all the

tasks by task graph traversal in top-down manner.
2. Beginning from the end node of the DAG, do

a. Compute the absolute latest start time (ALST) for all the
tasks by task graph traversal in bottom-up manner.

3. Beginning from the first level, set the priorities of the tasks in
the non-increasing order of their ALST on every level such
that a task at higher level has higher rank.

4. While there are tasks that have not been scheduled yet, do
a. Select the highest priority task
b. Compute ECT of the task on each processor by following

the insertion based approach.
c. Allot the task to the processor that gives least ECT

 end
 end
 end

Figure 2. MLST algorithms.

The algorithm has been explained through the DAG

of Figure 1. There are 10 tasks in the graph and the

tasks are to be executed on an appropriate processor

from a set of 3 processors. Table 2 displays the

attributes of the tasks required for the proposed

algorithm such as average computation costs, AEST,

ALST, ranks based on the ALST and the priorities of

the tasks according to their rank value.

Finally, EST and ECT values for the tasks on every

processor and the selected processor through MLST are

displayed in Table 3. The schedule length for the

selected DAG obtained when executed through MLST

algorithm is 133 while HEFT, CPOP and PETS give

the schedule lengths of 151, 149 and 169 respectively.

Table 3. Computed EST and ECT on each processor and the

selected processor for MLST.

Task Avg_CC AEST ALST Rank
Task

Priority

1 14.667 0 0 0 1

2 6.667 66.667 78.333 78.333 3

3 21.333 62.667 62.667 62.667 2

4 9.667 60.667 144.000 144.000 4

5 37.667 106.000 106.000 106.000 5

6 11.667 97.333 180.667 180.667 6

7 10.667 124.000 227.000 227.000 9

8 15.333 141.000 224.333 224.333 8

9 28.000 201.667 201.667 201.667 7

10 12.667 282.667 281.667 281.667 10

5. Results and Discussion

In this section, the proposed technique has been

evaluated through its comparison with HEFT, CPOP

and PETS. Random task graph generator function has

been implemented through which DAGs with diverse

attributes have been generated and then used for the

experimental purposes. Task graphs of real world

application have also been considered for comparative

analysis of the proposed and existing algorithms.

Matlab simulator has been used for the comparative

study of the proposed and existing work.

5.1. Attributes of the Task Graph

The attributes of the DAGs depend on various input

parameters such as, number of nodes in the graph (N),

communication to Computation Cost Ratio (CCR),

shape/height parameter of the graph (α), out degree of

a node and range percentage of computation cost (β).

Different combinations of values (given below) have

been selected in the DAG generation for the

experimental purpose.

N= {100, 150, 200, 250, 300, 350, 400}
No_of_Processors = {4, 8, 12, 16, 64}
α = {0.5, 1.0, 1.5}
CCR = {0.1, 1, 5, 10, 15, 20, 25, 30}
Out_degree = {1, 2, 3, 4, 5}
β = {0.25, 0.5, 0.75, 1.0}

Height of a DAG is generated from a uniform

distribution randomly that has √n/α as mean and width

from √n×α. For small values of α, the generated DAG

is longer and has low parallelism while a shorter DAG

with high parallelism results if α is kept high.

Heterogeneity among the processors is controlled

through the range parameter (β). A significant

variation can be produced in the computation times of

the tasks on diverse processors with large value of β.

5.2. Comparison Metrics

The comparison among the proposed techniques and

the existing ones is made on the basis of different

490 The International Arab Journal of Information Technology, Vol. 10, No. 5, September 2013

performance and cost metrics. A little description of

these metrics is given below:

• Makespan: Is the main performance metric which

gives the overall completion time for all the tasks in

a given graph.

• Schedule Length Ratio (SLR): As different task

graphs with diverse attributes are generated and

studied, schedule length ratio is computed in which

schedule length is normalized to some lower bound.

For an algorithm, SLR value is the ratio of its

makespan and sum of minimum computation costs

of tasks on the CP, i.e.

)CP_on_CompCostmin(

makespan
SLR =

• Speedup: Is the third metric employed for the

evaluation purpose of the algorithms which is

incurred by dividing the sequential execution times

of the graphs by their parallel execution times.

• Efficiency: Is the speedup and makespan ratio of the

graph.

5.3. Randomly Generated Task Graphs

The quality of the algorithm on the basis of different

graph attributes described above has been evaluated by

generating the randomly generated task graphs with

diverse features and then executing through the

proposed and existing algorithms. Comparison of the

algorithms has been made and shown below. The

results demonstrate that the existing algorithms (HEFT,

CPOP and PETS) are outperformed by the MLST

algorithm. For the experimental evaluation of the

MLST algorithm, 700 graphs with diverse attributes

have been produced. In 63% cases, the MLST

algorithm surpasses the HEFT algorithm, in 65% cases

PETS algorithms is outperformed and 70% scenarios

show better results compared with CPOP.

The algorithms have been compared on the basis of

makespan they produce when task graphs with different

shapes are executed through them. Longer graphs with

low parallelism to smaller graphs with high parallelism

were generated through random graph generator. For

each value of shape parameter (α), 100 task graphs

were generated. The comparison has been displayed in

Figure 3 which shows that the MLST algorithm

completely outperforms HEFT, CPOP and PETS

especially for longer graphs which have low

parallelism.

The proposed algorithm has also been analyzed by

average SLR produced for different graph structures

and the results are shown in Figure 4. Again, 100

graphs were generated for each value of the shape

parameter (α). The results affirm the fact that MLST

performs significantly well compared with HEFT,

CPOP and PETS.

 A

v
er

ag
e

M
ak

e
sp

an

 Shape Parameter

Figure 3. Average makespan for varying α.

 A

v
er

ag
e

S
L

R

 Shape Parameter

Figure 4. Average SLR for varying α

In another experiment, algorithm quality has been

verified by changing the number of nodes and taking

the average SLR of the schedule for 100 task graphs

for each value of number of nodes. The experiments

have been conducted for 100, 150, 200, 250, 300, 350

and 400 number of nodes. Figure 5 shows that as the

number of nodes rises, the quality of the algorithm

compared with the reported algorithms also improves.

Similar experiments have been conducted for average

SLR when the CCR is changed and selected from the

range of values given in the above section. For

computation-intensive graphs, average SLR produced

by MLST is comparable with HEFT but for

communication-intensive graphs, i.e., the graphs for

which CCR is high, MLST outperforms rest of the

algorithms. The results are shown in Figure 6.

 A

v
er

ag
e

S
L

R

Number of Nodes

Figure 5. Average SLR for varying no of nodes.

 A

v
er

ag
e

S
L

R

CCR

Figure 6. Average SLR for varying CCR.

(9)

Efficient Scheduling Strategy for Task Graphs in Heterogeneous Computing Environment 491

Further, speedup and efficiency comparison of the

algorithms on the basis of varying number of nodes and

number of processors, respectively, have been made.

Number of nodes is same as used for the average SLR

comparison. The number of processors has been taken

from 4, 8, 12, 16 and 64. The results of Figures 7 and 8

elucidate that MLST algorithm outperforms the other

reported algorithms for average speedup and average

efficiency.

 A

v
er

ag
e

S
p

ee
d
U

p

Number of Nodes

Figure 7. Average speed up comparison.

 A

v
er

ag
e

E
m

ci
en

cy

Number of Processors

Figure 8. Average efficiency comparison.

5.4. Task Graphs of Real World Problems

In another experiment, task graph of a real world

problem, molecular dynamics code [10], has been

taken. The task graph is an irregular one. The number

of tasks in the graph and the application structure are

defined already, only the CCR values have been

changed to evaluate the quality of the proposed

algorithm with respect to average SLR. The

performance of the algorithm has been displayed in

Figure 9 which explains that the MLST algorithm

outperforms the other reported algorithms significantly

well. Again, graphs with diverse features have been

generated and the MLST algorithm outperforms the

HEFT and PETS in around 60% cases and CPOP in

70% cases.

 A

v
er

ag
e

S
L

R

CCR

Figure 9. Average SLR comparison for molecular dynamics task

graph.

6. Conclusions

In order to obtain the near optimal results for the

problem of task scheduling in an HDCS, efficient

strategies for the optimal mapping of the tasks are

required. A novel task scheduling algorithm has been

introduced in the paper and extensively been tested

for different comparison metrics. The comparison of

the algorithms has been made against the well known

existing algorithms in the literature on the basis of

these cost and performance metrics. Diverse set of

task graphs with varying features have randomly been

generated and used for the experimental purpose

along with the task graph of a real world application.

The comparative analysis explains that the

performance of the proposed algorithm is

significantly well in most of the cases.

References

[1] Braun S., Siegel D., Maciejewski J., Beck A.,

Boloni N., Maheswaran L., Reuther M.,

Robertson I., Theys P., and Yao D.,

“Characterizing Source Allocation Heuristics for

Heterogeneous Computing Systems,” Advances
in Computers, vol. 63, pp. 91-128, 2005.

[2] Basker S. and SaiRanga C., “Scheduling

Directed A-Cyclic Task Graphs on

Heterogeneous Network of Workstations to

Minimize Schedule Length,” in Proceedings of
International Conference on Parallel Processing
Workshops, pp. 97-103, 2003.

[3] Bajaj R. and Agrawal P., “Improving Scheduling

of Tasks in a Heterogeneous Environment,”

IEEE Transaction on Parallel and Distributed
System, vol. 15, no. 2, pp. 107-118, 1998.

[4] Daoud I. and Kharma N., “A High Performance

Algorithm for Static Task Scheduling in

Heterogeneous Distributed Computing

Systems,” Journal of Parallel and Distributed
Computing, vol. 68, no. 4, pp. 399-409, 2008.

[5] Dhodhi K., Ahmad I., and Yatama A., “An

Integrated Technique for Task Matching and

Scheduling onto Distributed Heterogeneous

Computing Systems,” Journal of Parallel and
Distributed Computing, vol. 62, no. 9, pp. 1338-

1361, 2002.

[6] Dogan A. and Ozguner F., “LDBS: Duplication

Based Scheduling Algorithm for Heterogeneous

Computing Systems,” in Proceedings of
International Conference on Parallel
Processing, pp. 352-359, 2002.

[7] EI-Rewini H. and Lewis G., “Scheduling

Parallel Program Tasks onto Arbitrary Target

Machines,” Journal of Parallel and Distributed
Computing, vol. 9, no. 2, pp. 138-153, 1990.

492 The International Arab Journal of Information Technology, Vol. 10, No. 5, September 2013

[8] Iverson M., Ozguner F., and Follen G.,

“Parallelizing Existing Applications in a

Distributed Heterogeneous Environment,” in
Proceedings of the 4th Heterogeneous Computing
Workshop, pp. 93-100, 1995.

[9] Kafil M. and Ahmed I., “Optimal Task

Assignment in Heterogeneous Distributed

Computing Systems,” IEEE Concurrency, vol. 6,

no. 3, pp. 42-50, 1998.

[10] Kim J. and Browne C., “A General Approach to

Mapping of Parallel Computation upon

Multiprocessor Architectures,” in Proceedings of
International Conference on Parallel Processing,
pp. 1-8, 1988.

[11] Munir U., Li Z., Shi S., Zou Z., and Rasool Q.,

“A New Heuristic for Task Scheduling in

Heterogeneous Computing Environment,”

Journal of Zhejiang University Science A, vol. 9,

no. 12, pp. 1715-1723, 2008.

[12] Mahamat H. and Azween A., “A New Grid

Resource Discovery Framework,” The
International Arab Journal of Information
Technology, vol. 8, no. 1, pp. 99-107, 2011.

[13] Rahman M., Venugopal S., and Buyya R., “A

Dynamic Critical Path Algorithm for scheduling

Scientific Workflow Applications on Global

Grids,” in Proceedings of the 3rd IEEE
International Conference on e-Science and Grid
Computing, Bangalore, pp. 35-42, 2007.

[14] Topcuglou H., Hariri S., and Wu Y.,

“Performance Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing,”

IEEE Transaction on Parallel and Distributed
Systems, vol. 13, no. 3, pp. 260-274, 2002.

[15] Thambidurai P. and Mahilmannan R.,

“Performance Effective Task Scheduling

Algorithm for Heterogeneous Computing

System,” in Proceedings of the 4th International
Symposium on Parallel and Distributed
Computing, Lille, pp. 28-39, 2005.

[16] Wu M. and Gajski D., “Hypertool: A

Programming Aid for Message Passing Systems,”

IEEE Transaction on Parallel and Distributed
Systems, vol. 1, no. 3, pp. 330-343, 1990.

[17] Yang H., Lee P., and Chung C., “Improving Static

Task Scheduling in Heterogeneous and

Homogeneous Computing Systems,” in
Proceedings of IEEE International Conference on
Parallel Processing, Xi'an, pp. 45-45, 2007.

Samia Ijaz received her BSc degree

in computer science and engineering

from University of Engineering and

Technology, Lahore, Pakistan, in

2005. She has recently completed

her MSc in computer sciences from

COMSATS Institute of Information

Technology, Pakistan, in 2011. Her research interests

include computer networks, task scheduling

algorithms in heterogeneous computing and image

processing.

Ehsan Ullah Munir received his

PhD degree in computer software

and theory from Harbin Institute of

Technology Harbin, China in 2008.

He completed his MSc degree in

computer science from Barani

Institute of Information Technology,

Pakistan in 2001. Currently, he is an associate

professor and head in the Department of Computer

Science at COMSATS Institute of Information

Technology, Pakistan. His research interests include

task scheduling algorithms in heterogeneous parallel

and distributed computing.

Waqas Anwar received his PhD

degree in computer science from

Harbin Institute of technology

Harbin, China in 2008. Currently,

he is an associate professor in the

Department of Computer Science at

COMSATS Institute of Information

Technology, Abbottabad, Pakistan. His research

interests include NLP and computational intelligence.

Wasif Nisar received his PhD

degree candidate in computer

science from Institute of Software,

GUCAS China in 2008. He received

his BSc and MSc degrees in

computer science from University

of Peshawar, Pakistan, in 1998 and

2000, respectively. His research interest includes

software estimation, software process improvement,

distributed systems, databases, and CMMI-based

project management.

