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1. Introduction 

Measurement of the dependence relationship and 

correlation among features in a given dataset is an 

interesting and fundamental problem in the domain of 

classification. Numerous pair wise measures have been 

proposed describing a sensible relationship in general 

or in specific context. The detail of these measures can 

be obtained from literature [10, 12, 26]. It was reported 

that correlation and dependence both intrinsically are 

quite different phenomenon. The roots of many such 

measures rest in information theory, whereas mutual 

information was first introduced by Shannon in domain 

of digital communication. It was described that the 

mutual information among two random features is 

symmetric. This property lay down the foundation of 

its capability to be used in capacity of dependence 

measure. We in this study have interrogated this fact 

that in the domain of structure learning classifiers, the 

symmetric characteristic in fact does not imply correct 

meaning.  

Measuring dependence rests at the heart of various 

statistical problems. Classification is one kind of such 

problem for which measurement of dependence plays 

an important role. Regardless of wide application of 

correlation in various domains of scientific knowledge, 

a careful examination of correlation measures in 

general reveal two issues related to problem solution 

towards structure learning. The first issue is related to 

its inability of explaining nonlinear structure between 

the random features. It was elaborated that two 

independent features are certainly uncorrelated but, 

being uncorrelated does not mean they are necessarily 

independent to each other [13]. The second issue is it’s 

in capability of providing limited information around 

the underlying true dependence nature [13]. This leads 

to arise a dictum that “correlation is unable to imply 

causation” means that correlation is not ideally well 

suited in classification problem for sake of delivering 

causal relationship between the features [3]. 

When we talk about structure learning, then 

Bayesian Belief Network (BBN) can’t be brushed 

aside. Since last two decades, the Bayesian belief 

network (also, known as BBN) has inspired a lot of 

communities dealing in knowledge management and 

pattern classification [1, 11, 20, 24]. The BBN is a 

highly symbolic formalism probabilistic model for 

knowledge representation. A BBN is a Directed 

Acyclic Graph (DAG) representing a set of conditional 

probability distribution for each node of the DAG 

whereas each arc between two nodes represent 

direction of inference or induction. A node (child) 

which is directly pointed to by another node (parent) 

has inference from its parent node(s), while the parent 

node receives induction from the child node in terms of 

probabilistic distribution. These concepts of inference 

and induction are helpful in formulation of BBN 

classifier. The topology or ordering of the child parent 

node is important in the evaluation of class imbalance 

measures for a BBN classifier.  We in this study have 

shown that Integration to Segregation (I2S) has the 

ability to correctly identify the true order between two 

nodes to place their role for being parent or child to 

each other by virtue of its peculiar characteristic of 

being asymmetric in nature. Many correlation 

measures are not only symmetric but also, linear in 

nature. Pearson correlation coefficient is a notable 

example which is quite famous and has been used 

extensively because of its low computational cost and 
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ease of estimation. However, in most of the cases, the 

dataset is not necessarily linear in nature. Our proposed 

measure I2S is applicable to linear as well as nonlinear 

data sets. 

The aim of this study is introduce a novel 

dependency measure which is applicable to be used in 

capacity of a scoring functions used by learning 

algorithms paradigm in the context of classification, 

namely, for learning the BBN classifier. We make an 

attempt to empirically evaluate the merits of each score 

as compared to our proposed measure I2S by means of 

a experimental study over benchmark datasets. These 

scores include well renowned scoring function 

including Bayesian Information Criterion (BIC), 

Akaike Information Criterion (AIC), Bayesian 

Dirichlet (BDeu) with likelihood equivalence and a 

uniform joint distribution, Entropy and Minimum 

Description Length (MDL). We shall detail out their 

mathematical description in the next section. Recently 

Carvalho et al. [7] introduced factorized Conditional 

Log-Likelihood (fCLL) which is an approximation of 

the conditional log-likelihood criterion. It was a non 

parametric measure, which was claimed empirically to 

give significantly better results as compared to other 

measures in K2 and TAN algorithms. Such impressive 

scoring function motivates us to analyze its 

performance over correctly judging the true topology, 

the result of which is shown in our result section. 

The organization of the remaining paper is 

articulated as below: In section 2, some background of 

the proposed measure is discussed. In section 3, 

mathematical theory of the proposed dependence 

measure is presented. We have devoted last two 

sections for empirical validation of I2S followed by 

discussion in detail. 

 

2. Related Work 

In last two decades, a lot of work has been reported in 

improvements of BBN. Application of BBN in various 

domain of interest has been highlighted [4, 25]. Cheng 

et al. [8] categorized BBN classifiers into two groups. 

One is scoring based method whereas various scoring 

criteria were introduced such as: Bayesian scoring 

method [9, 15], entropy based method [16] and 

minimum description length method [23]. The other 

group focuses on analysis of dependence relationships 

among features under Conditional Independence (CI) 

test. The algorithms described in [8, 22, 27] belong to 

this category. Meilaˇ and Jaakkola [21] elaborated 

Bayesian structure learning in trees in polynomial time. 

In structure learning, there are two dimensions for the 

application of features dependence. The first criterion 

is selection of useful features under the assumption of 

maximal statistical dependence criteria [21]. The 

second category is the appropriate selection of features 

in the designing of markov blanket for a node as a 

potential candidate class [8]. In the first category, poor 

features can be eliminated; however it does not 

guarantee a more suitable and accurate set of markov 

blanket for a class node. Statistical analysis before the 

application of classifier on dataset is recommended 

[26]. This motivates us to adopt the second category in 

which careful selection of markov blanket nodes is 

more important.   

BIC score which was originally introduced by 

Schwarz [21] was framed over belief network with 

hidden features. Jensen et al. [17] discussed two 

important characteristics for scoring function used in 

the belief network. The first characteristic is the ability 

of any score to balance the accuracy of a structure in 

context of structure complexity. The second 

characteristic is its computational tractability. BIC is 

believed to satisfy both of the mentioned 

characteristics. BIC is formally defined as:  
 

                      n

2 S 2

size(S)
BIC(S / D) = log P(D / θ , S) - log (N)

2

 

Where 
Λ

θ is an estimate of the maximum likelihood 

parameters for the underlying structure. Jensen et al. 

[17] discussed that in case of completion of the 

database, BIC is reducible into problem of 

determination of frequency counting such as:   

       q r Nn nlog Ni i ijk 2
BIC(S | D) = N log ( ) - q (r - 1)2ijk i ii =1 j =1 k =1 i =1N 2ij

∑ ∑ ∑ ∑
 

Where Nijk indicates the counts of dataset cases with 

node Xi in its k
th
 configuration and pa(Xi) in j

th
 

configuration, qi denotes the number of configurations 

over the parents for node Xi in space S and ri indicates 

the states of node Xi. Another scoring measure which 

depends only on equivalent sample size N’ is BDeu 

[6]. Carvalho et al. [7] has decomposed it into 

mathematical form:   
 

    BDeu(B,T) = log(P(B)) + ∆                          (3) 
 

              N' N'
Γ Γ N +ijkq rq r qn i ii i i

∆ = log + log \
i =1 j =1 k =1N' N'

Γ N + Γij
q r q

i i i

∑ ∑ ∑

       
       
       
       
                  

   

MDL [18, 23] is mostly suitable to complex Bayesian 

network. Mathematical formulation is composed of 

explanation of Log Likelihood (LL) as following: 

                     q r Nn i i ijk
LL(B | T ) = N log

ijki =1 j =1 k =1 N ij

∑ ∑ ∑
 
 
 
 

 

The value of LL is used in obtaining the value of MDL 

as below: 

                      MDL (B | T) = LL(B | T) - (1 / 2)log(N) | B |  

|B| denotes the length of network which is achieved in 

terms of frequency calculation of a given feature’s 

possible states and its parent’s state combination with 

feature as following: 

(1) 

(2) 

(4) 

(5) 

(6) 
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 ( )n
| B |= r - 1 qi ii =1

∑  

Akaike Information Criterion (AIC) originally defined 

by Akaike [5] is defined mathematically:  

                    AIC = -2 × ln(likelihood) + 2 × K  

Where K denotes the number of parameters in the 

given model. However, in belief network application, 

its mathematical equation has been transformed into:  

                      AIC(B | T) = LL(B | T)- | B |  

Recently fCLL was introduced which is an 

approximation of the conditional log-likelihood 

criterion [7]. Its decomposability over the network 

structure is defined as below:  

                     
^

( | ) ( ) ( | )f CLL G D LL B Dα β
∧

= +  
*q r N Nn 1i i ijkc ijc

-βλ N log - logijkcc=0i =1 j =1 k =1 N Nij* c ij*

∑ ∑ ∑ ∑
    
    

        

                                                              

1
c

c

c 0

N
N log N

N
βλ β ρ

=

 − − 
 

∑  

The authors empirically showed that their measure of 

scoring function is not only decomposable to Bayesian 

network structure learning but it also, can given better 

results over various other conventional measures. We 

have added a comparison of its performance to I2S in 

result section.  

3. Development of Scoring Measure 

We in previous section deliver a brief notion of 

reducing various scoring function into a frequency 

counting problem in terms of structure learning. This 

frequency counting problem defined in Equation 2 

leads to a shortcoming of correctly identifying 

discriminative approaches in defining sink node 

correctly.  We come up with an improved measure of 

approximation while establishing a hypothesis such 

that 

3.1. Hypothesis H1  

I2S is an amenable approximation to correctly identify 

a sink between a pair of nodes in a DAG in structure 

learning. 

Reasoning for our hypotheses is based on obtaining 

structural inference from dataset. The primary goal of 

this research is to design and develop a robust mutual 

dependence measure which can maximize structure 

prediction technique applicable to generate a directed 

acyclic graph from the dataset. The novel measure 

possesses crucial properties which are useful in 

structure learning procedure technique. The underlying 

hypothesis describes the relationship between two 

features such that dependent feature can be explained 

as a consequence of the action of the independent 

features. It is useful to draw attention on the following 

two underlying assumptions for description of I2S. 

These include the discrete nature of the dataset with no 

missing values. The second assumption is that each 

case of the dataset enjoys independent probabilistic 

nature. It is convenient to define the I2S formally by 

means of some definitions and lemma. 

 
3.2. Definition 1 

Given two features A and B, f is a relation on A.B such 

that f:φ(Y)→X where domain(Y) = {A, B} and for 

every a∈A, there exist precisely one b∈B while (a, 

b)∈X. φ is a real-valued function over a domain of 

finite variables Y whereas members of domain (Y) need 

not to be linked in conditional probability. Every 

element of X is comprised of data from each distinct 

state of B determined by unique outcome states of A.  

 
3.3. Definition 2 

Let X be a matrix as defined in definition 1 then value 

of I2S is defined as: 
 

        
ij ij jY X / B 0 i m 0 j n= ∴ ≤ ≤ ∧ ≤ ≤          (11) 

n
n n

j 1 ij j 1 ij j

j 1

I 2S ( [ Max (Y ) Average (Y )] [ m / ( m 1 )] B )= =
=

= − × − ×∑  

 
3.4. Definition 3 

Let feature set A and B comprise of m and n number of 

distinct states. Let X→A•B be a matrix as defined in 

definition 1 such that m n

i j
P 1ij

∑ ∑ = . It is clear that each 

column of matrix X is determined by corresponding 

single outcome state of feature A with combination of 

all items of feature B. Mathematically we can write it: 

                               n
X = P(a )1i1i =1

∑  

                               n
X = P(a )2i2i =1

∑  

                              
n

X P( a )mimi 1
∑ =
=

 

 

It can also, be concluded that each row of matrix X is 

determined by corresponding single state of feature B 

with combination of all items of feature A. 

Mathematically we can write it:  

                                  
m

X = P(b )11jj =1
∑  

                                 
m

X = P(b )22jj =1
∑  

                                  
m

X = P(b )nnjj=1
∑  

3.5. Lemma 1 

Let X be a matrix as defined in definition 1. If every 
element of matrix X holds same probability then this 
set can be termed a fully integrated matrix. In other 
words, a matrix X is fully integrated in which all of the 
information is uniformly distributed over all of its 

(8) 

(9) 

(7) 

(10) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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elements such that: P(xij)=P(xji). In this case, value of 
I2S for matrix X will be zero. 
Proof: Let A and B be two features in a dataset. A and 

B comprise of m and n distinct state outcome 

respectively such that: 

                      m

1 2 m i
i =1

P(A ) + P(A ) + ...+ P(A ) = P(A )∑  

                    n

1 2 n j
j 1

P( B ) P( B )..... P( B ) P( B )
=
∑+ + =  

Let feature set A and B comprise of m and n number of 
distinct states. Let X→A•B such that each element of X 
corresponds to a∈A and b∈B such that: 

 

                                      
m n

ij
i j

P = 1∑ ∑  

Definition 3 gives the orientation of the matrix in a 
way to deduce the relationship between features A, B to 
matrix X. It is clear that when definition 2 is applied on 
the matrix X, then it will decrease each value by same 
factor in each row and column monotonically. By 
definition 2, Max and Average of each row is also, 
same in this case. By definition, I2Si=0 for each row in 
matrix. From this explanation we can conclude that: 

 

                                
n

ij
j =1

I2S = 0∑  

Hence, it is proved that matrix is fully integrated. 

3.6. Lemma 2 

If we distribute probability of each element in matrix X 

in a non uniform fashion then its segregation will 

increase at expense of integration.  

Proof: Let A and B be two features in a dataset. A and 

B comprise of m and n distinct state outcome 

respectively such that: 

                     
2

m

1 m i
i =1

P(A ) + P(A )......+ P(A ) = P(A )∑  

                    
n

1 2 n j
j =1

P(B ) + P(B ).....+ P(B ) = P(B )∑  

Let X→A•B given that each element of X corresponds 

to a∈A and b∈B such that: 
m n

P = 1iji j
∑ ∑ . 

Now, let us choose a single element Pkl where 0 <= K 

<= m and 0<= l<=n. We increase its probability at the 

expense of decreasing probability of other elements in 

a random fashion but with condition:
 

m n
P = 1iji j

∑ ∑ . 

Definition 3 gives the orientation of the matrix in a 

way to deduce the relationship between features A, B to 

matrix X. As we applied definition 2 on the matrix X, it 

will decrease each value by same factor in each row 

and column monotonically. By definition 2, Max and 

Average of each row is not same in this case. Hence: 

by definition, I2Sij>0 for at least in the row containing 

the element Pkl. From this explanation we can conclude 

that: 
n

I2S > 0
ijj=1

∑ .  

Hence, it is proved that matrix has lost its integration at 

the expense of increase in its segregation. 

3.7. Lemma 3 

Matrix X is said to be fully segregated with value of 

I2S approaching to 1 if each distinct state of feature B 

is selected by not more than one distinct state of 

feature A. 

Proof: Let A and B be two features in a dataset. A and 

B comprise of m and n distinct outcomes respectively 

as shown in equations 23 and 24. Let feature set A and 

B comprise of m and n number of distinct states. Let 

X→ A × B such that each element of X corresponds to 

a∈A ∧ b∈B such that:  
m n

P = 1iji j
∑ ∑ . 

Now, let us choose a single element PkL where 0 <= K 

<= m and 0 <= L<= n. We increase its probability at 

the expense of decreasing probability of other elements 

in a random fashion but with condition:
 

m n
P = 1iji j

∑ ∑  .

 

 

Definition 3 gives the orientation of the matrix in a 

way to deduce the relationship between features A, B to 

matrix X. We repeat this process for each row, till 

matrix X is transposed into a X’ such that it contains 

approximately all of its probability distribution in m 

number of elements. As we applied definition 2 on the 

matrix X, then it will decrease each value by same 

factor in each row and column monotonically. By 

definition 2, Maximum and Average of each row is not 

same in this case. By application of definition 2 we 

will get 
n

I2S » 0
ijj=1

∑

 

for complete matrix. From this 

explanation we can conclude that the matrix is fully 

segregated. In other words, we can say that if we 

distribute probability of each element in matrix X in 

such a way that one element in each row of matrix X 

contains maximum probability out of the total sum of 

the probability of that row, and then such matrix is 

fully segregated with value approaching to 1. 

3.8. Definition 4 

Given a DAG, I2S is sensitive to order of sink and its 

parent node. A swap will change the value of I2S such 

that I2S(A,B)< >I2S(B,A). This characteristic is most 

important to correctly identify the true order of two 

nodes in structure learning for decision making. 

3.9. Definition 5 

The measure I2S is minimum if all the input 

probability measures become equiprobable. On the 

other hand the measure tends to maximized if there is 

maximum difference found among probability 

distribution between combined probability distribution 

such that f: ð(Θ) where ð is a function to calculate the 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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maximum difference between probability distribution 

parameters Θ in a cross product of both of the features 

sink and its corresponding parent in a DAG. 

3.10. Lemma 4 

Given two nodes in BBN, I2S can detect the best 

topology of two nodes. 

Proof: Let A and B be two features such that A holds 
deterministic function B (sink). Feature A contains m 
distinct states and B contains n distinct states. 

If we are to get inference of A on B such that (B | A) 

then a conditional probability table C is formulated 

such as {Cij / (i <= m) and (j <= n)}. The objective of 

the naïve Bayes classifier is to:  

              f : C ,C , ......C
1 1 1 1 2 1 i

M ax im iz e f : C ,C , ......C
2 2 1 2 2 2 i

f : C ,C , ......C
3 i1 i2 ii

 
 
 
 
 
 
  

                       

 

There are two possible orientations for the topology of 

two nodes. A→B or B→A. We apply integration to 

segregation measure on both of these topologies such 

that:  I2S1: A→B and I2S2: B→A. 

As I2S is an asymmetric measure therefore:  
 

                                     
I2 S - I2 S > 02 1

I2 S - I2 S = 02 1

I2 S - I2 S < 02 1

 
 
 
  

 

 

Every function in Equation 1 will be increased with the 

increase in the difference between its corresponding 

variables. The same is true for I2S when each I2S will 

be increased as its underlying features are getting less 

segregated with increase in integration. Hence, it is 

proved that an increase in I2S is analogous to 

maximization of probabilistic function defined in 

Equation 1. Hence we can deduce I2S can be used to 

define quite correct topology of two nodes in BBN. 

Algorithm 1: I2S value out of two features F1 and F2. 

Input: F1, F2 

Output: I2S 

Function [I2S] = Find_I2S(F1, F2) 

Step 1.  M = GPM(F1, F2) 

Step 2. 
⊕=
M

M
M

  

Step 3.  
c

MB
⊕←

=   

Step 4.  sz � |M(:,1)| 

Step 5.  V � zeros(sz,1)   

Step 6.  For each row r ε M 

       6.1    M(r,:) � M(r,:) / B(r,1) 

      6.2     V(r,1) � I2SE(M(r,:)) * B(r,1) 

      6.3     r � r +1 

      6.4    if r > sz  

      6.5       exit for 

     6.6.   end if 

Step 7.  end while   

Step 8.
⊕

=VSI 2  

Step 9. End 
 

It is convenient to decompose the whole of the 

computational methodology into three functions to 

elaborate it in a sensible flow. Algorithm 1 is prime 

part of the computational methodology of calculation 

of value of I2S. It begins with two input parameters F1 

and F2 giving final value of I2S between both of these 

features. In line 2, the function has called a function 

GPM which is responsible for generation of pair wise 

matrix out of two features. This function (GPM) has 

been shown in algorithm 2 where each of the features 

is first subjected to calculate the unique values 

involved in the feature. A Matrix M is born given the 

dimension of length of unique values of feature 1 and 2 

as number of rows and columns of matrix M 

respectively.  These steps are pointed out from step 2 

to step 5 in which unique values are calculated U1, U2 

and then length of the unique values L1, L2 are 

calculated. For the convenience of understanding of the 

procedure outlined in this function, we have made 

assumption that in each feature the unique values are 

consecutive. This can be achieved by first decoding 

each feature attribute of the dataset. The rest of the 

lines in the function (GPM) simply count the number 

of distinct values of both of the features in a pair wise 

fashion by populating the resulting matrix M. Now, we 

shall again continue our explanation on our prime 

function Find_I2S.  

Algorithm 2: generate pair-wise matrix 

Input: F1 , F2 

 Output: Trans 

 Function [M] = GPM(F1, F2) 

 Step 1. 
⊲

FU
11 =    

 Step 2. ≺

11
UL =    

Step 3. ⊲

FU
22 =
   

Step 4.
≺

22 UL =    

Step 5. M = zeros(L1,L2) 

Step 6. L = |F1(:,1)| // rows count in F1 

Step 7. for each i ε L 

Step 8.    M(F1(i,1),F2(i,1)) = M(F1(i,1),F2(i,1)) + 1 

Step 9. end for 

Step 10. End 

In line 3 this matrix is normalized such that each 

value ranges between 0 and 1 with total sum of all 

elements of matrix be only1. This step first adds up all 

of the values in the matrix storing it in a temporary 

scalar value and secondly divides each element of 

matrix by this scalar value. In step 4, the function 

extracts a vector B from matrix M by summing up each 

column of the pair wise matrix M. In the line 5, a 

threshold variable sz is introduced which is used in 

traversal loop from step 7 to step 14. In step 6, a vector 

V is created with same number of elements as that of 

the count of rows in the matrix M. From line 7 to line 

14, a loop is launched with following activities. First 

(26) 

(25) 
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each row of the matrix M is updated by dividing 

corresponding element of vector B such that row 

number of both numerator and denominator are same.  

Another function I2SE is called on in line 8. This 

function is responsible to define each of the individual 

elements of the final outcome vector of I2S. The 

underlying logic to compute the value of each element 

of vector V is determined by finding maximum and 

mean of the each row of the pair wise matrix M. A 

difference of maximum and minimum if multiplied by 

number of elements in the row. The resulting scalar 

value is divided by number of element in the row with 

degree of freedom 1.  
 

Algorithm 3: calculate I2S elemental value 

Input: Inp         

Output: I2S 

Function [ret] = I2SEl (Inp) 

Step 1. 
≺

Inpmx =  

Step 2. Inpmx =  

Step 3. ||
col

Inpcnt =  

Step 4.  ret = (mx - mn ) * (cnt)/ (cnt-1) 

Step 5. End 
 

At the end of loop which is marked by threshold 

value sz, we achieve a final vector V with same 

number of elements as that of the number of rows in 

matrix M. In line 15, a complete sum of all of the 

elements in the vector is obtained which is our final 

desirable outcome value known as I2S. 

In this section, we discussed mathematical theory of 

the proposed measure. First we show that theoretically 

asymmetric property of dependence measure is more 

important in judgment of sink and source node. In the 

second part of this section, we highlighted algorithmic 

steps involved in the calculation of I2S. In the next 

section of result, we present empirical results to 

validate our claims made in the current and previous 

sections. 

4. Results and Discussion 

We carried out experimentation on fourteen benchmark 

dataset obtained from UCI [5] as shown by Figures 1 

and 2. All of these dataset contain multinomial/ 

categorical features; hence, they were fit for our 

experimentation. First we explain the detail of the 

experiment as shown by the Tables 1 and 2. Both of 

these tables indicate detail of a few experiments 

performed on one benchmark dataset Zoo [5]. First two 

columns of the Table 1 indicates two features in which 

one is designated as sink while other is marked as class 

node. The last four columns of the Table 1 shows class 

imbalance characteristic (accuracy measures) of the 

experiment including Recall or True Positive Rate 

(TPR), False Positive Rate (FPR), Precision and F-

Measure. In literature, it was termed that maximization 

of the scoring function guarantee the correct structure 

of learning. Thus, we have provided this information 

under the assumption that there must be a relationship 

of scoring function versus these class imbalance 

characteristics to judge how accurate a structure is 

defined while describing the position of both of the 

nodes. Table 2 indicates a gradual increase and 

decrease in the value of I2S versus other accuracy 

measures.  

Table 1. Class imbalance characteristics (Zoo dataset). 

S. Sink Class Recall FPR Prec F-M 

1 1 2 0.802 0.802 0.643 0.714 

 2 1 0.624 0.279 0.8 0.59 

2 3 7 0.554 0.554 0.307 0.396 

 7 3 0.584 0.584 0.341 0.431 

3 11 17 0.406 0.36 0.179 0.248 

 17 11 0.921 0.921 0.848 0.883 

4 4 5 0.762 0.762 0.581 0.66 

 5 4 0.545 0.458 0.559 0.549 

5 6 9 0.822 0.822 0.675 0.741 

 9 6 0.644 0.644 0.414 0.504 

6 10 16 0.535 0.572 0.458 0.436 

 16 10 0.792 0.792 0.627 0.7 

7 8 12 0.832 0.832 0.692 0.755 

 12 8 0.604 0.604 0.365 0.455 

8 13 14 0.832 0.46 0.845 0.805 

 14 13 0.406 0.28 0.194 0.261 

9 15 16 0.525 0.595 0.308 0.388 

 16 15 0.871 0.871 0.759 0.811 

10 4 13 0.465 0.206 0.417 0.439 

 13 4 0.832 0.192 0.831 0.831 

There were seventeen features available in the zoo 

dataset for which 136 (17×16→272/2) pair-wise 

structures can be built. We pick only three pair results 

in Tables 1 and 2 randomly ten pairs in such a way that 

almost every feature can be shown by the Table 1. We 

justify the adoption of pair wise sets of features in 

terms of introduction of non augmented classifier in 

which any feature can be considered as a class while 

others features are treated for a selection of its 

corresponding potential markov blanket. Take an 

example from Table 1 in which serial 1 is indicating 

two pairs with feature number one and feature number 

two. Firstly, feature two was considered parent while 

the other feature number one was assumed as its sink 

or single markov blanket node. In second experiment, 

positions of both nodes were swapped. We analyzed 

accuracy measures against scoring functions as shown 

by Tables 1 and 2. This part of experiment for 

reasoning of uncertainty was performed in WEKA 

[14]. General parameters for classification in WEKA 

experimentation were simple estimator and 10 fold 

cross validation while K2 score type chosen is Bayes. 

A careful examination of Tables 1 and 2 indicates that 

a higher value of I2S ensures a higher precision, recall, 

TPR and lower FPR for example when feature 1 is 

selected as parent and feature 2 as sink node then 

Recall TPR, FPR, Precision and F-Measure values are 
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0.802, 0.802, 0.643 and 0.714 respectively. A swap of 

both of the features yields the values of 

0.624,0.279,0.8 and 0.59 for Recall TPR, FPR, 

Precision and F-Measure. Here, the question arises 

how we can relate it to the scoring values presented in 

Table 2.  
 

Table 2. Comparison of scoring function vs. I2S (Zoo dataset). 

S. I2S Bayes Bdeu MDL ENTROPY AIC 

1 0.604 -113.29 -115.01 -117.15 -110.23 -113.23 

  0.2475 -113.51 -115.22 -117.36 -110.44 -113.44 

2 0.1089 -144.88 -146.6 -147.01 -140.08 -143.08 

  0.1683 -144.88 -146.59 -147 -140.08 -143.08 

3 0.33 -208.07 -233.68 -233.33 -203.33 -216.33 

  0.8416 -204.39 -234.06 -233.67 -203.68 -216.68 

4 0.5248 -122.41 -124.13 -125.34 -118.42 -121.42 

  0.2079 -122.55 -124.27 -125.48 -118.56 -121.56 

5 0.6436 -119.76 -121.48 -122.46 -115.53 -118.53 

  0.2871 -119.98 -121.7 -122.67 -115.75 -118.75 

6 0.1287 -125.5 -127.22 -128.14 -121.21 -124.21 

  0.5842 -125.3 -127.02 -127.94 -121.02 -124.02 

7 0.6634 -110.88 -112.6 -114.78 -107.86 -110.86 

  0.2079 -111.14 -112.86 -115.04 -108.12 -111.12 

8 0.703 -199.87 -222.56 -223.45 -198.07 -209.07 

  0.2871 -199.76 -219.46 -220.61 -195.22 -206.22 

9 0.1287 -114.85 -116.56 -117.71 -110.79 -113.79 

  0.7426 -114.46 -116.18 -117.33 -110.41 -113.41 

10 0.4059 -203.84 -223.54 -224.78 -199.39 -210.39 

  0.6634 -204.5 -227.18 -228.16 -202.77 -213.77 

 

Table 2 indicates that value of I2S and all other 

scoring measures is also, greater in the same fashion, 

means a higher precision indicates a higher value of 

scoring function value. This trend is quite explicit and 

is limited to only seven set of pair of experiments. 

However, serial number 3, 8 and 10 which are pointing 

out pair of nodes (11, 17), (13, 14) and (4, 13) are quite 

devious from this continuous pattern. We can examine 

that in pair of nodes (11, 17), the better topology is to 

designate feature 11 as class and feature 17 to be 

nominated as sink. This topology must possess a better 

scoring value but this is not correct for BDeu, MDL, 

Entropy and AIC. Moreover, for other two sets (13, 14) 

and (4, 13); none of the conventional veteran scoring 

function deliver correct prediction over the topology. 

However, throughout all of the experiments, the 

proposed measure I2S deliver a correct topology 

giving a perfect pattern such that a higher value of I2S 

means higher accuracy measures and lower false 

positive rate. In many cases, an increase in the fCLL 

value delivers a low value in TPR etc. Hence, there 

was no arguing in describing its score, although the 

shrewd readers may contact us for its completed 

detailed results of experimentation. 

At this point, one can argue that the correct 

alignment of the values for prediction of the righteous 

(true) topology may be a stroke of fortune favouring 

the proposed measure I2S. Here the true topology 

indicates that topology which gives better 

discriminating result in a classification system. This 

motivates us to span this experiment over other 

benchmark dataset as shown by Figures 1 and 2. We in 

Figures 1 and 2 have shown a detailed summary of the 

results. The Figure 1 indicates the number of correct 

topologies revealed by various scoring function while 

the Figure 2 points out the number of in correct 

topologies drawn by well known and established 

scoring function along with our proposed measure. 

 
Figure 1. Comparison of scoring functions for correct (true) 

topologies of pairwise nodes. 

 

The numeric data in both of the figures indicate the 

number of nodes with correct or incorrect topologies. 

For example, in case of dataset anneal, 321 number of 

pairs were drawn in such a topology which give 

maximum accuracy in case of AIC, Bdue, Entropy and 

MDL; whereas 451 and 476 number of pairs were 

drawn with correct topology in case of BIC and I2S 

respectively. The Figure 2 indicates the number of 

incorrect topologies drawn out using these scoring 

functions. For example, for the same dataset (anneal) 

the incorrect (wrong) topologies were minimum in 

case of I2S which is only 20. There were total 476 + 20 

= 496 pairs in all selected such that all of the attributes 

can be covered in dataset anneal. It is evident that I2S 

deliver significantly better result in all of the fourteen 

datasets. 

 
Figure 2. Comparison of scoring functions for incorrect (wrong) 

topologies of pairwise nodes. 

We can draw two conclusions from a bird’s eye 

view. Firstly the dataset ‘CPU’ completely gives 

highly favourable results for I2S and BIC where 

maximum number of incorrect topologies were 

reported for other scoring function. In this dataset, still 

I2S was leading scoring measure with highest 

percetage of true topologies. As far as the comparison 

to fCLL is concerned, we first obtained the source code 

available by the authors; the code is an extension of 

WEKA software. We made a slight change in the code 
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so that it can also, print out the final fCLL score at the 

exit of each cycle. However, we have restricted to the 

provision of its general result because detail of its 

scores come up with the conclusion that there was no 

particular fashion found in the scoring function of 

fCLL in comparison to accuracy measures. In many 

cases, an increase in the fCLL value delivers a low 

value in TPR. Hence, there was no arguing in 

describing its score. The potential reason behind this 

‘anomalous fashion’ is that the said scoring functions 

evolves in the domain of TAN, C4.5, K-NN, SVM and 

LogR classifiers; but our experimentation uses K2 as 

searching algorithm.  

At this point, it is useful to reiterate the lemma-4 

which we mentioned previously. We described that 

“Given two nodes in BBN, I2S is prone to detect the 

best topology of two nodes”. We can observe the same 

out of the experimentation that all conventional scoring 

functions exhibit minor or major deviations from the 

lemma 4. The scoring function fCLL is an exceptional 

notaion which in most of the cases gives no significant 

result. Hence, we can conclude that empirically a better 

scoring function is the one which is capable of 

exhibiting true topology of the given features. These 

experiments explain that I2S possess a relevant 

characteristic in development of topology of structure 

learning in Bayesian belief network. However, other 

mutual information measures can not indicate the 

correct topology of the dataset. 

 

5. Conclusions 

The most vital part in designing of a classifier is to 

bring forth discriminant functions within a feature 

space by means of  utilizing a priori knowledge in a 

given training samples. Motivated from this fact, many 

classifiers were introduced by the experts of machine 

intelligence. It goes without say that in the approach of 

structure learning classification; Bayesian belief based 

classifier is par excellence with its prominent results. 

Moreover, application of mutual information in 

structure learning is not a novel idea as theoretically it 

was introduced some six decades ago. We pointed out a 

limitation of various scoring metric such as BDeu, AIC, 

Entropy, BIC, MDL and a recently introduced fCLL 

while introducing a new dependency measure in 

perspective of structure learning. This lay out the 

foundation of our hypothesis that our proposed measure 

is more suitable in employing a belief network. To 

validate our hypothesis, we first introduced the 

mathematical theory of the two measures indicating that 

if any measure is symmetric then it is not possible to 

truly define the orientation of topology of the nodes. 

This is true in case of Mutual information measure 

which is a symmetric measure in its nature. Later on, 

we picked six scoring metrics as mentioned above, and 

performed a series of exhaustive experimentation. The 

reason behind picking these six scoring measures is that 

five of them are implemented in WEKA and the sixth 

measure (fCLL) has been provided with online source 

code written as WEKA extension for delivering a 

reliable result in case of exercising belief network 

classifier. The empirical validation was carried out 

indicating that there is a difference in class imbalance 

measure for the results achieved on various dataset. The 

results clearly indicate that a higher value of I2S means 

higher accuracy in terms of various accuracy measures 

like precision, recall, f-measure and false positive rate. 

However, this conclusion is not uniform because the 

difference in the I2S for both of possible configuration 

is not in proportionate with corresponding difference in 

class imbalance metrics. There are two underlying 

possibilities: either a change in dataset or the second 

reason lies in the inability of proposed measures to 

explain it vigorously and in more depth. This left us 

with the option of improvement in the proposed 

measure so, that a proportionate difference in class 

imbalance metrics and I2S can be observed. We have 

left this work for future work. Another future direction 

for this work is to introduce a new breed of classifiers 

with quite reasonable performance exhibiting an 

improved accuracy. We also, plan to come up with a 

commercial classifier based on our introduced measure. 

Third future direction for this work lies in tailoring the 

measure to make it adaptable for a wide variety of 

dataset. Currently the measure is ideally suitable for 

multinomial (categorical) features only, whereas there 

is a need to encompass features other than multinomial 

dataset. 
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