
The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015 69

An Effective Soft Error Detection Mechanism using

Redundant Instructions

Seyyed Amir Asghari
1
 and Hassan Taheri

2

1
Computer and Electrical Engineering Department, Kharazmi University, Iran

2
Electrical Engineering Department, Amirkabir University of Technology, Iran

Abstract: Computer Systems which operate in space environment are Subject to different radiation phenomena that lead to
soft errors and can cause unpredictable behaviours of computer-based systems. Commercial Off-The Shelf (COTS) equipment

which is commonly used in space missions cannot tolerate some threats such as Single Event Upsets (SEU). Therefore, there

are some considerations in resisting this equipment against possible threats. In this paper, a software instruction level method

that is called Soft Error Detection using Redundant Instructions (SEDRI) is provided to detect soft errors which influence

control flow and program data. This method is evaluated by fault injection on several C benchmark programs. The

experimental results show that without protecting a program against control flow and data errors 34% of them affect the

program and damage it; but, by using our method, this rate is decreased to about 11%. Comparing to previous presented

techniques, SEDRI method has a considerable improvement in performance and memory overhead, i.e., 46% and 55%

respectively, and its fault coverage decrease about 9%.

Keywords: Control Flow Checking, data error, fault coverage, soft error, software-based error detection.

Received October 28, 2012; accepted January 18, 2013, published online April 17, 2014

1. Introduction

Scaling of Very Large Scale Integration (VLSI)

technologies, coupled with increased integrated circuit

complexity, will strongly increase the occurrence of

transient faults (also known as soft errors) [9].

Particularly, this is true with respect to computers

operating in space environment, which are subject to

different radiation phenomena. Transient faults, unlike

manufacturing or design faults do not occur

consistently. Instead, these faults are caused by

external events, such as electromagnetic interferences,

power glitches, or highly energized particles striking

the chip. These events do not cause permanent physical

damage to the chip, but can alter signal transfers or

stored data and thus cause incorrect program execution

[15]. Single Event Upsets (SEUs) is one of the most

common reasons of transient faults in space missions

that use Commercial Off-The Shelf (COTS)

equipment.

Transient faults have caused lots of significant

failures for example FengYun-1(B) meteorology

satellite launched in China in 1990 went out of

commission ahead of schedule because of attitude

control system’s losing control caused by SEUs [6,

15]. In 2000, Sun Microsystems acknowledged that

cosmic rays interfered with cache memories and

caused crashes in server systems at major customer

sites, including America Online, eBay, and dozens of

others [6].

Generally, hardware or software redundancy can be

introduced to handle transient faults. But, the

hardware-based methods are expensive, since they

require replicated hardware modules or developing

custom hardware equipped with error detection

mechanisms that verify operation correctness on line.

When development cost is a major concern, as in low

volume applications, designers tend to adopt

commercially available hardware, even in the case of

safety-critical applications. In this context, software

based fault tolerance is an attractive solution, since it

allows implementing dependable systems without

incurring the high costs associated with developing

custom hardware-based tolerance techniques not

readily available in COTS products [9].

Transient faults induced by hardware have an

impact on software running on it, which causes either

control flow or data errors in software. Control Flow

Errors (CFEs) change the control flow of the

application and can be defined to be any fault that

causes a divergence from the sequence of program

counter values seen during the fault-free execution of

the application. For these kinds of faults, software

techniques proposed are mainly based on signature

analysis, where a unique signature is associated to a

basic block at pre-compile time. During program

execution, the same signature is computed and

compared with a reference signature [1, 5, 7, 8, 9,

11,12, 13].

On the other side, data errors affect the values of

data variables, registers, or memory locations used by

the application [10]. To address this kind of faults, the

proposed approaches rely on information redundancy

to store multiple copies of the same information and on

70 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

the introduction of consistency checks whose purpose

is to verify the coherence of the replicated information.

Some presented solutions in this field can be found in

served references [6, 10, 13, 12, 14]. The method that

is presented in this paper has low memory and

performance overhead that is very important for some

applications [2].

Most of previous approaches proposed so far cannot

give us a satisfying result about fault detection rate and

time/space overhead. Some of the above approaches

either have high detection rate, but with great overhead

(e.g, RSCFCDV method in [6]). Nicolescu et al., [9]

claim that their method can provide full coverage

against SEUs, but the program execution speed

decreases by a threefold factor and required memory is

four times larger, which cannot be useful in our target

applications.

In [6] a control flow checking method is combined

with data duplication and detects about 99% of faults

that damage control flow and data of the program. But

because of duplicating the whole program, its memory

and performance overhead rate is about 1.8 and 1.5

that are not applicable in the mentioned applications.

This paper proposes a new solution that not only has

an acceptable fault coverage for control flow and data

error detection, but also the mean increases of both the

execution time and occupied memory are less than

other methods. The novelty of the proposed method

consists in the adopted control flow checking

technique, called Soft Error Detection using Redundant

Instructions (SEDRI), which is based on the partition

of programs into basic blocks. Firstly, it assigns a

signature to each basic block, into which the

successors of every block are encoded. Control flow

faults are detected through comparing the run-time

signature of current block with the expected value with

extra instructions induced in the middle and the end of

each block. We assessed the fault detection capabilities

of our approach on 4 simple C benchmark programs.

The results show that the hardened program is able to

detect most of the injected faults with appropriate time

and space overhead.

In the second section of this paper, the previous

works that try to detect soft errors are explained and

studied. The third section of the paper introduces the

proposed method and its detection capabilities. The

experimental results of the proposed method are

explained in the fourth section.

2. Literature Review

Transient fault occurrence in computer systems and

during their running leads to considerable damages.

For achieving reliability in computer systems, CFEs

detection is one of the effective techniques. For

detecting such errors, many techniques have been

presented since 1980 that can be divided into two

categories of hardware and software based techniques.

Figure 1. The structure of a system with watchdog processor.

In this category of methods, the control flow of a

program is checked by assigning a signature to each

basic block and sending the signatures of the beginning

and the end of basic blocks to the watchdog processor

[11]. The first research in this field carried out in 1990.

One of the primary methods for detecting transient

faults in processors are using watchdog processors.

Watchdog processor is a kind of co-processor that

detects system faults by monitoring the main processor

behavior. This idea is actually a generalization of

watchdog timer and is implemented in the system

level. Figure1 shows the general structure of a system

that uses watchdog processor [7].

In the presented software-based methods, the

general procedure of the operation is similar to the

previous methods and based on the application and

there is possibility of detecting three kinds of control

flow checking errors. Software-based methods are

usually performed using on data or code replication

and can be placed at the procedure or statement level

[1, 5, 7, 10, 13]. In these methods, program is divided

into some basic blocks and for each section, a signature

is assigned.

Basic block is a maximal set of ordered instructions

that run serially and do not contain any jump, call or

branch instruction except for the last one, also

instructions of a basic block should not be the

destination of any jump or branch except for the first

one. By dividing the program to basic blocks, it can be

represented as a graph that composes the set of V nodes

and i edges where V={v1, v2... vn} and E={e1, e2… em}.

Each node of the program graph, shows a basic block

and each edge ex shows a branch from node vi to the

node vj. As an example we show the control flow graph

of a sample program in Figure 2. In Figure 2, the

instruction number 2 is a conditional command and so

is a divider between basic blocks. The instruction

number 5 that is the destination of a conditional jump

is used for partitioning between blocks. In this way and

as it can be seen in Figure 2, the main program is

divided into three basic blocks [4].

In some special applications like space systems, due

to beam and heavy ion radiation, many soft errors lead

to disorder in control flow of a software systems and

therefore unpredictable behaviour. Many studies have

been done on the effect of protons and heavy ions

(atoms that are heavier than helium) on electronic

circuits. One of the main effects of these protons and

ions is SEU. Due to the special space environment and

Data Bus

Address Bus

Main Processor Watchdog Processor

Main Memory

An Effective Soft Error Detection Mechanism using Redundant Instructions 71

the urgent need of equipment of this environment to a

high reliability, many works have been done for

enhancing the reliability of space equipments [4].

A typical CFEs detection technique maintains one

or more run time signature registers. Let S be the set of

run time registers. S is continuously updated and

verified as the program is running and any inter-node

CFEs is detected. At compile time, the program is first

prepared and its program graph is built as shown in

Figure 2.

a) Program graph.
b) The program graph partitioned

 into basic block.

Figure 2. Program division into some basic blocks [3].

Then, signatures are assigned to each point (inside

the nodes and along the edges) in the program graph.

These signatures are values that S is expected to have

at run time when execution reaches corresponding

points in the program. At run time, S is legal if it

equals to its expected value and illegal when some

extra instructions are inserted in the program for

updating S at the beginning and end of each basic

block. These instructions continuously check the

legality of S and update it. S is assigned to its expected

value at the start of the program execution. The nature

of the update and check instructions implemented for a

particular technique determines the performance and

memory overheads associated with it.
One of the recent works in this field is RSCFC [5]

in which the relationship between blocks is extracted
and then based on the kind of the relationship, a
signature is assigned to each block in which the existed
relationships are coded. The faults in the flow control
program are detected by ANDing runtime signatures
with the information at the beginning and end of the
blocks. In CFCSS [12] method, a global variable of G
is also added to the program which is consisted of the
running block signature amount. During the program,
whenever it enters to a new basic block, G is updated
to a new amount. ECCA [1] technique, that is another
CFC method adds a prime number to each basic block
and checks control flow graph of a program.

For detecting data errors that consist 30% of soft
errors, many methods have been delivered that are
generally based on information redundancy and

repeating the running program variables and the main
difference between them is the place of comparison
instructions. One of the most prominent methods for
detecting data errors is EDDI [13]. Instruction
redundancy in the presented technique has no influence
on the program output, but it detects errors during
program running. The main idea is repeating the
instructions in registers and several variables. The
values of these two registers are compared with each
other and the error is reported in case of incoherence
(mismatch of two variables). Some comparison
instructions check the coherence between the main
running and redundant that the situation of these
instructions is very important. This comparison is
performed exactly before store instructions or jump in
the memory. Time scheduling between main
instructions and the redundant in this method is
according to list scheduling algorithm [13]. ED

4
I

method [14] is a Software Implemented Fault
Tolerance (SIFT) method that can detect transient and
temporary errors by running two different programs
but by different data collections that implement one
functionality and comparing their output. Transient
errors that cause malfunctions in one of the programs
can be detected by this method. Some of these transient
errors are the transient errors in processors and bit-flips
that occur in memories. Bit-flip is an unwanted change
in memory cells and is created based on several
elements that SEUs are one of these elements. For
example, bit-flips that happen in program code section
during program running can change program behavior
and lead to inaccurate results. By comparing inaccurate
results (caused by erroneous program) and accurate
results (caused by not erroneous programs), an error
(in this case, bit-flip) can be detected. When both main
and redundant programs produce inaccurate output,
ED

4
I technique can detect the error by continuing

program running till the program outputs differ with
each other. The point that needs to be considered here
is that this technique is not able to detect the errors that
lead the program to place in an unlimited loop and
cannot exit it (this case usually happens when the
registers like Instruction Pointer (IP) confront with
undesirable changes and the next program IP jumps to
an inaccurate place). These errors are usually called
CFE Program (the programs that disorder the accurate
program running). For detecting these errors, software
control flow checking techniques or watchdog timers
are utilized.

Another technique that is presented in [6] like the
method of this paper considers data and CFEs
simultaneously. It utilizes RSCFC for detecting CFEs
and detects data errors by using instruction repetition
and their results comparison. For detecting such errors,
the relationship between variables are extracted and
divided into two groups:

• Middle variables that are important for computing

other parameters.

• Final variables that do not participate in computing

any other parameter.

72 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

After categorizing the variables into two mentioned

groups, all of the variables are repeated and after each

writing action in final variables, an instruction should

be placed for comparing main and repeated variables.

In case of any mismatch between these two values, a

data error is detected. Figure 3 shows this method in a

sample program. In this program a, b, and c are middle

variables and d is a final one. At the end of

computation, if the final variables are not equal, an

error is reported. Therefore, comparison instruction is

only placed after one final variable during writing. In

this way, a great percentage of occurred errors on

program data are detectable and the overhead of the

redundant instructions is less than the similar

mentioned methods.

C=f(b)

a=b+c

d=a-b*c

C1=f(b1)

C2=f(b2)

a1=b1+c1

a2=b2+c2

d1=a1-b1*c1

d2=a2-b2*c2

if (d1 !=d2)

Error

a) A simple program. b) Data replicated program.

Figure 3. A Sample of software redundancy to data error detection.

 The presented method in experimental analysis has

99% fault coverage with performance and memory

overhead rate of about 1.5 and 1.8. The value of

memory and performance overhead is high because of

full duplication of variables and instructions.

3. The Proposed Technique

In this section two techniques for CFEs and data errors
detection are presented.

3.1. The Proposed Technique for Control Flow

Error Detection

In the previous section, some of the techniques for
CFEs detection based on software and hardware
redundancy were analyzed. Control flow checking
technique of this paper is delivered in the following.
With regard to the mentioned advantages of software-
based methods, the presented technique in this paper is
based on software and like the previous techniques; it
divides the program code to some basic blocks and
specifies a signature for each block.

In the proposed technique of this paper like most
methods, for detecting CFEs, a signature is assigned to
each basic block. This signature is variable Si that
shows successor blocks of the current block. For
control flow checking in basic blocks, four instructions
are defined and a unique signature is assigned. For a
program flow graph P={V, E}, we define Suc(vi) as

the set of nodes successor of vi if and only if bri, j∈E,
then the node vj∈Suc(vi) [3]. The signature si that is
assigned to basic block vi is some kind of its successor
set representation. A sample of assigning signature to
basic blocks of the program is shown in the following:

Suc(vi)={Vj, Vk, Vm, Vn} therefore
Si=1(for n)0…01(for m) 0…01(for k 0…1(for j) 0.

As it can be derived from this sample, the signature
of each basic block has N bit where N is the number of
basic blocks of the program. The n

th
 bit of signature

stands for basic block n and it is equal to 1 if basic
block n is one of the successors of block vi. In this way
the transformation information between basic blocks,
encode in the signature and can be used for control
flow checking. Figure 4 shows a sample control flow
graph and the signature of each node according to the
procedure that is described.

Four instructions are added to each basic block for
the purpose of control flow checking. The first
instruction is called control and is placed at the
beginning of each basic block. The role of this
instruction is entry verification for each basic block. If
an unwanted jump transfers the control of program to
the beginning of an illegal block, then control
instruction can detect error and stop the program.

The second one is called check and its duty is to
confirm that the destination is assigned correctly and
the present block is one of the successors of the source
block.

For checking the correctness of the accessibility,
Equation 1 is utilized:

 err = S [Sel]

S is Si variable that is updated at run time. At the
beginning of each basic block, if Selth bit (that shows
the present basic block number) equals 1, the
destination has been assigned correctly. Otherwise, err
Signal that is a sign of error is activated. Another
instruction is called update and its purpose is to update
the S variable. For updating run time signature,
Equation 2 is utilized:

 S = Si

Therefore, S variable is updated at the middle of each
basic block and is prepared to go to the next
destination. It should be noted that this amount is set to
00000…1 for the first time to go to the first basic block
and other jumps become impermissible for it.

The last instruction that is added to each basic block
is called exit and is run at the end of each basic block
and updates the amount of Sel variable to the number
that is the sign of the present basic block. Variable Sel
is an integer value which is updated at the end of each
basic block and is used in the next redundant
instructions.

The check and update instructions are placed at the
middle of each basic block and in this way some of the
errors caused by impermissible interior jumps in a
basic block are detected. By placing these instructions
at the middle of each basic block, some percentage of
illegal jumps from a specified basic block to itself is

(1)

(2)

An Effective Soft Error Detection Mechanism using Redundant Instructions 73

detected too; this case will be described in this paper.
After detecting error, err Signal equals 0 and the
program will be stopped. Control flow graph of a
sample program is shown in Figure 4-a. In this figure
the signature of each basic block is also specified
based on its successors. In this graph, basic block
interconnections and their interactions are also
specified. The structure of a basic block and its
redundant instructions is shown in Figure 4.b. In this
figure, “Sel” is shown the block number and x
represents the current block identifier.

By inserting redundant instructions, most of the
single errors due to incorrect jumps can be found. The
proof of this claim is shown later in this section.

If sel != x err

Instruction 1

.

.

.

Instruction [N/2]

Error = S [sel]

If (!sel) err and s=si

Instruction [N/2] + 1

.

.

.
Instruction N

Update sel

a) Control graph of a sample

 program.
b) The interior structure of a basic block

 by inserting redundant instructions.

Figure 4. The mechanism of control flow checking.

3.2. The Proposed Technique for Detecting

Data Errors

The goal of this mechanism is detecting the errors that
influence data and values of the program. As
mentioned in the previous section, a popular method
for Soft Error Detection of programs is data and
instructions duplication. In section 2, full duplication
methods and their improvements in fault coverage
have been reviewed. However, due to their memory
and speed overheads, it seems that full data replication
is not a good way and a limited replication scope is
more useful in general purpose applications that cost is
important. On the other hand, according to the
principle of locality in software, it is proved that 90%
of errors are embedded in 10% of the code [16].
Detecting the critical section of software is so complex
and application-based. But, by detecting this critical
part, and duplicating it, appropriate results in fault
coverage, performance and memory overhead can be
achieved.

In this section, an effective method is proposed for
detecting critical section of the program. A block is
determined and highlighted as critical because it has
the most connections with other parts of the program
and so an error in its output propagates and infects
other blocks. This block has the most important part in
program running and its duplication can detect a great
percentage of errors and is called critical block.

In Critical Block Duplication (CBD) as mentioned,
a critical block is determined from the control flow
graph and is based on the number of fan outs of each

block. A basic block that has the most number of fan
outs is critical because its results propagates to many
parts of the program and can affects other blocks in a
faulty way.

Critical block replica is consisted of separate
registers and variables and all of the instructions in it
will run independently. At the end, the results of the
original and replicated blocks are compared; in case of
any mismatch, an error is reported and the program
will stop.

Figure 5 shows a sample control flow graph. As
shown in this graph, block A is critical because it has
the most fan outs in the graph and its results propagate
to other parts and can defect them. So, in this way, the
performance and memory overhead will improve and
fault coverage will remain in an acceptable range for
real time and general purpose applications.

Figure 5. Control flow graph of a sample program.

3.3. Detection Capabilities of Control Flow

Checking Technique

By inserting control, check and update instructions in

every basic block, most of the single errors due to

incorrect jumps can be found. The proofs of this claim

are as follows:

1. One jump from vi node to vj node. When an

impermissible and unwanted jump occurs from

block vi to the block vj: In these case, when check

instruction is run in node vj, since Sel variable

amount in node vj is not updated, err variable is

equal to 0 and this error is detected. For example,

imagine in Figure 5-a, there is an unwanted jump

from the end of the first basic block to the middle of

the second one. In this case, since Sel variable at the

end of the first block is not updated, it has the

amount of zero. When the operation is reached to

check and update instructions of the second basic

block, 0
th
 bit from S variable that now has

signature_BB1 (equal to 0) is assigned to error

signal. The error signal receives the amount of 0

and the error is detected. In this case:

S=Signature_BB1=00010, S[0]=0, err=S[0]=0.

2. When an unwanted jump occurs from node vi to

itself. When an unwanted jump occurs from an

instruction before checking and updating to the

instructions after them: In this case, since S variable

has not been updated during running, error is

detected in check instruction of the next block.

74 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

Table 1. Detection capabilities comparisons between our method and other techniques (beg: begin, mid: middle, Y: yes, and N: no).

For example, imagine an unwanted jump occurs
from an instruction before check of the first block to
after update instruction of the same block. In this
state, update instruction has not been run so S
variable takes its initial amount that is 00001. At the
end of the first block, Sel variable is updated to 1
and the program enters the second basic block. In
the second basic block and in its check instruction,
the first bit of S variable is updated to 1 and it leads
to detecting the occurred error: S=Sinitial=00001,
err= S [Sel]=0.

In Table 1, different cases of illegal jumps from a basic

block to another and inside a block are considered. By

inserting redundant instructions to the beginning,

middle and end of a basic block, nine different cases

will appear. Also, illegal jumps inside a specific basic

block are shown in this table. All the cases are shown

in Table 1 and detection capabilities of different

methods of control flow checking field are compared

with each other. As it can be concluded from this table,

the detection capabilities of our method are better than

others and it can handle most of cases. The two cases

that are studied in this section are included in Table 1.

4. Experimental Evaluation

In this section, test development environment and

experimental results have been explained.

4.1. Test Environment

For analyzing the control flow and data detection

methods, the infrastructure shown in Figure 6 is

utilized that contains the following elements:

• A Background Debug Mode module that can be

utilized for both programming and debugging. It can

also be used for fault injection like [2].

• Development board phyCORE-MPC555.

• A personal computer.

Figure 6. Fault injection mechanism structure by the use of BDM

[2].

Different methods are used for fault injection. These

methods are as follows:

• Direct fault injection onto processor registers by use

of BDM module.

• Applying jump instructions (JMP, JL, JG, JNE,

JLE, JGE, CALL and RET).

• Changing jump instructions.

Fault injection operation is applied for three

benchmark programs of Bubble Sort (BS), Quick Sort

(QS) and 40×40 Matrices Multiplication (MM) that

5000 faults are injected on them. Since, by the use of

BDM, processor registers can be directly manipulated

in the method of direct fault injection onto processor

registers, it is considered to be a good solution with

much higher speed and capability and is much closer to

reality. For example, in this method, PC register can be

directly manipulated. As it is shown in [4], by

manipulating registers, exception occurrence

probability is more than 76%. Therefore, this method

does not provide an accurate test for error detection

although it is much closer to reality. As a result, the

second and third methods are more utilized for

analyzing error detection method.
Moreover, for analyzing the proposed method, data

segment, code segment bits changing are utilized
randomly. For analyzing the proposed method, fault
injection methods that explained are utilized. Table 2
shows the results of fault injection (Correct Result
(CR), Operating System (OS), Wrong Result (WR),
Time Out (TO) and Single Detection (SD)).
RSCFCDV method has the problem of memory and
performance overhead because as it was explained, in
this method, two variables of n+1 defined, where n is
the number of basic blocks and on the other hand, it
inserts seven instructions to each basic block for CFEs
detection. The volume of each basic block is about 3 to
5 instructions and inserting 5 redundant instructions
and two n+1 bits variables to each basic block is not
reasonable. On the other hand, it duplicates the whole
program which is not applicable in many applications
that cannot tolerate much overhead like.

In the proposed idea of this paper for control flow

checking, four instructions are inserted in each basic

block and an n bit variable is assigned as the signature

as well as a one bit variable called Sel which is saved

for operation. For data error detection, CBD method

duplicates only one critical block and in this way it can

detect a large amount of errors with very low memory

and performance overhead.

By comparing size and speed of resisted programs

with the normal ones, the results of Table 2 shows that

proposed technique has performance and memory

Beg-Beg

(Inter

Blocks)

Beg-Mid

(Inter

Blocks)

Beg-End

(Inter

Blocks)

Mid-Beg

(Inter

Blocks)

Mid-Mid

(Inter

Blocks)

Mid-End

(Inter

Blocks)

End-Beg

(Inter

Blocks)

End-Mid

(Inter

Blocks)

End-End

(Inter

Blocks)

Beg-End

(Intra

Blocks)

End-Beg

(Intra

Blocks)

CFCSS Y N N Y N N Y N Y N N

ECCA N N Y N N Y Y Y Y N N

RSCFC N N N Y Y N N Y N N N

SEDRI Y N Y Y N Y Y Y Y Y Y

An Effective Soft Error Detection Mechanism using Redundant Instructions 75

overhead of about 46% and 55% less than RSCFCDV

method. On the other hand its fault coverage is 7% less

than RSCFCDV because of the limited scope of

duplication that is used in it. This amount of loss in

fault coverage is acceptable in comparison with the

gain of memory and performance overhead that are

more important in embedded and real time

applications. These kinds of systems have limitations

in memory capacity and runtime that should be

considered. The average fault coverage of traditional

methods of Soft Error Detection is in about 96.43% as

reported in [10, 11, 13].

Table 2. Results of fault injection in comparison with RSCFCDV
method.

Benchmark CR OS TO WR SD

BS 40.67 23.74 2.18 33.41 0

BS-RSCFCDV 42.56 31.87 1.75 1.09 22.73

BS-SEDRI 40.49 32.76 2.85 9.55 14.35

MM 37.86 25.12 2.36 34.66 0

MM-RSCFCDV 44.97 29.65 1.06 1.03 23.29

MM-SEDRI 42.48 30.09 1.29 8.87 17.27

QS 42.73 22.12 1.50 33.65 0

QS-RSCFCDV 43.87 34.21 2.03 0.97 18.92

QS-SEDRI 42.98 30.76 2.98 7.48 15.8

According to the effects of injected faults in the

program, five different cases are produced:

• CR: The fault doesn’t change the final result of the
program.

• OS: the fault is detected by operating systems and

its exceptions.

• WR: The fault changes the final result of the

program and produces a wrong output.

• TO: The fault change program execution time and it

does not end in a specified amount of time.

• SD: The fault is detected by the instructions that are

used for control flow checking.

The fault coverage of every method is equal to its SD

percentage and the other kinds of detections like TO

and OS is not the part of technique’s detection

capability.

Table 3 shows the performance and memory

overhead of the proposed method. As it can be seen,

this technique is much better than RSCFCDV in these

parameters.

Table 3. The comparison between memory and performance
overhead of SEDRI method and RSCFCDV method.

 Memory Overhead Performance Overhead

Program RSCFCDV SEDRI RSCFCDV SEDRI

BS 1.89 1.26 1.77 1.16

QS 1.91 1.38 1.23 1.09

MM 1.93 1.43 1.83 1.2

Average 1.91 1.36 1.61 1.15

5. Conclusions

Using COTS equipment is one of the appropriate

choices in a wide range of applications such as space

missions. However, without considering appropriate

redundancy preparations in different levels (hardware,

software, time, and information), this equipment

cannot be utilized in space missions that are imposed

to lots of dangers. In this paper, a new software

implemented technique for Soft Error Detection is

presented. This technique has two parts for control and

data error detection. The main novelty of this method

is in its low memory and performance overhead that is

combined with an acceptable amount of fault coverage

for these applications. In comparison with RSCFCDV

technique that is presented in this field, SEDRI has

55% and 46% improvement in memory and

performance overhead that is very important and

valuable in the mentioned applications.

Acknowledgements

This paper was supported by the research institute for

ICT-ITRC of Iran.

References

[1] Alkhalifa Z., Nair S., Krishnamurthy N., and

Abraham A., “Design and Evaluation of System-

Level Checks for On-line Control Flow Error

Detection,” IEEE Transactions on Parallel

Distributed Systems, vol. 10, no. 6, pp. 627-641,

1999.

[2] Asghari A., Pedram H., Taheri H., and Khademi

M., “A New Background Debug Mode Based

Technique for Fault Injection in Embedded

Systems,” International Review on Modeling and

Simulation, vol. 3, no. 3, pp. 415-422, 2010.

[3] Asghari A., Taheri H., Pedram H., and Kaynak

O., “Software-based Control Flow Checking

Against Transient Faults in Industrial

Environments,” IEEE Transactions on Industrial

Informatics, vol. no. 99, pp. 1, 2013.

[4] Baumann C., “Soft Errors in Commercial

Semiconductor Technology: Overview and

Scaling Trends,” IEEE Reliability Physics

Tutorial Notes, Reliability Fundamentals, IEEE

Press, USA, 2002.

[5] Li A. and Hong B., “On-line Control Flow Error

Detection using Relationship Signatures Among

Basic Blocks,” Elsevier journal of Computers

and Electrical Engineering, vol. 36, no.1, pp.

132-141, 2010.

[6] Li A. and Hong B., “Software Implemented

Transient Fault Detection in Space Computer,”

Elsevier journal of Aerospace Science and

Technology, vol. 11, no. 2, pp. 245-252, 2007.

[7] Mahmood A., “Concurrent Error Detection using

Watchdog Processors-A Survey,” IEEE

Transaction on Computers, vol. 37, no. 2, pp.

160-174, 1988.

[8] Mammeri S. and Beghdad A., “On Handling

Real-time Communications in MAC Protocol,”

76 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

the International Arab Journal of Infoormation

Technology, vol. 9, no. 5, pp. 428-435, 2012.

[9] Nicolescu B., Savaria Y., and Velazco R.,

“Software Detection Mechanisms Providing Full

Coverage Against Single Bit-flip Faults,” IEEE

Transactions on Nuclear science, vol. 51, no. 6,

pp. 3510-3518, 2004.

[10] Nicolescu B. and Velazco R., “Detecting Soft

Errors by a Purely Software Approach: Method,

Tools and Experimental Results,” in Proceedings

of the Design, Automation and Test in Europe

Conference and Exhibition, Munich, German, pp.

57-62, 2003.

[11] Nicolescu B., Savaria Y., and Velazco R., “Sied:

Software Implemented Error Detection,” in

Proceedings of the 18
th
 IEEE International

Symposium on Defect and Fault Tolerance in

VLSI Systems, Boston, USA, pp. 589-596, 2003.

[12] Oh N., Shirvani P., and McClusky J., “Control

Flow Checking by Software Signature,” IEEE

Transaction on Reliability, vol. 51, no. 1, pp.

111-122, 2002.

[13] Oh N., Shirvani P., and McCluskey J., “Error

Detection by Duplicated Instructions in Super-

Scalar Processors,” IEEE Transaction on

Reliability, vol. 51, no. 1, pp. 63-75, 2002.

[14] Oh N., Subhasish M., and McCluskey J., “ED4I:

Error Detection by Diverse Data and Duplicated

Instructions,” IEEE Transaction on Computers,

vol. 51, no. 2, pp. 180-199, 2002.

[15] Reis A., Chang J., Vachharajani N., Rangan R.,

and August I., “Software Implemented Fault

Tolerance,” in Proceedings of the International

Symposium on Code Generation and

Optimization, Washington, USA, pp. 243-254,
2005.

[16] Tanenbaum S., Herder N., and Bos H., “Can We

Make Operating System Reliable and Secure?,”

IEEE Magazine, vol. 39, no. 5, pp. 44-51, 2006.

Seyyed Amir Asghari He received

his BSc degree in 2007 (hardware

engineering major), MSc and PhD in

2009 and 2013 respectively

(computer architecture major) from

Amirkabir University of

Technology. In 2013, He was a

visiting researcher in Mechatronics Research Center,

Bogazici University, Turkey. His current research

interests include fault tolerant design, real time

embedded system design, and operating systems.

Hassan Taheri received his BS

degree from Amirkabir University of

Technology in 1975, MS and PhD

degrees in electrical engineering in

1975 and 1988 respectively from

University of Manchester Institute of

Science and Technology. He has

served as a faculty member in the Electrical

Engineering Department in Amirkabir University of

Technology. He teaches courses in data

communication network, computer communication,

teletraffic engineering, electronic switching, digital

communications, telephone switching, probability and

statistics.

