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Abstract: Computer Systems which operate in space environment are Subject to different radiation phenomena that lead to 
soft errors and can cause unpredictable behaviours of computer-based systems. Commercial Off-The Shelf (COTS) equipment 

which is commonly used in space missions cannot tolerate some threats such as Single Event Upsets (SEU). Therefore, there 

are some considerations in resisting this equipment against possible threats. In this paper, a software instruction level method 

that is called Soft Error Detection using Redundant Instructions (SEDRI) is provided to detect soft errors which influence 

control flow and program data. This method is evaluated by fault injection on several C benchmark programs. The 

experimental results show that without protecting a program against control flow and data errors 34% of them affect the 

program and damage it; but, by using our method, this rate is decreased to about 11%. Comparing to previous presented 

techniques, SEDRI method has a considerable improvement in performance and memory overhead, i.e., 46% and 55% 

respectively, and its fault coverage decrease about 9%. 
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1. Introduction 

Scaling of Very Large Scale Integration (VLSI) 

technologies, coupled with increased integrated circuit 

complexity, will strongly increase the occurrence of 

transient faults (also known as soft errors) [9]. 

Particularly, this is true with respect to computers 

operating in space environment, which are subject to 

different radiation phenomena. Transient faults, unlike 

manufacturing or design faults do not occur 

consistently. Instead, these faults are caused by 

external events, such as electromagnetic interferences, 

power glitches, or highly energized particles striking 

the chip. These events do not cause permanent physical 

damage to the chip, but can alter signal transfers or 

stored data and thus cause incorrect program execution 

[15]. Single Event Upsets (SEUs) is one of the most 

common reasons of transient faults in space missions 

that use Commercial Off-The Shelf (COTS) 

equipment. 

Transient faults have caused lots of significant 

failures for example FengYun-1(B) meteorology 

satellite launched in China in 1990 went out of 

commission ahead of schedule because of attitude 

control system’s losing control caused by SEUs [6, 

15]. In 2000, Sun Microsystems acknowledged that 

cosmic rays interfered with cache memories and 

caused crashes in server systems at major customer 

sites, including America Online, eBay, and dozens of 

others [6]. 

Generally, hardware or software redundancy can be 

introduced   to    handle    transient    faults.    But,   the  

 
hardware-based methods are expensive, since they 

require  replicated  hardware  modules  or  developing 

custom hardware equipped with error detection 

mechanisms that verify operation correctness on line. 

When development cost is a major concern, as in low 

volume applications, designers tend to adopt 

commercially available hardware, even in the case of 

safety-critical applications. In this context, software 

based fault tolerance is an attractive solution, since it 

allows implementing dependable systems without 

incurring the high costs associated with developing 

custom hardware-based tolerance techniques not 

readily available in COTS products [9]. 

Transient faults induced by hardware have an 

impact on software running on it, which causes either 

control flow or data errors in software. Control Flow 

Errors (CFEs) change the control flow of the 

application and can be defined to be any fault that 

causes a divergence from the sequence of program 

counter values seen during the fault-free execution of 

the application. For these kinds of faults, software 

techniques proposed are mainly based on signature 

analysis, where a unique signature is associated to a 

basic block at pre-compile time. During program 

execution, the same signature is computed and 

compared with a reference signature [1, 5, 7, 8, 9, 

11,12, 13]. 

On the other side, data errors affect the values of 

data variables, registers, or memory locations used by 

the application [10]. To address this kind of faults, the 

proposed approaches rely on information redundancy 

to store multiple copies of the same information and on 
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the introduction of consistency checks whose purpose 

is to verify the coherence of the replicated information. 

Some presented solutions in this field can be found in 

served references [6, 10, 13, 12, 14]. The method that 

is presented in this paper has low memory and 

performance overhead that is very important for some 

applications [2]. 

Most of previous approaches proposed so far cannot 

give us a satisfying result about fault detection rate and 

time/space overhead. Some of the above approaches 

either have high detection rate, but with great overhead 

(e.g, RSCFCDV method in [6]). Nicolescu et al., [9] 

claim that their method can provide full coverage 

against SEUs, but the program execution speed 

decreases by a threefold factor and required memory is 

four times larger, which cannot be useful in our target 

applications.  

In [6] a control flow checking method is combined 

with data duplication and detects about 99% of faults 

that damage control flow and data of the program. But 

because of duplicating the whole program, its memory 

and performance overhead rate is about 1.8 and 1.5 

that are not applicable in the mentioned applications.  

This paper proposes a new solution that not only has 

an acceptable fault coverage for control flow and data 

error detection, but also the mean increases of both the 

execution time and occupied memory are less than 

other methods. The novelty of the proposed method 

consists in the adopted control flow checking 

technique, called Soft Error Detection using Redundant 

Instructions (SEDRI), which is based on the partition 

of programs into basic blocks. Firstly, it assigns a 

signature to each basic block, into which the 

successors of every block are encoded. Control flow 

faults are detected through comparing the run-time 

signature of current block with the expected value with 

extra instructions induced in the middle and the end of 

each block. We assessed the fault detection capabilities 

of our approach on 4 simple C benchmark programs. 

The results show that the hardened program is able to 

detect most of the injected faults with appropriate time 

and space overhead. 

In the second section of this paper, the previous 

works that try to detect soft errors are explained and 

studied. The third section of the paper introduces the 

proposed method and its detection capabilities. The 

experimental results of the proposed method are 

explained in the fourth section.    

2. Literature Review  

Transient fault occurrence in computer systems and 

during their running leads to considerable damages. 

For achieving reliability in computer systems, CFEs 

detection is one of the effective techniques. For 

detecting such errors, many techniques have been 

presented since 1980 that can be divided into two 

categories of hardware and software based techniques.  

    

Figure 1. The structure of a system with watchdog processor. 

In this category of methods, the control flow of a 

program is checked by assigning a signature to each 

basic block and sending the signatures of the beginning 

and the end of basic blocks to the watchdog processor 

[11]. The first research in this field carried out in 1990. 

One of the primary methods for detecting transient 

faults in processors are using watchdog processors. 

Watchdog processor is a kind of co-processor that 

detects system faults by monitoring the main processor 

behavior. This idea is actually a generalization of 

watchdog timer and is implemented in the system 

level. Figure1 shows the general structure of a system 

that uses watchdog processor [7]. 

In the presented software-based methods, the 

general procedure of the operation is similar to the 

previous methods and based on the application and 

there is possibility of detecting three kinds of control 

flow checking errors. Software-based methods are 

usually performed using on data or code replication 

and can be placed at the procedure or statement level 

[1, 5, 7, 10, 13]. In these methods, program is divided 

into some basic blocks and for each section, a signature 

is assigned.  

Basic block is a maximal set of ordered instructions 

that run serially and do not contain any jump, call or 

branch instruction except for the last one, also 

instructions of a basic block should not be the 

destination of any jump or branch except for the first 

one. By dividing the program to basic blocks, it can be 

represented as a graph that composes the set of V nodes 

and i edges where V={v1, v2... vn} and E={e1, e2… em}. 

Each node of the program graph, shows a basic block 

and each edge ex shows a branch from node vi to the 

node vj. As an example we show the control flow graph 

of a sample program in Figure 2.  In Figure 2, the 

instruction number 2 is a conditional command and so 

is a divider between basic blocks. The instruction 

number 5 that is the destination of a conditional jump 

is used for partitioning between blocks. In this way and 

as it can be seen in Figure 2, the main program is 

divided into three basic blocks [4]. 

In some special applications like space systems, due 

to beam and heavy ion radiation, many soft errors lead 

to disorder in control flow of a software systems and 

therefore unpredictable behaviour. Many studies have 

been done on the effect of protons and heavy ions 

(atoms that are heavier than helium) on electronic 

circuits. One of the main effects of these protons and 

ions is SEU. Due to the special space environment and 

Data Bus 
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Main Processor Watchdog Processor  

Main Memory 
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the urgent need of equipment of this environment to a 

high reliability, many works have been done for 

enhancing the reliability of space equipments [4]. 

A typical CFEs detection technique maintains one 

or more run time signature registers. Let S be the set of 

run time registers. S is continuously updated and 

verified as the program is running and any inter-node 

CFEs is detected. At compile time, the program is first 

prepared and its program graph is built as shown in 

Figure 2. 
 

  

a) Program graph. 
b) The program graph partitioned 

        into basic block. 

Figure 2. Program division into some basic blocks [3]. 

Then, signatures are assigned to each point (inside 

the nodes and along the edges) in the program graph. 

These signatures are values that S is expected to have 

at run time when execution reaches corresponding 

points in the program. At run time, S is legal if it 

equals to its expected value and illegal when some 

extra instructions are inserted in the program for 

updating S at the beginning and end of each basic 

block. These instructions continuously check the 

legality of S and update it. S is assigned to its expected 

value at the start of the program execution. The nature 

of the update and check instructions implemented for a 

particular technique determines the performance and 

memory overheads associated with it. 
One of the recent works in this field is RSCFC [5] 

in which the relationship between blocks is extracted 
and then based on the kind of the relationship, a 
signature is assigned to each block in which the existed 
relationships are coded. The faults in the flow control 
program are detected by ANDing runtime signatures 
with the information at the beginning and end of the 
blocks. In CFCSS [12] method, a global variable of G 
is also added to the program which is consisted of the 
running block signature amount. During the program, 
whenever it enters to a new basic block, G is updated 
to a new amount. ECCA [1] technique, that is another 
CFC method adds a prime number to each basic block 
and checks control flow graph of a program.  

For detecting data errors that consist 30% of soft 
errors, many methods have been delivered that are 
generally based on information redundancy and 

repeating the running program variables and the main 
difference between them is the place of comparison 
instructions. One of the most prominent methods for 
detecting data errors is EDDI [13]. Instruction 
redundancy in the presented technique has no influence 
on the program output, but it detects errors during 
program running. The main idea is repeating the 
instructions in registers and several variables. The 
values of these two registers are compared with each 
other and the error is reported in case of incoherence 
(mismatch of two variables). Some comparison 
instructions check the coherence between the main 
running and redundant that the situation of these 
instructions is very important. This comparison is 
performed exactly before store instructions or jump in 
the memory. Time scheduling between main 
instructions and the redundant in this method is 
according to list scheduling algorithm [13]. ED

4
I 

method [14] is a Software Implemented Fault 
Tolerance (SIFT) method that can detect transient and 
temporary errors by running two different programs 
but by different data collections that implement one 
functionality and comparing their output. Transient 
errors that cause malfunctions in one of the programs 
can be detected by this method. Some of these transient 
errors are the transient errors in processors and bit-flips 
that occur in memories. Bit-flip is an unwanted change 
in memory cells and is created based on several 
elements that SEUs are one of these elements. For 
example, bit-flips that happen in program code section 
during program running can change program behavior 
and lead to inaccurate results. By comparing inaccurate 
results (caused by erroneous program) and accurate 
results (caused by not erroneous programs), an error 
(in this case, bit-flip) can be detected. When both main 
and redundant programs produce inaccurate output, 
ED

4
I technique can detect the error by continuing 

program running till the program outputs differ with 
each other. The point that needs to be considered here 
is that this technique is not able to detect the errors that 
lead the program to place in an unlimited loop and 
cannot exit it (this case usually happens when the 
registers like Instruction Pointer (IP) confront with 
undesirable changes and the next program IP jumps to 
an inaccurate place). These errors are usually called 
CFE Program (the programs that disorder the accurate 
program running). For detecting these errors, software 
control flow checking techniques or watchdog timers 
are utilized.  

Another technique that is presented in [6] like the 
method of this paper considers data and CFEs 
simultaneously. It utilizes RSCFC for detecting CFEs 
and detects data errors by using instruction repetition 
and their results comparison. For detecting such errors, 
the relationship between variables are extracted and 
divided into two groups: 

• Middle variables that are important for computing 

other parameters. 

• Final variables that do not participate in computing 

any other parameter. 
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After categorizing the variables into two mentioned 

groups, all of the variables are repeated and after each 

writing action in final variables, an instruction should 

be placed for comparing main and repeated variables. 

In case of any mismatch between these two values, a 

data error is detected. Figure 3 shows this method in a 

sample program. In this program a, b, and c are middle 

variables and d is a final one. At the end of 

computation, if the final variables are not equal, an 

error is reported. Therefore, comparison instruction is 

only placed after one final variable during writing. In 

this way, a great percentage of occurred errors on 

program data are detectable and the overhead of the 

redundant instructions is less than the similar 

mentioned methods.  

C=f(b)

a=b+c

d=a-b*c

 

C1=f(b1)

C2=f(b2)

a1=b1+c1

a2=b2+c2

d1=a1-b1*c1

d2=a2-b2*c2

if  (d1 !=d2)

Error
 

a) A simple program.     b) Data replicated program. 

Figure 3. A Sample of software redundancy to data error detection. 

 The presented method in experimental analysis has 

99% fault coverage with performance and memory 

overhead rate of about 1.5 and 1.8. The value of 

memory and performance overhead is high because of 

full duplication of variables and instructions.  

3. The Proposed Technique 

In this section two techniques for CFEs and data errors 
detection are presented. 

3.1. The Proposed Technique for Control Flow 

Error Detection 

In the previous section, some of the techniques for 
CFEs detection based on software and hardware 
redundancy were analyzed. Control flow checking 
technique of this paper is delivered in the following. 
With regard to the mentioned advantages of software-
based methods, the presented technique in this paper is 
based on software and like the previous techniques; it 
divides the program code to some basic blocks and 
specifies a signature for each block. 

In the proposed technique of this paper like most 
methods, for detecting CFEs, a signature is assigned to 
each basic block. This signature is variable Si that 
shows successor blocks of the current block. For 
control flow checking in basic blocks, four instructions 
are defined and a unique signature is assigned. For a 
program flow graph P={V, E}, we define Suc(vi) as 

the set of nodes successor of vi if and only if bri, j∈E, 
then the node vj∈Suc(vi) [3]. The signature si that is 
assigned to basic block vi is some kind of its successor 
set representation. A sample of assigning signature to 
basic blocks of the program is shown in the following: 

Suc(vi)={Vj, Vk, Vm, Vn}   therefore 
Si=1(for n)0…01(for m) 0…01(for k  0…1(for j) 0. 

As it can be derived from this sample, the signature 
of each basic block has N bit where N is the number of 
basic blocks of the program. The n

th
 bit of signature 

stands for basic block n and it is equal to 1 if basic 
block n is one of the successors of block vi. In this way 
the transformation information between basic blocks, 
encode in the signature and can be used for control 
flow checking. Figure 4 shows a sample control flow 
graph and the signature of each node according to the 
procedure that is described. 

Four instructions are added to each basic block for 
the purpose of control flow checking. The first 
instruction is called control and is placed at the 
beginning of each basic block. The role of this 
instruction is entry verification for each basic block. If 
an unwanted jump transfers the control of program to 
the beginning of an illegal block, then control 
instruction can detect error and stop the program. 

The second one is called check and its duty is to 
confirm that the destination is assigned correctly and 
the present block is one of the successors of the source 
block. 

For checking the correctness of the accessibility, 
Equation 1 is utilized:    

                                    err = S [Sel] 

S is Si variable that is updated at run time. At the 
beginning of each basic block, if Selth bit (that shows 
the present basic block number) equals 1, the 
destination has been assigned correctly. Otherwise, err 
Signal that is a sign of error is activated. Another 
instruction is called update and its purpose is to update 
the S variable. For updating run time signature, 
Equation 2 is utilized: 

                                               S = Si 

Therefore, S variable is updated at the middle of each 
basic block and is prepared to go to the next 
destination. It should be noted that this amount is set to 
00000…1 for the first time to go to the first basic block 
and other jumps become impermissible for it.  

The last instruction that is added to each basic block 
is called exit and is run at the end of each basic block 
and updates the amount of Sel variable to the number 
that is the sign of the present basic block. Variable Sel 
is an integer value which is updated at the end of each 
basic block and is used in the next redundant 
instructions. 

The check and update instructions are placed at the 
middle of each basic block and in this way some of the 
errors caused by impermissible interior jumps in a 
basic block are detected. By placing these instructions 
at the middle of each basic block, some percentage of 
illegal jumps from a specified basic block to itself is 

(1) 

(2) 
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detected too; this case will be described in this paper. 
After detecting error, err Signal equals 0 and the 
program will be stopped. Control flow graph of a 
sample program is shown in Figure 4-a. In this figure 
the signature of each basic block is also specified 
based on its successors. In this graph, basic block 
interconnections and their interactions are also 
specified. The structure of a basic block and its 
redundant instructions is shown in Figure 4.b. In this 
figure, “Sel” is shown the block number and x 
represents the current block identifier. 

By inserting redundant instructions, most of the 
single errors due to incorrect jumps can be found. The 
proof of this claim is shown later in this section. 

 

If sel != x err

Instruction 1

.

.

.

Instruction [N/2]

Error = S [sel]

If (!sel) err and s=si

Instruction [N/2] + 1

.

.

.
Instruction N

Update sel

 
a) Control graph of a sample 

              program. 
b) The interior structure of a basic block 

   by inserting redundant instructions. 

Figure 4. The mechanism of control flow checking. 

3.2. The Proposed Technique for Detecting 

Data Errors 

The goal of this mechanism is detecting the errors that 
influence data and values of the program. As 
mentioned in the previous section, a popular method 
for Soft Error Detection of programs is data and 
instructions duplication. In section 2, full duplication 
methods and their improvements in fault coverage 
have been reviewed. However, due to their memory 
and speed overheads, it seems that full data replication 
is not a good way and a limited replication scope is 
more useful in general purpose applications that cost is 
important. On the other hand, according to the 
principle of locality in software, it is proved that 90% 
of errors are embedded in 10% of the code [16]. 
Detecting the critical section of software is so complex 
and application-based. But, by detecting this critical 
part, and duplicating it, appropriate results in fault 
coverage, performance and memory overhead can be 
achieved. 

In this section, an effective method is proposed for 
detecting critical section of the program. A block is 
determined and highlighted as critical because it has 
the most connections with other parts of the program 
and so an error in its output propagates and infects 
other blocks. This block has the most important part in 
program running and its duplication can detect a great 
percentage of errors and is called critical block. 

In Critical Block Duplication (CBD) as mentioned, 
a critical block is determined from the control flow 
graph and is based on the number of fan outs of each 

block. A basic block that has the most number of fan 
outs is critical because its results propagates to many 
parts of the program and can affects other blocks in a 
faulty way. 

Critical block replica is consisted of separate 
registers and variables and all of the instructions in it 
will run independently. At the end, the results of the 
original and replicated blocks are compared; in case of 
any mismatch, an error is reported and the program 
will stop. 

Figure 5 shows a sample control flow graph. As 
shown in this graph, block A is critical because it has 
the most fan outs in the graph and its results propagate 
to other parts and can defect them. So, in this way, the 
performance and memory overhead will improve and 
fault coverage will remain in an acceptable range for 
real time and general purpose applications. 
 

 
Figure 5. Control flow graph of a sample program. 

3.3. Detection Capabilities of Control Flow 

Checking Technique 

By inserting control, check and update instructions in 

every basic block, most of the single errors due to 

incorrect jumps can be found. The proofs of this claim 

are as follows: 

1. One jump from vi node to vj node. When an 

impermissible and unwanted jump occurs from 

block vi to the block vj: In these case, when check 

instruction is run in node vj, since Sel variable 

amount in node vj is not updated, err variable is 

equal to 0 and this error is detected. For example, 

imagine in Figure 5-a, there is an unwanted jump 

from the end of the first basic block to the middle of 

the second one. In this case, since Sel variable at the 

end of the first block is not updated, it has the 

amount of zero. When the operation is reached to 

check and update instructions of the second basic 

block, 0
th
 bit from S variable that now has 

signature_BB1 (equal to 0) is assigned to error 

signal. The error signal receives the amount of 0 

and the error is detected. In this case: 

S=Signature_BB1=00010, S[0]=0, err=S[0]=0. 

2. When an unwanted jump occurs from node vi to 

itself. When an unwanted jump occurs from an 

instruction before checking and updating to the 

instructions after them: In this case, since S variable 

has not been updated during running, error is 

detected in check instruction of the next block.  
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Table 1. Detection capabilities comparisons between our method and other techniques (beg: begin, mid: middle, Y: yes, and N: no). 

 
For example, imagine an unwanted jump occurs 
from an instruction before check of the first block to 
after update instruction of the same block. In this 
state, update instruction has not been run so S 
variable takes its initial amount that is 00001. At the 
end of the first block, Sel variable is updated to 1 
and the program enters the second basic block. In 
the second basic block and in its check instruction, 
the first bit of S variable is updated to 1 and it leads 
to detecting the occurred error: S=Sinitial=00001, 
err= S [Sel]=0. 

In Table 1, different cases of illegal jumps from a basic 

block to another and inside a block are considered. By 

inserting redundant instructions to the beginning, 

middle and end of a basic block, nine different cases 

will appear. Also, illegal jumps inside a specific basic 

block are shown in this table. All the cases are shown 

in Table 1 and detection capabilities of different 

methods of control flow checking field are compared 

with each other. As it can be concluded from this table, 

the detection capabilities of our method are better than 

others and it can handle most of cases. The two cases 

that are studied in this section are included in Table 1.  

 

4. Experimental Evaluation 

In this section, test development environment and 

experimental results have been explained. 

4.1. Test Environment 

For analyzing the control flow and data detection 

methods, the infrastructure shown in Figure 6 is 

utilized that contains the following elements: 

• A Background Debug Mode module that can be 

utilized for both programming and debugging. It can 

also be used for fault injection like [2]. 

• Development board phyCORE-MPC555. 

• A personal computer. 

 
Figure 6. Fault injection mechanism structure by the use of BDM 

[2]. 

Different methods are used for fault injection. These 

methods are as follows: 

• Direct fault injection onto processor registers by use 

of BDM module. 

• Applying jump instructions (JMP, JL, JG, JNE, 

JLE, JGE, CALL and RET). 

• Changing jump instructions. 

Fault injection operation is applied for three 

benchmark programs of Bubble Sort (BS), Quick Sort 

(QS) and 40×40 Matrices Multiplication (MM) that 

5000 faults are injected on them. Since, by the use of 

BDM, processor registers can be directly manipulated 

in the method of direct fault injection onto processor 

registers, it is considered to be a good solution with 

much higher speed and capability and is much closer to 

reality. For example, in this method, PC register can be 

directly manipulated. As it is shown in [4], by 

manipulating registers, exception occurrence 

probability is more than 76%. Therefore, this method 

does not provide an accurate test for error detection 

although it is much closer to reality. As a result, the 

second and third methods are more utilized for 

analyzing error detection method. 
Moreover, for analyzing the proposed method, data 

segment, code segment bits changing are utilized 
randomly. For analyzing the proposed method, fault 
injection methods that explained are utilized. Table 2 
shows the results of fault injection (Correct Result 
(CR), Operating System (OS), Wrong Result (WR), 
Time Out (TO) and Single Detection (SD)). 
RSCFCDV method has the problem of memory and 
performance overhead because as it was explained, in 
this method, two variables of n+1 defined, where n is 
the number of basic blocks and on the other hand, it 
inserts seven instructions to each basic block for CFEs 
detection. The volume of each basic block is about 3 to 
5 instructions and inserting 5 redundant instructions 
and two n+1 bits variables to each basic block is not 
reasonable. On the other hand, it duplicates the whole 
program which is not applicable in many applications 
that cannot tolerate much overhead like. 

In the proposed idea of this paper for control flow 

checking, four instructions are inserted in each basic 

block and an n bit variable is assigned as the signature 

as well as a one bit variable called Sel which is saved 

for operation. For data error detection, CBD method 

duplicates only one critical block and in this way it can 

detect a large amount of errors with very low memory 

and performance overhead.   

By comparing size and speed of resisted programs 

with the normal ones, the results of Table 2 shows that 

proposed technique has performance and memory 

 
Beg-Beg 

(Inter 

Blocks) 

Beg-Mid 

(Inter 

Blocks) 

Beg-End 

(Inter 

Blocks) 

Mid-Beg 

(Inter 

Blocks) 

Mid-Mid 

(Inter 

Blocks) 

Mid-End 

(Inter 

Blocks) 

End-Beg 

(Inter 

Blocks) 

End-Mid 

(Inter 

Blocks) 

End-End 

(Inter 

Blocks) 

Beg-End 

(Intra 

Blocks) 

End-Beg 

(Intra 

Blocks) 

CFCSS Y N N Y N N Y N Y N N 

ECCA N N Y N N Y Y Y Y N N 

RSCFC N N N Y Y N N Y N N N 

SEDRI Y N Y Y N Y Y Y Y Y Y 
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overhead of about 46% and 55% less than RSCFCDV 

method. On the other hand its fault coverage is 7% less 

than RSCFCDV because of the limited scope of 

duplication that is used in it. This amount of loss in 

fault coverage is acceptable in comparison with the 

gain of memory and performance overhead that are 

more important in embedded and real time 

applications. These kinds of systems have limitations 

in memory capacity and runtime that should be 

considered. The average fault coverage of traditional 

methods of Soft Error Detection is in about 96.43% as 

reported in [10, 11, 13]. 
 

Table 2. Results of fault injection in comparison with RSCFCDV 
method.  

Benchmark CR OS TO WR SD 

BS 40.67 23.74 2.18 33.41 0 

BS-RSCFCDV 42.56 31.87 1.75 1.09 22.73 

BS-SEDRI 40.49 32.76 2.85 9.55 14.35 

MM 37.86 25.12 2.36 34.66 0 

MM-RSCFCDV 44.97 29.65 1.06 1.03 23.29 

MM-SEDRI 42.48 30.09 1.29 8.87 17.27 

QS 42.73 22.12 1.50 33.65 0 

QS-RSCFCDV 43.87 34.21 2.03 0.97 18.92 

QS-SEDRI 42.98 30.76 2.98 7.48 15.8 

 

According to the effects of injected faults in the 

program, five different cases are produced:  

• CR: The fault doesn’t change the final result of the 
program. 

• OS: the fault is detected by operating systems and 

its exceptions. 

• WR: The fault changes the final result of the 

program and produces a wrong output. 

• TO: The fault change program execution time and it 

does not end in a specified amount of time. 

• SD: The fault is detected by the instructions that are 

used for control flow checking. 

The fault coverage of every method is equal to its SD 

percentage and the other kinds of detections like TO 

and OS is not the part of technique’s detection 

capability. 

Table 3 shows the performance and memory 

overhead of the proposed method. As it can be seen, 

this technique is much better than RSCFCDV in these 

parameters. 
    

Table 3. The comparison between memory and performance 
overhead of SEDRI method and RSCFCDV method.  

 Memory Overhead Performance Overhead 

Program RSCFCDV SEDRI RSCFCDV SEDRI 

BS 1.89 1.26 1.77 1.16 

QS 1.91 1.38 1.23 1.09 

MM 1.93 1.43 1.83 1.2 

Average 1.91 1.36 1.61 1.15 

5. Conclusions 

Using COTS equipment is one of the appropriate 

choices in a wide range of applications such as space 

missions. However, without considering appropriate 

redundancy preparations in different levels (hardware, 

software, time, and information), this equipment 

cannot be utilized in space missions that are imposed 

to lots of dangers. In this paper, a new software 

implemented technique for Soft Error Detection is 

presented. This technique has two parts for control and 

data error detection. The main novelty of this method 

is in its low memory and performance overhead that is 

combined with an acceptable amount of fault coverage 

for these applications.  In comparison with RSCFCDV 

technique that is presented in this field, SEDRI has 

55% and 46% improvement in memory and 

performance overhead that is very important and 

valuable in the mentioned applications.  
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