
The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008 183

Self Ranking and Evaluation Approach for
Focused Crawler Based on Multi-Agent System

Hesham Ali
Computers Engineering and Systems Department, Mansoura University, Egypt

Abstract: The need of better way of retrieving information and dealing with the increasing complexity and volume of
information for users is an important research theme. Retrieving information from the www via search engine may be
deliberate as the most significant one. Most of the recent efforts that had been done in this area suggest a better solution for
general-purpose search engine limitations. That leads to a new generation of search engines called vertical-search engines.
However, all current focused crawlers; (crucial component within vertical search engine) crawling strategies introduced high
penalties as they consume network bandwidth and resources of hosting servers. This paper introduces a new approach for
focused crawling that integrates evidence from both focused crawling and intelligent multi-agent technology. It will help in
distributing the computation among data sites, hence overcoming the drawbacks of traditional approaches. We evaluate its
performance compared to the client/server-based computation model from perspectives of amount of data transfer and
execution time through both simulation and analytical study. The results achieved from the experiments confirm efficiency of
the proposed approach. Both of execution time and traffic are reduced in the case of mobile agent compared with client/server
model (i.e., eliminating the bottleneck, and overhead problem at crawler site). Furthermore, such combination will also
simplify the design and implementation of focused crawlers.

Keywords: Search engine, vertical search engine, focused crawler, mobile agents, multi-agents systems.

Received December 12, 2006; accepted February 27, 2007

1. Introduction
Although the internet provides access to a cosmic
repository of information, the search and retrieval of
specific, useful information and the management of
heterogeneous information sources on the Internet is
becoming increasingly difficult. Search engines are
information retrieval systems that help users to find
what they want on the web [1, 15, 2]. The user sends
his query to the search engine in a form of keywords.
Then, it searches its database and retrieves the pages
relevant to the submitted query. Finally, query result is
introduced to the user in the form of a ranked list of
relevant pages [4, 18]. Most search engines rely on
crawlers to traverse the web to collect pages, pass them
to the indexer, and then follow links from one page to
another web crawlers have the ability to index
thousands of pages per day so overcome the limitations
of the web portals. They also keep track of changes
made to pages visited earlier [7, 23]. For the purpose of
illustration, the basic components of a typical search
engine are shown in Table 1 and Figure 1. However,
search engines suffer from many problems such as, (1)
low precision and recall, (2) freshness problem [8], (3)
poor retrieval rate [14], (4) long list of result which
consumes time and efforts, (5) huge amount of rapidly
expanded information which causes a storage problem,
and finally, (6) large number of daily hits which makes
most search engines not able to provide enough
computational power to satisfy each users information

need [6]. So, a new strategy of searching is strongly
required.

Figure 1. The basic components of a typical search engine.

1.1. Focused Crawler
To overcome those problems, specialized search
engines that help users to locate useful information in
various domains are proposed. This leads to a new
generation of search engines, which are called the
domain-specific search (vertical) search engines [26].
Many different vertical search engines are available on
the internet, each has its own characteristics, such as
law crawler that searches for legal information on the
web and building online specialized in searching in the
building industry domain on the web.

184 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

In contrast to general-purpose search engines,
vertical search engines use a special class of crawlers
called focused crawlers [6] as they crawl the web for
pages with a specific topic or related to a certain
domain. A focused crawling algorithm loads a page,
extracts all links inside the page and tries to assign a
score for each extracted link then the crawler decides
which page to retrieve next by picking the link which
was assigned the higher score.

A focused crawler [6, 26] can be considered as a
special type of crawlers that seeks out pages about a
specific topic and guides the search based on both the
content [5] and link structure [19]. It has a priority
queue that initialized with a number of seed pages [16].
As illustrated in Figure 2, a focused crawler fetches the
page that located on the head of its queue, analyze the
page (using parsers to extract keywords and links) and
assign a score for each link found in the processed
page [24]. The links are sorted according to the scores
and inserted into the queue. So, it will organize itself in
order to place links with higher scores in the queue
head so that they will be processed first. This approach
ensures that the crawler moves towards the relevant
pages with the assumption that relevant pages tend to
be neighbours to each other [26]. The crawler will
continue operating as well as its queue has URLs for
processing.

The main contribution of this paper arises from the
formulation of a new approach for incorporating multi-
agents into the area of focused crawling. Hence, it can
effectively utilize the discriminative features of the
mobile agent as a new network-computing paradigm to
solve the problems of the current focused crawling
strategies. Such combination will also simplify the
design and implementation of focused crawlers. On the
other hand, more instances can be constructed using
the introduced model.

2. Agent-Based Systems Technology
Agent-based systems technology has generated lots of
excitement in recent years because of its promise as a
new paradigm for conceptualizing, designing, and
implementing software systems [25]. This promise is
particularly attractive for creating software that
operates in environments that are distributed and open,

Figure ٢. The structure of a typical focused crawler.

such as the Internet. Currently, the great majority of
agent-based systems consist of a single agent.
However, as the technology matures and addresses
increasingly complex applications, the need for
systems that consist of multiple agents that
communicate in a peer-to-peer fashion is becoming
apparent. Central to the design and effective operation
of such Multi-Agent Systems (MASs) are a core set of
issues and research questions that have been studied
over the years by the many research communities [9,
10].

2.1. Multi-Agent Systems
Sometimes we need several agents to perform a task.
Having multiple agents could speed up a system's
operation by providing a method for parallel
computation. In the case of application that is easily
broken into individual tasks -that can be handled by
separate agents could benefit from MAS. That is mean
the parallelism of MAS can help deal with limitations
imposed by time-bounded reasoning requirements.
While parallelism is achieved by assigning different
tasks or abilities to different agents, robustness is a
benefit of MAS that have redundant agents. If control
and responsibilities are sufficiently shared among
different agents, the system can tolerate failures by one
or more of the agents. Another benefit of MAS is their
scalability. Since they are inherently modular, it should
be easier to add new agents to MAS than it is to add
new capabilities to a monolithic system. From a
programmer's perspective the modularity of MAS can
lead to simpler programming [21]. Rather than tackling
the whole task with a centralized agent, programmers

Component Description

Crawler Also called robot, spider or web worm, they are used to retrieve web pages, read them, pass them to the indexer then follow links to the
next page [16]

Indexer It receives the pages retrieved by the crawler, analyzes the various elements of each page like title, headings, body text then extracts the
main features of the page, finally dumping the retrieved features into the database [21].

Database Stores information retrieved from each page the indexer analyze.

Query
manager

It has four basic functions: (i) it receives the query and reformulates it into a suitable database query, (ii) retrieve relevant pages from
database, (iii) ranking results according to the user query, and (iv) perform analysis on the retrieved pages including categorization and
text summarization [19].

User interface This is the part that the users see. It allows the user to enter his query, sending the query to database via query manager and finally
displaying the search result to the user.

Table 1. Search engine components.

Self Ranking and Evaluation Approach for Focused Crawler Based on Multi-Agent System 185

can identify sub-processes and assign control of those
subtasks to different agents [17]. To achieve common
goals agents need coordination [12]. On the other hand,
effective coordination requires cooperation, which in
turn can be achieved through communication and
organization. Many popular software agents bill
themselves as intelligent when in fact they are basic
software agents. Intelligent agent technology is a sub-
field of Distributed Artificial Intelligence (DAI) [3,
13]. DAI is concerned with issues arising from
problem solving by a collection of smart
entities/systems and concurrency of computation at
different levels. Some of the basic tenets of problem
solving by intelligent agents are: (1) each agent may
have different knowledge, capabilities, reliability,
resources, responsibilities or authority, (2) different
agents may perceive the same event or object
differently, (3) agents may specialize in or focus on
different problems and sub-problems, (4) an important
goal is convergence on solutions despite incomplete or
inconsistent knowledge or data [21, 22, 17].

2.2. Mobile Agent Technology
Mobile Agents (MA) are programs that are able to
migrate from node to another in the computer network
(under their own control) to perform the user specified
tasks [11, 27]. They can choose when and where to
migrate. MA may also interrupt their execution and
continue else where in the network. They provide a
powerful paradigm for network computing. To put this
claim into perspective, consider Figures 3 and 4.

Figure 3. Client server paradigm.

As illustrated in Figure 3, in the client server
paradigm, the server provides a set of services that may
be accessed remotely by the clients. Such paradigm
requires permanent connection between the client and
the server to establish the required service. On the
other hand, MA (as illustrated in Figure 4) offers more
flexible paradigm as the agent is allowed to migrate
from one host to another to establish the required task.
MA have salient properties that client-server paradigm
does not have such as; (1) they reduce the network
traffic, (2) they overcome the network latency, and (3)
they are executed asynchronously and autonomously

since MA are usually independent of the creating
process and can operate asynchronously (do not need a
permanent connection).

Using MA technologies provides potential benefits
to many distributed applications. As MA can be
integrated with any distributed application, they found
their way to enter many research areas. In [9], a policy-
based architecture of a secure mobile agent platform
(SECMAP) has been introduced, which provides an
isolated, secure execution environment for MA. It also
presents a policy-based framework to protect system-
level resources and agents against unauthorized access,
as well.

In [12], a MA Intrusion Detection System (MAIDS)
has been proposed. MAIDS is an agent based
distributed Intrusion Detection System (IDS) that
detects the attacks against the computer systems. MA
are also used in “distributed job coordination” [10],
where a set of users who wish to remotely and
mutually offer their own computing resources for their
time-critical needs. Other recent applications of mobile
agents include e-commerce [10, 20], network
management [2], grid-computing [21], fault-tolerance
[20], and distributed information retrieval [13, 11].

Figure 4. MA paradigm.

3. Problem Definition
Most of the previous focused crawling strategies rely
on a client/server computation model. In such model,
resources are available at remote servers while
execution is done locally. Hence, web pages reside at
remote servers, while the crawler resides at the local
(client) machine. The crawler is continuously asking
remote servers for new pages to process. Precision [15,
21] (Number or relevant web page retrieved divided by
number of document retrieved) can be considered as
the most important matrices to measure the retrieval
effectiveness of IR systems. As the number of
document retrieved increased, the efficiency of the
search engine will increase (assuming good strategy is
used of searching and classification).

For achieving such goal (increase the number of
received web pages), the focused crawling is estimated
to cover large number of web pages. To perform an
exhaustive search, it is require to performing several

186 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

recursive crawling, which will lead to accessing huge
number of web pages. So, focused crawling strategies
in this case will introduce high penalties as they
consume network bandwidth (the page must be
downloaded even if it is irrelevant). That means
bottleneck phenomena will happen within the network.
Also, performing the different tasks that constitute the
focused crawling processes, require exhaustive
memory and storage capabilities, and usually present
heavy load to their hosting sites. Hence, it is needed to
remove the bottleneck phenomena, and overcome the
problem of overload at the client sites (original site
where the crawler start), the indexing and classification
needs to be decentralized (distributed) in the same
manner that the raw information is.

3.1. Plan of Solution
According to the basic client/server computation
model, a lot of research and effort had been done to
improve the overall performance of the system. This
improvement can be done by one of the following
directions; (1) partitioning the data or replicating it at
cooperating servers (2) caching of data by proxy server
(3) the use of mobile code and mobile agent (4) the
requirement to add and remove mobile devices in
convenient manner [22, 2, 27]. In this work we select
the 3rd solution, by employing mobile agent for
distributing the computations (pages classification and
analysis), which would be performed at the client
(crawling site) among the various sites that contain raw
data (web page). As a distributed classification is not
held at a central point, the indexing and classification
are not concentrated in one portion of the web and thus
the problem of bottlenecks can be avoided. Since the
re-classification process is local, it can be performed
under the control of the site creator as often as
required.

This means that the currency of the classification
can be much better. Shifting the onus of the
classification task to the information provider should
present no problem on the basis that having bothered to
place the information on the web; the site creator
presumably wants to ensure that it can be found. In
distributed classification scheme, each website is
responsible for maintaining its own index i.e., a list of
URL’s against the specific subject. Thus each web
server maintains a small part of the overall index at the
focused crawler site.

4. The Proposed Approach
The key idea of the proposed approach is to use MA to
distribute the computations (i.e., carry the
computations to the data rather than the data to the
computations) among the available sites which have a
resident agent achieving the task and use mobile agent
for returning the results. In other word, instead of

moving large volume of data (retrieved page) across
www for analysis (moving data to code), MA can be
dispatched to remote information sources (moving
code to data), data (pages) are then accessed and
processed locally, then links extracted with the
corresponding scores are send back to the origin. As
interactions can take place locally, MA reduces the
flow of raw data across the network. Such concept is
very compatible with the web environment where very
large volumes of data are stored at remote hosts. This
will certainly reduce the network overheads and
overcome the network latency. These data should be
processed locally rather than transferred over the
network. Formulating the web crawling as a multi-
agent system, and how to combine between focused
crawler and multi-agent system to overcome the
problem associated to focus crawler is depicted in
Figure 5. It represents the architecture model (the
main components and their relationships) of the
proposed approach. As depicted is this Figure, five
type of agents are cooperating to achieve our goal
when the communication is held between two different
sites. The first site is original site where the crawler
starts its work. The second is the remote site where the
computation and analysis are accomplished. The
employed agents are as follow: Original Site Resident
Agent (OSRA), Computations Mobile Agent (CMA),
Remote Site Resident Agent (RSRA), Returned Link
Mobile Agent (RLMA), and Returned Pages Mobile
Agent (RPMA).

Figure 5. Architectural model of the proposed approach of the
focused crawler based on a multi-agent system.

Figure 6 illustrates the different steps of the
proposed approach (based on multi-agent system).
Figure 7, depicts the fundamental model of the
proposed approach. It represents the functional
properties of the components represented in Figure 5.
The operation within the proposed approach starts by
resident agent at the host that receives a query. The
responsibility of that agent (OSRA) is (1) maintaining
of the queue (extracting the link to be processed and
rearrange the exist and incoming link according to its

Self Ranking and Evaluation Approach for Focused Crawler Based on Multi-Agent System 187

weights, (2) creating number of MA CMA (this
number can be tuned to control the performance), (3)
providing CMA with the required domain knowledge
(keywords and URL). It recursively does this process
until the total number of pages it crawled or the
number of links it collected crosses the target
specified.

The crawler queue (Q) contains pages that are
ready-to-process Q= {l1, l2, l3… ln}, where l1, …. , ln is
the Uniform Resource Locators (URLs), or simply
links, for the ready-to-process pages. Q is a best first
queue in which the links are ordered according to the
link weight. The dispatched mobile agents will carry
these parameters to the resident agent at the host that
associated to pick URLs.

On the other hand, the responsibility of resident
agent at the remote site (RSRA) is to analyze such
page to judge on its relevancy to the domain of
interest. Five functions are embedded within RSRA,
which are: (1) page preparation, (2) page analysis, (3)
page importance. Irrelevant pages will be discarded
while relevant pages will be returned pack to the
original site at the same time it will processed by the
last function of this agent (4) page link analysis, and
finally, (5) pass the result to the original site via
RPMA.

According to topical locality (pages in the same
topic tends to be closed to each others in the web
graph), as the currently processed page is relevant to
the domain of interest, it certainly contains links that
point to other relevant pages. In order to compensate
the crawler queue with new links, the links found in
relevant pages will be extracted, weighted (ranked)
according to the domain of interest, and then added to
the crawler queue for future analysis.

Hence, the tasks performed within this function
(4th) of the RSRA are: (1) page links identification, (2)
weight calculation for each extracted link, (3)
injecting all extracted links with the corresponding
weights to RLMA. Table 2 summarizes the functions
and position of the different types of the used agents in
the proposed approach.

When an agent arrives in an agent server it talks to a
(static) space manager agent to find out what other
agents are present in that space. It then interacts with
each of those other agents finding out their interests. If
it meets with an agent with similar interests, it can
exchange details and amend its itinerary accordingly.
The details exchanged can be addresses of web pages it
has found and the addresses of sites where it is likely
to meet more like-minded agents or the agent handle of
other agents it should attempt to contact. An agent can
contact another agent directly (using the Agent Space
messaging service) once it has the target agent’s
handle.

Figure 6. Different steps of the proposed approach.

5. Evaluation and Analysis
Validation of the proposed approach has been done via
simulation. This simulation aims to analyze the impact
of using multi-agent system on reducing the amount of

Agent Functions Mobility Position
OSRA (1) Maintaining of the queue (extracting the link to be processed and rearrange the exist and incoming link

according to its weights. (2) Creating number of mobile agent, and (3) Providing the generated agents with
the required domain knowledge.

Stationary Site that
use the
crawler

CMA This agent will make negotiation and transaction with another agent, Moving to the specified URL and
carry the information to the resident agent at remote host

Mobile

RSRA (1) Page Preparation, prepares (tiding and parsing). The aim of page parsing is to represent the web page in
machine readable and easy to process form. The most popular form is the Document Object Model (DOM
Tree), (2) Page Analysis, extract the main features of the page so that it is possible to decide whether the
page is related to the domain of interest or not, (3) Page Importance: for estimating the importance of the
currently processed page by the occurrence of a number of domain concepts inside such page, (4) page
link analysis. all links found in the relevant page are identified. LIM performs three different tasks for each
identified link. These tasks are; (i) extraction of the link URL, (ii) weight Calculation for each extracted
link, (iii)injecting all extracted links with the corresponding weights to the queue, and finally, (5) pass the
result to the original site to be added with focus crawler queue.

Stationary Site
correspondi
ng to the
URL in the
Crawlin-g
Queue

RPMA Carrying the relevant page form the remote site to the DB of the original site Mobile
RLMA Carrying the relevant URL form the remote site to the crawling queue at the original site Mobile

Table 2. Various types of the agent in the proposed approach.

188 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

∑
=

m

i
ifS

0
)(

∑
=

m

0i
iproc)(T

data have to be transferred and minimizing the
processing at the crawler site.

Figure 7: Different steps of the proposed approach.

In our comparative study, we choose three metrics,
the Execution Time (ET), Data Transmission Time
(DTT), and Data Transmission DTR (traffic), to
evaluate the performance of the client/server-based and
mobile-agent-based computing models in collaborative
processing. At the same time, where the performance
of the crawler is depend on its ability to retrieve large
number of pages relevant to specific domain
(relevancy accuracy is beyond of our scope of this
paper), that is mean increasing the number of the used
mobile agent. So, the number of the mobile agent is
considered as an additional factor in the comparison.

5.1. Performance Metrics
The ET is the time spent to finish a processing task. In
the mobile-agent-based model, it starts from the time a
mobile agent is created to the time the mobile agent
returns with results. In the client/server-based model, it
is from the time the clients send out data to the time the
data processing is finished and results are generated at
the server. The ET consists of three components, Ttrans
(represent the time spent in transferring the migration
unit from one node to the other), Tproc (represents the
processing time), and T overhead (represents the overhead
time). In the case of client/server-based model, it is the
time spent on file access; and in the case of mobile-
agent-based model, it is the time used to create,
dispatch, and receive the mobile agent, and at the same
time, a few factors that can affect the execution time
include the network transfer rate Netrat, the data file
size Sf (the size of web page at each sit), the MA size

(Sa), the overhead of file access OF (the time used to
read and write a data file), the overhead of mobile
agent Oa, the number of agents m, and the number of
remote sites n that each agent migrates. The amount of
transferred data within the network in the client/server
and mobile agent model (DTRCS, DTRMA) can be
calculated as follow:

(DTR)CS = (1)

 while (DTR)MA = (2)

Then DTT, can calculated from the following
equation:

Data transmission time= latency+
 Transmission delay (3)

where Transmission delay: determined by the amount
of transferred (DTRCS or DTRMA) divided by the
(Netrat) data transfer rate, and Latency: is the delay
incurred from the time the message is sent until it starts
to arrive at the destination. It is composed of two
components, the overhead time in the client/server
model is (2nOf; assuming the time used to read and
write the data file is the same); and the data processing
time. So; the time for data transmission for the client
/server model.

 (DTT)CS=DTRCS/Netrat +2nOf (4)

 Therefore, the total execution time using the
client/server based model is

(ET)CS= (DTR) CS+2nOf+ (5)

 For the mobile-agent-based computing, the DTT for
the mobile agent model:

(DTT)MA = DTRma / Netnet +2(m+n) Oa (6)

 The agent overhead time is = 2(m+n) Oa as it takes
2mOa for the cluster head to dispatch and receive m
MA and 2nOa for all the local nodes to send and
receive each MA. Therefore, the total execution time
using the MA based model is:

 ET MA= (DTT)MA+2 mnOa+Max (T proc)i (7)

Based on the previous analytical discussion, the
investigated simulation had been implemented in two
distinct versions in order to evaluate the comparative
performance of two approaches client/server and multi-
agent. Both of the number of MA and the size of the
data file at remote site (web page) are generated in
random fashion that will help in studying the impact of
increasing of number of MA, and achieving the reality
of simulating the real web pages.

The above simulation results show that the MA
based model always perform better than the
client/server-based model and in different scenarios.
The execution time remains constant for MA model,
while it varies according to the page size for client/
server model; it is proportional to the page size. At the

∑
=

m

i
iaS

0
)(

Self Ranking and Evaluation Approach for Focused Crawler Based on Multi-Agent System 189

same time the traffic in the MA model will be less than
client server model. This is to be expected, as the entire
page has to be downloaded; the MA, which is quite
small in size, has a constant execution time.

• Effect of the number of mobile agents on the
performance metrics: we can see from Figures 8, 9
that the data transmission and execution time of the
MA model is always less than that of the
client/server model because of distributing the
computation among the different sites, where the
size of agent always less than the size data file.
Interestingly, the execution and data transmission
time of the MA model decreases as the number of
MA increases. Then the execution time begins to
climb. This is because more MA will increase the
number of cooperating sites to finish the
computations, thus reducing the execution time.

Figure 8. Data transmission comparison.

• Traffic comparison: execution time is not the sole
criterion of the comparative evaluation of such
application of IR. Traffic is highly critical for
application used intensively (Google processed 160
million queries daily 2004). As illustrated in Figure
10 as the amount of data increase the generated
traffic in client/server will increase gradually, on the
other hand such increasing does not have the same
effect with MA model. That is because the traffic
generated in the MA model will be only the
summation of the size of the agents. Traffic for
client/server is logically proportional to the page
length, while it remains constant for the mobile
computing model. Notice that traffic comparison
and execution time are very similar this is because
the execution time mainly reflects the traffic
generated in the cases of MA paradigm.

6. Conclusion
A general-purpose web crawler tries to collect all

accessible web pages. Such an approach runs into a
scalability problem. Focused crawler tries to solve such
problem by restricting itself to search within a specific
domain. However, focused crawlers are a greedy entity
that consumes both network and local host resources as

they depend in a semi-client server paradigm. The goal
of our study in this paper is to address issues in
focused search engine as information retrieval system
based on multiple agent technology. Experimental
results show that significant improvements in the
performance of the proposed approach can be realised.
Where the use of agent technology in the process of
searching for information on the Internet could
significantly decrease the amount of time it takes users
to find relevant information. The proposed approach
seems to be flexible, efficient, and easy to be
implemented. It also speeds up the crawling process as
the resident agent can create more navigational ones.
Hence, it simplifies the implementation of distributed
and parallel crawling approach. On the other hand it
can be considered as an abstract framework that can be
utilized to construct multiple crawling instances. Our
experimental results showed that, using of multiple-
agent technology significantly improved the average
execution time compared to the previous client/server
computation model.

Figure 9. Execution time comparison.

Figure 10. Traffic comparison.

References
[1] Albert B., Carlos C., Alexandru P., and Weber I.,

“An Analysis of Factors Used in a Search
Engine's Ranking,” in Proceedings of the
Workshop on Adversarial Information Retrieval
on the Web (AIRWeb), Chiba, Japan, pp. 207-
305, 2005.

[2] Andronico P., Buzzi M., Castillo C., and Barbara
L., “Improving Search Engine Interfaces for

190 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

Blind Users: A Case Study,” Journal of
Universal Access in the Information Society,
Special Issue on Information Systems
Accessibility, Springer, vol. 3, no. 1, pp. 278-
319, 2006.

[3] Bieszczad A., Pagurek B., and White T., “Mobile
Agents for Network Management,” IEEE
Communications Surveys, vol. 1, no. 1, 1998.

[4] Castillo C. and Ricardo B., “WIRE: An Open-
Source Web Information Retrieval
Environment,” in Proceedings of the
International Workshop on Open Source Web
Information Retrieval (OSWIR), Compiegne,
France, pp. 27-30, 2005.

[5] Chakrabarti S., Joshi M., and Tawde V.,
“Enhanced Topic Distillation Using Text,
Markup Tags, and Hyperlinks,” in Proceedings
of the 24th ACM-SIGIR Conference on Research
and Development in Information Retrieval, USA,
pp. 92-97, 2001.

[6] Chau M. and Chen H., “Using Content-Based
and Link-Based Analysis in Building Vertical
Search Engines,” in Proceedings of the 7th
International Conference on Asian Digital
Libraries (ICADL '04), Shanghai, China, pp. 515-
518, 2004.

[7] Chen J., David J., Tian F., and Wang Y.,
“NiagaraCQ: A Scalable Continuous Query
System for Internet Databases,” in Proceedings
of the ACM International Conference on
Management of Data (SIGMOD'00), Dallas,
Texas, USA, pp. 379-390, 2000.

[8] Cho J. and Garcia-Molina H., “Synchronizing
Database to Improve Freshness,” in Proceedings
of the ACM International Conference on
Management of Data (SIGMOD '00), Dallas,
Texas, USA, pp. 179-190, 2000.

[9] Fukuda M., Kashiwagi K., and Kobayashi S.,
“The Design Concept and Initial Implementation
of Agent Teamwork Grid Computing
Middleware,” in Proceedings of the international
IEEE Pacific Rim Conference on
Communications, Computers and signal
Processing (PACRIM '05), pp. 225-228, 2005.

[10] Ganzha M. and Paprzycki M., “Mobile Agents in
a Multi-Agent e-Commerce System,” in
Proceedings of the 7th International Symposium
on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC'05), Timisoara,
Romania, pp. 207-214, 2005.

[11] Gray R., “Mobile-Agent Versus Client/Server
Performance: Scalability in an Information-
Retrieval Task,” in Proceedings of International
Conference Mobile Agents (MA’2001), LNCS,
vol. 2240, pp. 198-212, Springer, 2001.

[12] Kona M. and ChengXu X., “Framework for
Network Management Using Mobile Agents,” in
Proceedings of the 16th International Parallel

and Distributed Processing Symposium (IPDPS
'02), pp. 225-229, 2002.

[13] Kosch H. and Mario D., “Content-Based
Indexing and Retrieval Supported by Mobile
Agent Technology,” in Proceedings of the
International Workshop on Multimedia
Databases and Image Communications (MDIC
'01), Amalfi, Italy, pp. 152-165, 2001.

[14] Lawrance S. and Giles C., “Accessibility of
Information on the Web,” in Proceedings of the
Nature Magazine, vol. 400, pp. 107-109, 1999.

[15] Marios D., Athena S., Loizos P., “An
Investigation of Web Crawler Behaviour:
Characterization and Metrics,” Computer
Communications, vol. 28, pp. 880-897, 2005.

[16] Menczer F., Paint G., and Srinivansan P.,
“Topical Web Crawlers: Evaluating Adaptive
Algorithms,” ACM Transactions on Internet
Technology, vol. 4, no. 4, pp. 378-419, 2004.

[17] Michael R., Chen X., and Wong T., “Design and
Evaluation of a Fault-Tolerant Mobile-Agent
System,” IEEE Intelligent Systems Journal, vol.
19, no. 5, pp. 32-38, 2004.

[18] Pandey S. and Olston O., “User-Centric Web
Crawling,” in Proceedings of the 14th
international World Wide Web Conference
(WWW '05), Chiba, Japan, pp. 114-117, 2005.

[19] Pant G. and Srinivasan P., “Link Contexts in
Classifier-Guided Topical Crawlers,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 18, no. 1, pp. 107-122, 2006.

[20] Pham V. and Karmouch A., “Mobile Software
Agents: An Overview,” IEEE Communications
Magazine, vo1. 34, no. 1, pp. 26-37, 1998.

[21] Rafael F. and Silva J., “Migration Transparency
in a Mobile Agent Based Computational Grid,”
in Proceedings of the 5th International
Conference of World Scientific and Engineering
Academy and Society (WSEAS '05) on
Simulation, Modelling and Optimization, Corfu,
Greece, pp. 31-36, 2005.

[22] Satoh I., “A Testing Framework for Mobile
Computing Software,” IEEE Transactions on
Software Engineering, vol. 29, no. 12, pp. 564-
571, 2003.

[23] Shao Q. and Zatsman M., “Index Structures for
Querying the Deep Web,” in Proceedings of the
International Workshop on the Web and
Databases (WebDB), San Diego, California, pp.
41-47, 2003.

[24] Srinivasan P., Menczer F., and Pant G., “A
General Evaluation Framework for Topical
Crawlers,” International Journal of Information
Retrieval, vol. 8, no. 3, pp. 417-447, 2005.

[25] Suat U. and Erdogan N., “A Flexible Policy
Architecture for Mobile Agents,” in Proceedings
of the 32nd International Conference on Current

Self Ranking and Evaluation Approach for Focused Crawler Based on Multi-Agent System 191

Trends in Theory and Practice of Computer
Science (SOFSEM '06), pp. 538-547, 2006.

[26] Thanh T., David H., Nick C., and Kathleen G.,
“Focused Crawling for Both Topical Relevance
and Quality of Medical Information,” in
Proceedings of the 14th ACM International
Conference on Information and Knowledge
Management (CIKM '05), Bremen, Germany, pp.
147-154, 2005.

[27] Wang Y., Ranjan S., and Wong J., “Towards the
Automatic Generation of Mobile Agents for
Distributed Intrusion Detection System,”
International Journal of Systems and Software,
vol. 29, no. 1, pp. 1-14, 2006.

Hesham Ali received a BSc in
electrical engineering, and MSc and
PhD in computer engineering and
automatic control from the Faculty of
Engineering, Mansoura University, in
1987, 1991 and 1997, respectively.
He was assistant professor at the

University of Mansoura, Faculty of Computer Science
in 1997 to 1999. From January 2000 to September
2001, he was joined as post doctor to the Department
of Computer Science, University of Connecticut,
Storrs. From 2002 to 2004, he was a vice dean for
student affair, the Faculty of Computer Science and
Information, University of Mansoura. Since 2004, he
has been an associate professor at the Computer
Engineering Department, Faculty of Engineering,
University of Mansoura. His interests are in the areas
of distributed systems, network security, mobile
agents, pattern recognition, databases, and performance
analysis. He supervises many PhD and Msc students in
computer engineering and science. He also leads and
teaches modules at both BSc and MSc levels in
computer science and software engineering.

