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Abstract: A simplified neural model to optimize a project team and to attain maximum throughput as well as to obtain high 
quality software has been proposed here. A novel approach, which uses the concept of Artificial Neural Networks, to train the 
software professionals and make them perform at high level of standards, is adopted. In this approach, a high level of 
communication among the professionals is achieved which will lead to good team work and finally produce quality software 
that meets the required level of standard.
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1. Introduction
The optimization of the project team in a software 
development organization can be effectively performed 
using an optimization process by applying Artificial 
Neural Network (ANN) concept. The Supervised
learning method of ANN has been adopted in this 
model to improve the performance of the project team 
members. The following are the two important phases 
involved in the training procedure adopted in the 
model:

1. Team formation and project preparation phase.
2. Team optimization phase.

Out of the above two phases, the second phase uses the 
proposed Project Team Optimization Model.

1.1. Team Formation and Project Preparation 
Phase

This phase mainly consists of two major activities, 
team formation, and project preparation and 
scheduling.

1.1.1. Team Formation 

Initial activity is categorization of recruited candidates 
into different groups and formation of the team. Each 
team will have a project leader to guide and control the 
team. Team formation is an important activity since the 
success of the project depends on the teamwork. 
Following are the aspects that are taken into 
consideration while the team formation takes place:

a) Level of skills of each trainee.
b) Level of background knowledge.
c) Area of  interest (like analysis,  design, coding,

testing etc.).
d) Soft skills.

The skill levels can again be categorized into high-
level, medium-level and low-level. This approach will 
ensure that there is a mix and match of all the three 
levels of skills in the project teams. Another objective 
behind this approach is to make the total average skill 
level of every team approximately the same.

1.1.2. Project Preparation and Scheduling

A project training set representing all categories of 
projects that a particular organization is concentrating 
on is prepared. Each project specified in the training 
set should be a miniature of the real time projects. The 
training set should also contain the description of all 
projects & the minimum time period required for 
completion as well as the excepted output value for 
each project.

Once the training set and teams are formed the 
schedule for training the teams are to be prepared. The 
aspects that are to be considered while scheduling the 
projects are:

• Duration of the training.
• Tools or resources that are to be provided for

training.

1.2. Team Optimization Phase
The proposed project team optimization model is 
applied in this phase which will lead to improved 
performance of the team members by making them 
will versed in all categorized of projects. This phase is 
initiated by assigning the projects specified in the train 
set one by one and continued until the team gets 
optimized. Once the team gets optimized by applying 
the proposed model the team members can work 
effectively and efficiently in all categorizes of real time 
projects to obtain maximum throughput.
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2. Project Team Optimization Model
The proposed model is a supervised learning model in 
which different projects selected from the training set 
is assigned to the corresponding team one by one, after 
which the actual output of the project will be compared 
with the expected output specified in the training set. 
After the comparison if there is any deviation from the 
expected output the team members have to rework on 
the project by identifying the flaws in the development 
activities, until the expected performance is attained.

After attaining the desired performance in a 
particular type of project the team will be assigned the 
next category of project from the training set. This 
process is continued until the team gets optimized and 
shows good performance in all the different categories 
of projects specified in the training set.

2.1. Related Work
A similar neural network approach has been efficiently 
used for software risk analysis [10]. After identifying
the key software risk factors responsible in achieving 
successful outcome, a neural network approach has 
been used to establish a model for minimizing the risks 
attributed to failed projects. Inputs of the model are 
software risk factors that were obtained through 
interview, and output of the model describes the final 
outcome of the project. The experimental result 
indicates that the software risk analysis can be 
improved through these methods and that the risk 
analysis model is effective.

2.2. Optimization Model Architecture
The proposed optimization model uses single layer 
feed forward perceptron topology. The architecture 
consists of one input layer and one output layer. The 
learning algorithm uses the training set prepared in the 
project preparation phase. Based on the training set, the 
weights have to be modified to make the model stable. 
Once the model becomes stable, it can be utilized to 
optimize the software project team using the 
acceptance factor of the output layer, which indicates 
the success rate of the project. The detailed 
architecture is shown in Figure 1. The input layer of 
the model consists of eight input nodes. Let X =  {x1, 
x2, x3, x4, x5, x6, x7, x8} be the input vector and W = 
{w1, w2, w3, w4, w5, w6, w7, w8} be the weight vector 
respectively.

The activation function used in the model is non-
polynomial continuous bounded function (tauber-
wiener) particularly non-linear hyperbolic tangent 
(sigmoid) function. Let O be the activation value of the 
output scalar and let b be the bias value of the model. 
The activation function for the above architecture 
using forward computing is given in Equation 1.

Input Layer

Figure 1. Feed forward perceptron model.
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The training sample for the pth project in the training 
set is given by (xp, dp), where xp is the input pattern and 
dp is the desired output pattern. Let Op be the actual 
output pattern obtained using the activation function 
given above.  A supervised, sequential, error driven, 
linearly separable and generalized delta rule for back 
propagation learning is used in this model. The 
objective of learning is to obtain the incremental values 
so as to minimize the sum square error.
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If η is the learning rate then

( )i p p iw d O xη∆ = − (3)

The weights can then be modified using the following 
equation:
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2.2.1. Input Layer

The input layers of the proposed model consist of 8 
input nodes which accept values from different phases 
of software development as inputs. These values are 
inturn used to compute the acceptance factor of output 
layer, which gives an indication to the success rate of 
the project.

System Design
x4

Requirements Analysis
x3

S( ) 

Acceptance 
Factor (AF)

Output Layer

w1

w2

w3

w4

w5

w6

w7

w8

x1

x2

x5

Coding
x6

x7

x8

Tools

Detailed Design

Testing

Implementation

Effort



150 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

a. Effort

The first input parameter to the model is the effort. 
Effort is estimated using the formula, E= a× 
(KDLOC)b, where a and b depends on the type of the 
project.

The projects are categorized into three types 
organic, semidetached and embedded [2]. Organic 
projects are used in an area in which the organization 
has considerable experience and requirements are less 
stringent. Semidetached systems include developing a 
new Operating System (OS), Database Management 
System (DBMS) etc.,. Embedded projects are used in 
an area in which the organization has little experience 
and stringent requirements for aspects such as interface 
and reliability. The constants a and b for different 
systems are given in Table 1.

Table 1. Effort metric.

System a b
Organic 3.2 1.05

Semidetached 3.0 1.12
Embedded 2.8 1.20

b. Tools

The second input parameter to the model is the type of 
the tool used for the development. The use of software 
tools is categorized as very low , low, nominal, high and 
very high. The effort multipliers for tools are given in 
Table 2.

Table 2. Effort multipliers for tools.

Rating

Very 
Low Low Nominal High Very 

High

Tools 1.24 1.10 1.00 0.91 0.83

c. Requirements Analysis

Optimization model uses requirements analysis as the 
third input parameter. The most commonly used metric 
in the requirements analysis phase is the Function 
Point metric (FP) [3]. 

FP are derived using an empirical relationship based 
on countable measures of software information domain 
and assessments of software complexity. The original 
formulation for computing the function point used the 
count of five different parameters namely number of 
user inputs, number of user outputs, number of user 
inquiries, number of files and number of external 
interfaces. The five parameters are determined and 
counts are provided in the appropriate table location. 
The count total is determined by summing up the count 
for each parameter. The weighting factor for each 
parameter is shown in the Table 3.

Table 3. Weight factor for FP metric.

Weighting Factor
Parameter

Simple Average Complex

No.  of User Inputs 3 4 6

No.  of User Outputs 4 5 7

No.  of Inquiries 3 4 6

No.  of Files 7 10 15

No.  of External 
Interfaces 5 7 10

d. System Design

The fourth input to the optimization model is the 
system design parameter. The metric total number of 
modules [5] is the simplest and the commonly used 
metric in the system design phase. 

The metric value can be easily obtained from the 
design by using an average size of a module. From this 
metric the final size in Lines Of Code (LOC) can be 
estimated [4]. Alternatively, the size of each module 
can be estimated, and then the total size of the system 
will be estimated as the sum of all the estimates. As a 
module is a small and clearly specified programming 
unit, estimating the size of a module is relatively easy.

e. Detailed Design

The proposed model accepts detailed design parameter 
as the fifth input. The metric widely used in the 
detailed design phase is the information flow metric 
[8].

In the information flow metric, the complexity of a 
module is considered as depending on the intra-module 
complexity and inter-module complexity. The intra-
module complexity is approximated by the size of the 
module in LOC. The inter-module complexity of a 
module depends on the total information flowing in the 
module (inflow) and the total information flowing out 
of the module (outflow). The inflow of a module is the 
total number of abstract elements flowing in the 
module and outflow is the total number of abstract data 
elements that are flowing out of the module. Module 
design complexity:

Dc = Size × (inflow × outflow) 2 (5) 

To identify modules that are extra complex, what 
complexity number is normal has to be defined. The 
complexity of modules in the design and highlight 
modules that are relatively speaking more complex has 
to be evaluated. One of the method used for 
highlighting the modules are as follows: Let average 
complexity be the average complexity of the modules 
in the design being evaluated and let standard deviation 
be the standard deviation in the design complexity of 
the modules of the system. This method classifies the 
modules into three categories: error prone, complex 
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and normal. If Dc is the complexity of a module, it is 
classified as follows:

• Error Prone, if Dc > average complexity + standard 
deviation.

• Complex, if average complexity < Dc < average 
complexity + standard deviation.

• Normal, Otherwise.

f. Coding

The proposed model accepts coding parameter as the 
sixth input, and the metric used for coding phase is 
halstead measure [7]. A number of variables are 
defined in the software science. These are n1 (number 
of unique operators), n2 (number of unique operands), 
N1 (total frequency of operators) and N2 (total 
frequency of operands). As any programs must have at 
least two operators, one for function call and one for 
end of statements, the ratio n1/2 can be considered the 
relative level of difficulty due to the larger number of 
operators in the program. The ratio N2/n2 represents the 
average number of times an operand is used. In a 
program in which variables are changed more 
frequently, this ratio will be larger. As such programs 
are harder to understand, ease of reading or writing is 
defined as 

D = (n1 × N2) / (2 × n2) (6) 

Halstead’s complexity measure focuses on the 
internal complexity of a module. A module’s 
connection with its environment is reflected in terms of 
operands and operators. A call to another module is 
considered an operator and all the parameters are 
considered operands of this operator.

g. Testing

The seventh input to the optimization model is the 
testing parameter. The metric Defects per Thousand 
Delivered Lines of Code (KDLOC) or defects per 
function point [2] can be applied to this node. This is a 
rough measure of the reliability of the software as the 
defect density directly impacts the reliability of the 
software.

h. Implementation

The optimization model accepts implementation
parameter as the last input. The metric that can be 
applied to this node is number of modules successfully 
implemented. The metric is represented as follows:

dimplementebetoulesmodof.noTotal
dimplementelysuccessfululesmodof.NoM =

where M represents the success factor of the modules.

2.2.2. Output Layer

The output layer of the optimization mode architecture 
computes the Acceptance Factor (AF) using the eight 
inputs of the input layer. The AF value represents the 
level of acceptance of the software developed by the 
software project team. The different levels of
acceptance are shown in T able 4.

Table  4. Different levels of acceptance.

Range of AF 
Values Level of Acceptance

0.67 –  1.00 Excellent (Can be Accepted)

0.33-0.66 Good  (Can be Accepted)

0.01-0.32 Average (May be Accepted)

≤ 0 Poor (Cannot be Accepted)

Based on the AF values, the quality of the software 
as well as the ability of the software project team 
members can be determined. If the quality does not 
meet the required standard, the team members can be 
given proper guidance and a new project of similar 
category can be given. Again at the end, the quality 
will be tested using AF value and if succeeded, then 
the team can be assigned the next type of project. This 
process is continued until the team members get 
trained in all different types of project, which the 
organization concentrates on. The outcome of the 
process will be an optimized software project team, 
which in turn optimizes the project team members.

3. Case Study
To demonstrate the use of the model, a case study of
the students’ project evaluation has been considered. In 
this study, only organic type projects have been 
considered for the time being. No other metric 
information has been considered in the case study. The 
model takes eight input values from the input layer and 
then evaluates the AF.

A sample training set has been formed to train the 
model by using previous project evaluation data. The 
accuracy of the model can be improved by adding 
more data into the training set. In the study, organic 
type projects, in the range 10 KDLOC to 50 KDLOC 
are considered. After the completion of each project, 
the different input parameter values are fed into the 
input layer and the corresponding acceptance factor 
will be evaluated. If the AF value indicates that the 
project was successful, then the team will proceed to 
next type of project in the training set. If the project 
was not successful, as indicated by AF value, then the 
problem occurred during the development phases has 
to be thoroughly analyzed and a similar type project 
has to be undertaken again from the training set. This 
process is continued until the team gets optimized in 
different types of projects.  

(7)
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For the case study a sample training set has been 
formulated, consisting of input parameters and their 
corresponding desired output value, of organic type 
projects with a code size of 50 KDLOC maximum. For 
simplicity, only four inputs among the eight inputs in 
the input layer are considered. All other desired input 
information like number of user inputs, number of user 
outputs, number of inquires, number of files, no 
number of external files, number of modules to be
implemented, coding method to be adopted to reduce 
the complexity etc., has been given to the students in 
advance. The four inputs considered in the case study 
are effort, tools, testing and implementation. For the 
testing input, the defect rate is used as the metric. If the 
defect rate metric has value 0, then it indicates that no 
defects have been identified. On the other hand, if the 
metric has value 1 then it indicates that all lines of 
code in the software are defective. For implementation
input, the metric number of modules successfully 
implemented is used. 

Using the training set consisting of the above-
mentioned inputs and desired output value, an 
optimization model has been formulated here. In the 
actual model, all the eight input values will be 
considered to prepare the optimization model. 

The graph representing the initial state of the model 
(before training the model) is given in Figure 2.

Figure 2.  Initial state of optimization model.

The graph showing the performance of the training 
model is given in Figure 3 which shows that the model 
has been optimized and it can be used for assessing the 
acceptance of the project. Figure 4 represents the 
model after optimization.

The weights associated with four inputs such as 
effort, tools, testing and implementation, after training 
the model are as follows:

w1 (Effort) = -0.0003
w2 (Tools) = 0.7836
w3 (Testing) = -0.3213
w4 (Implementation) = 0.0800.

Figure 3.  Performance graph of the optimization model.

Figure 4. Graph representing the optimized model.

Using this model we can optimize the project team 
of students by assessing the AF value. Based on the AF
value, the project leader or the concerned staff-in-
charge can decide whether to give the same type of 
project again to improve their performance or to go to 
the next type of organic type project. Again the model 
is used to assess the AF value of the newly assigned 
project. Based on the AF value, the necessary action 
will be taken by the project leader or staff-in-charge. 
This process is repeated until the team gets optimized 
in all required categories of organic type projects.

4. Conclusion
This paper gives an insight into how neural model can 
be used for software project team optimization. This 
architecture uses basic metrics for accessing the quality 
of the software developed by the team. This model can 
be used by software organizations for effectively train 
their newly recruited software trainees. The advantage 
of this model over conventional training methods is 
that the team members get well versed in all types of 
projects, the organizations deals with.

The proposed neural model can be further improved 
by incorporating advanced quality metrics in each 
layer of the proposed neural model to enhance the 
optimization of team members.
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