A study on Two-Stage Mixed Attribute Data Clustering Based on Density Peaks

A study on Two-Stage Mixed Attribute Data Clustering Based on Density Peaks

Shihua Liu, Hao Zhang, and Xianghua Liu

Department of Information Technology, Wenzhou Polytechnic, China

Abstract: A Two-stage clustering framework and a clustering algorithm for mixed attribute data based on density peaks and Goodall distance are proposed. Firstly, the subset of numerical attributes of the dataset is clustered, and then the result is mapped into one-dimensional categorical attribute and added to the subset of categorical attribute data. Finally, the new dataset is clustered by the density peaks clustering algorithm to obtain the final result. Experiments on three commonly used UCI datasets show that this algorithm can effectively realize mixed attribute clustering and produce better clustering results than the traditional K-prototypes algorithm do. The clustering accuracy on the Acute, Heart and Credit datasets are 17%, 24%, and 21% higher on average than that of the K-prototypes, respectively.

Keywords: Mixed data clustering, density peaks, k-prototypes algorithm, validity index.

Received July 4, 2019; accepted September 27, 2020

Read 740 times
Share
Top
We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…