Choosing Decision Tree-Based Boundary Patterns in the Intrusion Detection Systems with Large Data Sets

  • Ghadeer Written by
  • Update: 09/05/2022

Choosing Decision Tree-Based Boundary Patterns in the Intrusion Detection Systems with Large Data Sets

Hamidreza Ghaffari

Department of Computer Engineering, Islamic Azad University of ferdows, Iran

 This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract: Today, due to the growing use of computer networks, the issue of security of these networks and the use of intrusion detection systems has received serious attention. A major challenge in intrusion detection systems is the enormous amount of data. The generalization capability of support vector machine has attracted the attention of intrusion detection systems in the last years. The main drawbacks of a support vector machine occur during its training phase, which is computationally expensive and dependent on the size of the input dataset. In this study, a new algorithm to speed up support vector machine training time is presented. In proposed method, First, Ant Colony Optimization (ACO) is used to find prototype samples, then a number of prototype samples is randomly selected and the approximate boundary is determined using support vector machine. Based on the approximate boundary obtained, boundary samples are determined using decision tree. Using these boundary samples, final model is obtained. To demonstrate the effectiveness of the proposed method, standard publicly available datasets have been used. The experiment results show that despite the data reduction, the proposed model produces results with similar accuracy and in a faster way than state-of-the art and the current Support Vector Machine (SVM) implementations.

Keywords: Intrusion detection systems, boundary patterns, support vector machine, data reduction.

Received February 14, 2020; accepted August 31, 2021

https://doi.org/10.34028/iajit/19/3/10

Full text

Read 633 times Last modified on Wednesday, 11 May 2022 11:32
Top
We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…